裂项放缩法与函数放缩法研究

合集下载

放缩法与裂项相消胡应用

放缩法与裂项相消胡应用

例 5.证明: 1 1 1 1
23 33
n3 4
裂项相消法与放缩法 复习应用 知识梳理 考考点点突突破破 内容提升 总结与扩展
考点1
考点2
规律方法 (1)利用裂项相消法求和时,应注意抵消后并不一定只 剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.
(2)将通项公式裂项后,有时候需要调整前面的系数,使裂开 的两项之差和系数之积与原通项公式相等.
a2=6.(1)求 c 的值及数列{an}的通项公式;(2)证明a11a2+a21a3+…+ana1n+1<18.
裂项相消法与放缩法 复习应用 知识知识梳梳理理 考点突破 内容提升 总结与扩展
2.常见的裂项公式

(1)n(n1+1)=1n-n+1 1。推广:
1 n(n
k
)
=

(2)(2n-1)1(2n+1)=122n1-1-2n1+1.
由已知 C1 b22 b12 a2a3 a1a2 2d a2 2d (a1 d ) 4d 2
将 C1 4d 2 代入(*)式得 Tn 2d 2n(n 1)

n1 T k 1 k
1 2d
2
n
1
k1 k(k 1)
= 1 (1 1 1 1 1 1 )
2d 2 2 2 3
裂项相消法与放缩法 复习应用 知识梳理 考点突破 内容提升 拓展总结提与升扩展
(2016 年天津高考)已知an 是各项均为正数的等差数列,公差
为 d ,对任意的 n N, bn 是 an 和 an1 的等比中项.
(Ⅰ)设 cn
b2 n1
bn2, n N* ,求证:
cn
是等差数列;
(Ⅱ)设

数列及函数不等式放缩如何一步到位

数列及函数不等式放缩如何一步到位
数列不等式与函数不等式
——如何放缩才能一步到位
数列不等式为高中数学的重点和难点,常 出现在高考压轴题中,具有极高的思想性和 技巧性。解决数列不等式的一般思想是进行 合理地放缩,放缩后能够再运算是解决此类 问题的重要原则。
熟记一些常见的放缩结论,掌握一些常见 的放缩技巧很重要。在放缩过程中经常用到 的方法有:积分(函数法)放缩、裂项放缩、 对偶放缩、分类放缩、二项式定理放缩、 等比放缩、切线放缩等等。
一、积分放缩
积分法即利用积分的几何意义进行放缩。
基本结论:
1 n1 1 dx ln( n 1) ln n
n
nx
1 n 1 dx ln n ln( n 1)
n n1 x
1
n 1
1
dx 2
n
nx
x
| n 1 n
1
n1
dx 2
n n1 x
x
|n n 1
f (x) 1 或 1
x
(
1 2
1 31
)
(1 4
1 5
...
1 32

...
(3n11
1
1 3n1
2
...
1 3n

n段,每个括号都 5 ?
6
下证f
(n)
1 3n1 1
1 3n1 2
...
1 3n
5 6
1 n1 1 dx ln( n 1) ln n
n nx
1
1
1
1 3n1 2
1 3n1 3
1 3n 1
)
3n
1
5n 6
1 2
1 ... 3
1 3n
5n 6

高三数学数列不等式证明——裂项相消与放缩法总结

高三数学数列不等式证明——裂项相消与放缩法总结

高三数学数列不等式证明——裂项相消与放缩法总结一、裂项相消法通项特征:通项一般是分式,分母为偶数个因式相乘,且满足a是常数,a-=原分子分母大的因式分母小的因式2.解题思路类型①⎪⎭⎫⎝⎛+-=+knnkknn111)(1类型②()nknknkn-+=++11类型③⎪⎭⎫⎝⎛+--=-121121211412nnn类型④()()⎪⎭⎫⎝⎛++--=--121121114412nnnn nn类型⑤kkkk nnnnn+-+=++++112121)2)(2(2类型⑥kakakakaaannnnn+-+=++⎪⎭⎫⎝⎛-++1111))((11二、错位相减法错位相消法三种思维求法:以下三种思维,但还是建议练熟第一种。

如果第一种都掌握不了的学生,基本上也记不住第二和第三种方法。

1.思维结构结构图示如下2.公式型记忆:1(),n S=n+)q,,11n nn nC a n b q A B ca b AB C Bq q-=⋅++-==---则其前项和(其中A=3.可可裂项为如下11(),q1),[(1))](),((())k=pq-pp tb=pqnnn n nn n n na knb qa p n t q pn t q C C C pn t qtq t++=+≠=++-+=-=+⎧⎨+-⎩(则其中可通过方程组计算出、值:11=a()n=a[( )( )( )...( )]n=1 n=2 n=3 n=n-++++=⇑⇑⇑⇑原式分母小的因式分母大的因式前项和化简放缩模型——平方型与指数型证明下列不等式:1、、2、)(21......31211222*∈<++++Nnn3、)(471......31211222*∈<++++Nnn4、)(351......31211222*∈<++++Nnn)(21)12()12(1......751531311*∈<+⨯-++⨯+⨯+⨯NnnnnnS + + +...+n=1 n=2 n=3 n=nqS + + +...+q-=⇑⇑⇑⇑=①②①的基础上左右同时乘,即在①式中指数加1①②代入通项公式,等差数列当等比数列的系数在n-+k( )=+k( )=-S=--n得(1q)S①中的第一项指数函数相加②的最后一项①中的第一项等比求和公式②的最后一项化简两边同时除以(1q)即得平方型:分母是两项积可放缩到裂项相消模型指数型:可放缩为等比模型5、)(45)12(1......51311222*∈<-++++N n n6、),2(32121......121121121432*∈≥<-++-+-+-N n n n7、)(23231......231231231332211*∈<-++-+-+-N n nn8、)(342 (3232221211)432*+∈<-++-+-+-N n n n n一、单选题1.已知数列{}n a 的首项是11a =,前n 项和为n S ,且()1231n n S S n n N *+=++∈,设()2log 3n n c a =+,若存在常数k ,使不等式()()116n nc k n N n c *-≥∈+恒成立,则k 的取值范围为( ) A .1,9⎡⎫+∞⎪⎢⎣⎭B .1,16⎡⎫+∞⎪⎢⎣⎭C .1,25⎡⎫+∞⎪⎢⎣⎭D .1,36⎡⎫+∞⎪⎢⎣⎭2.已知数列{}n a 的首项是11a =,前n 项和为n S ,且1231n n S S n +=++(*N n ∈),设()2log 3n n c a =+,若存在常数k ,使不等式()116n n c k n c -≥+(*N n ∈)恒成立,则k 的最小值为( )A .19B .116C .125D .136二、填空题3.已知数列{}n a 中,112a =,()1n n n n a a a +-=,*n ∈N ,数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S .若对于任意的*n ∈N ,不等式n S t <恒成立,则实数t 的取值范围是________.4.已知首项为1的数列{}n a 的前n 项和为n S ,且()12n n nS n S +=+,数列2112n n n n a a a +++⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若()110n n T λ++-⋅>,且λ∈Z ,则λ=___________.三、解答题5.已知数列{}n a 中11a =,)2n a n =≥.(1)求{}n a 的通项公式;(2)若21n n c a -=,数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:21211n n n a T a +--<≤.6.已知数列{}n a 满足1222n n a a a a =-,*n N ∈.(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记12n n T a a a =,*n N ∈,22212n n S T T T =++.证明:当*n N ∈时,11243n n S a +>-.7.已知函数()()3log 1(0)1x f x x x +=>+的图像上有一点列()()*,n n n P x y n N ∈,点n P 在x 轴上的射影是(),0n n Q x ,且(1322n n x x n -=+≥,且)*1,2n N x ∈=.(1)求证:{}1n x +是等比数列,并求数列{}n x 的通项公式;(2)对任意的正整数n ,当[]1,1m ∈-吋,不等式239181n y t mt <-+恒成立,求实数t 的取值范围;(3)设四边形11n n n n P Q Q P ++的面积是n T ,求证:1211132nT T nT +++<.8.已知正项数列{}n a 的首项11a =,前n 项和nS 满足)2n a n ≥. (1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对任意的*N n ∈,不等式24n T a a <-恒成立,求实数a 的取值范围.9.已知数列{}n a 满足11a =,且11n n a a n +-=+,n S 是1n a ⎧⎫⎨⎬⎩⎭的前n 项和.(1)求n S ;(2)若n T 为数列2n S n ⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和,求证:232n nT n >>+.10.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且214n n n S S a ++=+. (1)求n a ;(2)求证:121112111n a a a +++<+++.11.已知数列{}n a 的前n 项和为n S ,13a =,24a =,()112322n n n S S S n +-+=-≥. (1)证明:数列{}2n a -是等比数列,并求数列{}n a 的通项公式;(2)记112n n n n b a a -+=,数列{}n b 的前n 项和为n T ,证明:11123n T≤<.12.证明:135212462n n -⨯⨯⨯⋯⨯13.已知数列{}n a 是等差数列,23a =,数列{}n b 是等比数列,18b =,公比3q >,且3q a =,2213b a a =.(1)求{}n a ,{}n b 的通项公式; (2)设24log n n n b c a =,n *∈N ,求证:1212nc c c ++⋅⋅⋅+<.14.已知各项为正的数列{}n a 满足:113a =,()*134N n n n a a n a +=∈+. (1)设0a >,若数列1log 1a n a ⎧⎫⎛⎫⎪⎪+⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是公差为2的等差数列,求a 的值;(2)设数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明4543n S n ≤<+.参考答案:1、 通项公式为: ()()⎪⎭⎫⎝⎛+--=+-=1211212112121n n n n a n2、通项公式为: ()⎪⎭⎫ ⎝⎛--=-<=≥n n n n n a n n 111111,22 3、通项公式为: ⎪⎭⎫ ⎝⎛+--=-<=≥111121111,222n n n n a n n 4、通项公式为: ⎪⎭⎫ ⎝⎛+--=-<==≥1211212144441,2222n n n n n a n n 5、通项公式为: ()⎪⎭⎫⎝⎛--=-<+-=-=≥n n n n n n n a n n 111414411441121,2222 6、通项公式为:()11111123121211221221121,2---++⋅=≤≤=-=-<-=≥n n n n n n n a a a n 7、通项公式为:11313231231--=⋅-<-=n n n n n n a 8、通项公式为:nn n n n nn n n n a n 2222,21<-+=-=≥+ 1.C 【详解】由1231n n S S n +=++,则当2n ≥时,得123(1)1n n S S n -=+-+, 两式相减得123n n a a +=+,变形可得:132(3)n n a a ++=+,又134a +=,122123116a a S S +==+⨯+=,所以25a =,2132(3)a a +=+, ∴数列{}3n a +是以4为首项、2为公比的等比数列,故113422n n n a -++=⨯=,所以2log (3)1n n c a n =+=+,所以2111116(16)(16)(1)17168172517n n c n n n c n n n n n n -===≤=++++++++, 当且仅当4n =时等号成立,故125k ≥.故选:C. 2.C 【详解】当2n ≥ 时,由1231n n S S n +=++可得-123-2n n S S n =+,两式相减得:123n n a a +=+ ,即132(3)n n a a ++=+,而134a +=,2121224,5a a S S a +==+=, 故2132(3)a a +=+ ,所以{3}n a + 是以134a +=为首项,2q为公比的等比数列,则11342,23n n n n a a -++=⨯=- ,故()122log 3log 21n n n c a n +=+==+,所以()111616(16)(1)17n n c n n c n n n n -==+++++,而16N ,8n n n*∈+≥ ,当且仅当4n = 时取等号, 故()11116162517n n c n c n n-=≤+++,当且仅当4n = 时取等号, 所以若存在常数k ,使不等式()116n n c k n c -≥+(*N n ∈)恒成立,则k 的最小值为125,故选:C 3.[)4,+∞【详解】由()1n n n n a a a +-=得11n n a n a n++=,则有 312412321234112321n n n n a a a a a n n a a a a a n n ----⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯--,化简得1n a n a =,即2n n a =, 所以1114114()1(1)122n n n n a a n n n n +===-+⋅++⨯, 所以111114(1)4(11)4223341111111n S n n n n n ---=-+-+-+++=-++<, 所以不等式n S t <恒成立,则有4t ≥.故答案为:[)4,+∞ 4.0【详解】由()12n n nS n S +=+,得()1()2n n n n S a n S ++=+, 即12n n na S +=,当1n =时,2122a S ==,21021a a -=;可知当2n ≥时,12n n na S +=,()112n n n a S --=, 两式相减整理,得101n na a n n,所以n a n ⎧⎫⎨⎬⎩⎭是以1为首项,0为公差的等差数列,所以1na n=,n a n =,所以()()21111211221221n n n n n n n a n a a n n n n ++++++==-⋅⋅+⋅⋅+,所以()12231111111()()()21222223221n n n T n n +=-+-+⋅⋅⋅+-⨯⨯⨯⨯⋅⋅+()111221n n +=-⋅+, ()110n n T λ++-⋅>等价于()()11111212n n n λ++-⋅>-⋅+;当n 是正奇数时,()111212n n λ+>-⋅+,因为()12111132122228n n +-≤-⨯=-⋅+,所以38λ>-; 当n 是正偶数时,()111221n n λ+<-⋅+,因为()1311111122122324n n +-≥-=⋅+⨯,所以1124λ<; 综上所述,λ的取值范围为311824λ-<<,则整数λ的值为0.故答案为:0. 5.(1)n a =证明见解析【解析】(1)将)2n a n =≥两边同时平方,整理得()22112n n a a n --=≥, 所以数列{}2n a 是首项为211a =,公差为1的等差数列,所以()2111n a n n =+-⨯=.由题知0n a >,所以n a(2)因为n a =21n n c a -==1n c =. 先证21n n T a -≤:当1n =时,11a =,11T =,满足21n n T a -≤; 当2n ≥时,1n c ==所以)(21112n n T n a -<++++-==.故21n n T a -≤得证.再证211n n T a+>-:因为1nc ==>=所以)(211211n n T n a +>++++==-.故不等式21211nn n a Ta +--<≤成立.【点睛】关键的点睛:本题考查等差数列的证明,以及放缩法证明不等式,本题的第二问的难点是对通项公式的放缩,放缩后,再进行裂项相消法求和,1n c==<=1n c ==>= 6.(1)证明见解析;()*12n n a n N n +=∈+(2)证明见解析 【解析】(1)当1n =时,1122a a =-,123a =,当2n ≥时,1222n n a a a a =-;121122n n a a a a --=- 相除得11(2)1n n n a a n a --=≥-,整理为:1111(2)111n n n n a n a a a -==-≥---,即1111(2)11n n n a a --=≥--, 11n a ⎧⎫∴⎨⎬-⎩⎭为等差数列,公差1d =,首项为1131a =-;所以()13121n n n a =+-=+-,整理为:()*12n n a n N n +=∈+,经检验,符合要求. (2)由(1)得:()*12n n a n N n +=∈+.1222n n T a a a n ==+, 2244114(2)(2)(3)23n T n n n n n ⎛⎫∴=>=- ⎪+++++⎝⎭,22212111112441342333n n S T T T n n n ⎛⎫⎛⎫∴=++>-++-=-- ⎪ ⎪+++⎝⎭⎝⎭,112224333n n n S a n ++∴>-=-+, 所以,当*n N ∈时,11243n n S a +>-.7.(1)证明见解析,31nn x =-(2)()(),22,∞∞--⋃+(3)证明见解析【解析】(1)因为2n ≥,且*1,32n n n N x x -∈=+,所以()1131n n x x -+=+,即1131n n x x -+=+(常数); 因为113x +=,所以{}1n x +是首项为3,公比为3的等比数列,所以11333n n n x -+=⨯=,即31n n x =-;数列{}n x 的通项公式为31n n x =-.(2)由题可知()()3*log 10,1n n nn x y xn N x +=>∈+,由(1)可得3log 3033n n n n n y ==>,所以1113n ny n y n ++=<,即1n n y y +<,数列{}n y 为单调递减数列.所以n y 最大值为113y =;因为当[]1,1m ∈-吋,不等式239181n y t mt <-+恒成立,所以29180t mt ->恒成立.所以2291809180t t t t ⎧->⎨+>⎩,解得2t <-或2t >.所以t 的取值范围为()(),22,∞∞--⋃+.(3)四边形11n n n n P Q Q P ++的面积是()()114123n n n n n y y x x n T +++-+==.因为()()331134111n n n n n n ⎛⎫<=- ⎪+++⎝⎭,所以1211111111111313122233411n T T nT n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++<-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 因为*n ∈N,所以13313311n n ⎛⎫-=-< ⎪++⎝⎭;所以121113.2nT T nT +++<8.(1)21n a n =-;(2)1a ≤-或2a ≥.【解析】(1)当2n ≥时,n a=∴1nn S S --=1=1=, 所以数列是首项为1,公差为1n ,又由n a 121n n n =+-=-(2n ≥),当1n =时,11a =也适合,所以21n a n =-. (2)∴()()()111111221212121n n a a n n n n +==--+-+,∴11111111111233521212212n T n n n ⎛⎫⎛⎫=-+-++-=-< ⎪ ⎪-++⎝⎭⎝⎭, 又∴对任意的*N n ∈,不等式24n T a a <-恒成立,,∴22a a ≤-,解得1a ≤-或2a ≥.即所求实数a 的范围是1a ≤-或2a ≥. 9.(1)21n nS n =+(2)证明见解析 【解析】(1)∴11n n a a n +-=+,∴212a a -=,323a a -=,…1n n a a n --= 由上述1n -个等式相加得12n a a n -=++,∴()1122n n n a a n +=+++=, ∴11121n a n n ⎛⎫=- ⎪+⎝⎭,11111122121223111n n S n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭.(2)令()()22221441112n n S b n n n n n ⎛⎫⎛⎫⎛⎫===>⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭, ∴11111111244233412222n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫>-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 又因为()22221411441111n n S b n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫===<=- ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭,且11b =∴11111111414143323341211n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫<+-+-++-=+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,综上,232nn T n >>+,得证. 10.(1)()12n n a n -*=∈N (2)证明见解析【解析】(1)解:由214n n n S S a ++=+得24n n a a +=. 所以,当()21n k k *=-∈N 时,21214k k a a +-=,所以数列{}21k a -是首项为11a =,公比为4的等比数列, 故11211414k k k a a ---=⨯=⨯,即()211222122k k k a ----==. 当()2n k k *=∈N 时,则2224k k a a +=,所以,数列{}2k a 是首项为22a =,公比为4的等比数列,所以,1121224242k k k k a a ---=⨯=⨯=.所以()12n n a n -*=∈N .(2)证明:由(1)知11111212n n n a --⎛⎫=< ⎪+⎝⎭,所以0121121111111111221111122221122nn n a a a -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭+++<++++=<= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭--.故原不等式成立.11.(1)证明见解析,122n n a -=+(2)证明见解析【解析】(1)解:当2n ≥时,由11232n n n S S S +-+=-可变形为()1122n n n n S S S S +--=--, 即122n n a a +=-,即()1222n n a a +-=-,所以()12222n n a n a +-=≥-,又因为13a =,24a =,可得1221,22a a -=-=,所以21222a a -=-,所以数列{}2n a -是以1为首项,2为公比的等比数列,所以122n n a --=,所以数列{}n a 的通项公式为122n n a -=+.(2)解:由122n n a -=+,可得()()11111221122222222n n n n nn n n n b a a ----+===-++++, 所以123n n T b b b b =+++⋅⋅⋅+1111111111134466102222322n n n-=-+-+-+⋅⋅⋅+-=-+++,因为1022n >+,所以1113223n -<+,即13n T <,又因为()11322n f n =-+,n *∈N 单调递增, 所以()()111212212n T b ≥==++,所以11123n T ≤<. 12.证明见解析 【详解】证明:212221n n n n -<+,∴135212452246235721n nn n -⨯⨯⨯⋯⨯<⨯⨯⨯⋯⨯+.213521135212421()()()24622462352121n n n n n n n --∴⨯⨯⨯⋯⨯<⨯⨯⨯⋯⨯⨯⨯⨯⋯⨯=++.∴135212462n n -⨯⨯⨯⋯⨯()f x x x -,x ∈当4π,∴cos cos 4x π>∴()10f x x '->()f x x x ∴-在上递增,()(0)0f x f ∴>=x x >,=∴综上:135212462n n -⨯⨯⨯⋯⨯< 13.(1)1n a n =+ ,212n n b +=(2)证明见解析【解析】(1)由题意,数列{}n a 是等差数列,23a =,数列{}n b 是等比数列,18b =,公比3q >, 设{}n a 的公差为d ,由()()23833q d q d d =+⎧⎪⎨=-⋅+⎪⎩可得()()()28333d d d +=-+,∴3d =-或1d =±,33q d =+>,∴1d =,∴4q =可得:()()223211n a a n d n n =+-=+-⨯=+, 11211842n n n n b b q --+==⨯=.(2)()()()()2124443log 2212221111n n n n c n n n n +++==<=++++ 且()()()3112n n n n +>++∴()()()()()21112112n c n n n n n n n <=-+++++∴()()()121111111122323341122n c c c n n n n ++⋅⋅⋅+<-+-+⋅⋅⋅+-<⨯⨯⨯⨯+++,故不等式得证. 14.(1)2(2)证明见解析 【解析】(1)因为()*134N n n n a a n a +=∈+,所以111141n n a a +⎛⎫+=+ ⎪⎝⎭等式两边同时取以a 为底的对数可得111log 1log 1log 4a a a n n a a +⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭,()*N n ∈又数列1log 1a n a ⎧⎫⎛⎫⎪⎪+⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是公差为2的等差数列可知log 42a =,即2a =(2)由(1)可知数列11n a ⎧⎫+⎨⎬⎩⎭是公比为4的等比数列,可得11111414n n n a a -⎛⎫+=+= ⎪⎝⎭,可得数列{}n a 的通项公式为()*1N 14n n a n =∈- 记1n n n a b a +=可求得其通项公式为()1*4141N n n n b n +-=∈- 显然{}n b 为正项数列,因此()11*N 5n S S b n ≥==∈另一方面,构造数列{}n c 满足()*N 4n n c b n =-∈可得其通项公式为()*1N 34n n c n =∈- 注意到1113134414n n n n c ---⎛⎫=≤ ⎪⋅+-⎝⎭,记{}n c 的前n 项和为n T ,可得11441314n n T -≤<-, 而由于4n n c b =-,因此()*4N n n T S n n =-∈,从而443n S n <+,综上所述,4543n S n ≤<+.。

放缩法技巧全总结

放缩法技巧全总结

放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析n35 (12) 11)1()1()1)(1(23--+⋅⎪⎪⎭ ⎝+--=+-<⋅=n n n n n n n n n n n n (13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ (4) 求证:)112(2131211)11(2-+<++++<-+n n n Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(21112131(211)12(112--+>+-+>-∑=n n i nin1+例解所以当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n.n++-m k 11]例例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明: nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ.解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n+++--<++++ΛΛ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ解析例-in i n -取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+Λ,所以综上有n n n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ.解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案题) 例13.证明:)1*,()1(ln 4ln 3ln 2ln >∈-<++++n N n n n n Λ 例解析即.2ln ln 21e a a a n n <⇒<-注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2≥->n n n n来放缩:.)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n111)1ln()1ln()1(1)]1ln()1ln([212112<-<+-+⇒-<+-+⇒∑∑-=+-=na a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-<⇒+<+例16.(2008年福州市质检)已知函数.ln )(x x x f =若).()(2ln )()(:,0,0b f b a f b a a f b a -+≥++>>证明解析:设函数()()(),(0)g x f x f k x k =+->∴函数k k x g ,2[)(在)上单调递增,在]2,0(k 上单调递减.∴)(x g 的最小值为)2(k g ,即总有).2()(kg x g ≥而,2ln )()2ln (ln 2ln )2()2()2(k k f k k kk k k f k f k g -=-==-+=即.2ln )()()(k k f x k f x f -≥-+令,,b x k a x=-=则.b a k +=例15.(2008年厦门市质检) 已知函数)(x f 是在),0(+∞上处处可导的函数,若)()('x f x f x >⋅在0>x)n x +令2)1(n x n +=,有 所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n nn n ∈++>++++++Λ(方法二)⎪⎭⎫ ⎝⎛+-+=++≥+++>++21114ln )2)(1(4ln )2)(1()1ln()1()1ln(222n n n n n n n n n 所以)2(24ln 21214ln )1ln()1(14ln 413ln 312ln 2122222222+=⎪⎭⎫ ⎝⎛+->++++++n n n n n Λ 又1114ln +>>n ,所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n n n n ∈++>++++++Λ 三、分式放缩姐妹不等式:)0,0(>>>++>m a b ma mb a b 和)0,0(>>>++<m b a m a mb a b记忆口诀”小者小,大者大”,解释:看b ,若b 小,则不等号是小于号,反之. 例19. 姐妹不等式:121211()511)(311)(11(+>-++++n n Λ和121211()611)(411)(211(+<+---n n Λ也可以表示成为12)12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n ΛΛ和1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得 ⇒例2)21n n > 例{}n B 满足OA . 解析:(1) 依题设有:(()10,,,0n n n n A B b b n ⎛⎫> ⎪⎝⎭,由1n OB n =得: 2*212,1,n n n b b b n N n +=∴=∈,又直线nnA B 在x 轴上的截距为n a 满足 显然,对于1101nn >>+,有*14,nn a a n N +>>∈(2)证明:设*11,n n nb c n N b +=-∈,则设*12,n n S c c c n N =+++∈L ,则当()*221k n k N =->∈时,212311112222222k k k -->⋅+⋅++⋅=L 。

放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)

放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤a n n a )2111(⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

放缩法大全

放缩法大全

a −1 + 1 − 2a − ln x 解(1):令g ( x) = f ( x) − ln x = ax + x 1 (a , x 1) 2 a − 1 1 ax 2 − x + 1 − a [ax − (1 − a)]( x − 1) g ( x) = a − 2 − = = 2 x x x x2 1 a[ x − ( − 1)]( x − 1) a g ( x) = 0 (或用二次函数图象分 析) 2 x
1 1 1 1 1 1 + + ... + dx + dx + ... + dx 2 3 n +1 1 x x x 2 n
n +1 2 3 n +1
n
=

1
1 dx = ln( n + 1) x
1 n
n +1

n
1 dx = ln( n + 1) − ln n x
同理证右。
n +1 1 n ln( ) ln( ) n n n −1
所以:
ln n 2 f (n) − f (n − 1) 2 n

ln n 2 f (n) − f (n − 1) 2 n
取n=2,3,…,n累加
ln 2 2 ln 32 ln n 2 2n 2 − n − 1 + 2 + ... + 2 f (n) − f (1) = 2 2 3 n 2(n + 1)
1 m an = 4n − 3, { }前n项和为S n , 若S 2 n +1 − S n 恒成立, an 15 求整数m的最小值。
1 1 1 m 解: + + ... + 对n N + 恒成立, an +1 an + 2 a2 n +1 15 1 1 1 令f ( n ) = + + ... + , an +1 an + 2 a2 n +1 1 1 1 f (n − 1) = + + ... + an an +1 a2 n −1

放缩法技巧全总结

放缩法技巧全总结

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

裂项求和与不等式放缩

裂项求和与不等式放缩

i ~

f l
农 — 虿 ~—— 项 求 一 和 与 —

等 ’ 彭 缩 式
级 中擘 ’
时, + ,所 以 的最小{ E ̄
5 7

冯蓉 波 ( 四川 省攀枝 花市第
放 缩 法 是 不 等 式 证 明 最 重 要 的 方 法 之 一 , 由于 其 方 法 的 灵

4.
a 时 , ) =0 =1 /( . ( ) : 由 %+ = 4 %+ 一丁 Ⅱ 解 z - 1% 得 %+ 一 1%+ - = 2

例 9 已知函数 f( = ) —l( +a 在 =1 nx ) 处取得极值 ,
ห้องสมุดไป่ตู้
(I) 求实数 a的值 ;
+ l~
( ) 关于 方 , +x + 在『 , ]恰有 I 若 的 程 () 2=:6 I 2上 I 1 _


+. . ‘

<n l婀

运算的准确性 .
(I) : ) T 解 ,(
立 ,即 。≥ 丁
≥ 0在[ ,+ 上恒成 o ∞)

所 s [+ ( -( = ( + 以 ( ) ) 2一乒)nn ) =n 一 】 2 +
n+2

,因为雨1 ∈( 1 ,所以 。≥ 1 o ] .
+I :
( 求数列 { I b I Ⅱ) ,{ 的通项公式 ;
j 一 : 1 l __ +_ l :2+( 1 _ l n一 ):n+ 1
= ( -/ , X-7 , )
() 数 {}足 lc c1 )求 : 瓯 = Ⅲ 若 列c c ,一= 1 , 证 c 满 : <
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学讲座:裂项放缩法与函数放缩法研究一、研究意义1.近年来广东高考不等式综合题,尤其是函数、数列与不等式的综合,有加强的趋势2.两种方法技巧性不算强,但思维含量高,思想方法含量高,而且在课本有迹可循,符合广东高考命题者的口味。

其中,函数放缩法充分体现函数思想方法。

选修2-2 P32 B 组第1题:利用函数的单调性,证明下列不等式,并通过函数图象直观验证: (1)sin ,(0,)x x x π<∈;(2)20,(0,1)x x x ->∈;(3)1,0x e x x >+≠;(4)ln ,0x x x e x <<> 3.两种方法充分体现了数学美4.两种方法经常同时在一道题中出现。

放缩后的进一步证明,经常要构造函数。

二、一道经典题目(09广东理21题)已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:13521n n nxx x x x y -⋅⋅⋅⋅<< (1)(解略)1+=n n x n,n y =(2)即证明135212462nn-⨯⨯⨯⨯<<11321213521n n n -=⨯⨯⨯++(乘法的裂项!要注意项数与左边相等,首项与末项是什么),故只需证明212n n -< 121214)12(4)12(2122222+-=--<-=-n n n n n n n n ,或用分析法证明。

x =,只需证明当x x sin 2<在某区间恒成立即可。

考虑构造函数x x x f sin 2)(-=,∵4311210π<≤+<n ,则40π<<x ,故只需证明当40π<<x 时,x x sin 2<恒成立即可。

设函数x x x f sin 2)(-=,04x π≤< 则x x f cos 21)(-=',40π<<x∵ 在区间⎪⎭⎫⎝⎛4,0π上x x f cos 21)(-='为增函数,∴当40π<<x 时,04cos 21cos 21)(=-<-='πx x f , ∴x x x f sin 2)(-=在区间⎪⎭⎫⎝⎛4,0π上为单调递减函数,∴ x x x f sin 2)(-=0)0(=<f 对于一切40π<<x 很成立, ∴ x x sin 2<,三、裂项放缩法的特征与思路特征:将一个式子分成n 个式子的代数和(或积),然后累加(或累乘)抵消掉中间的许多项,构造一条恒等式,为后面的不等式证明铺垫。

思路主要有:1.熟悉常见的裂项形式: (1))11(1))((1CAn B An B C C An B An a n +-+-=++=如:)1(1+n n =n 1-11+n 、 2211111()1211k k k k <=---+、211111111(1)(1)1k k k k k k k k k-=<<=-++-- (2)1n k k => =<<=(3)n ·n !=(n+1)!-n!、)!1(+n n =!1n -)!1(1+n(4)111r r rn n n C C C ---=-(5)3ln (ln 2ln1)(ln 3ln 2)(ln ln(1))ln 2ln ln 21nn n n n =-+-++--=+++-(6)()()()12132121321||||||n n n n n x x x x x x x x x x x x x x ---=-+-+-≤-+-+-(7)乘法的裂项,如:1121123n n n -=⨯⨯⨯⨯,11321213521n n n -=⨯⨯⨯++,……2.式子的“齐整”——数学美的体现要证明的不等式左边为n 项之和(或积),右边只有一项,可以考虑将右边化为n 项之和(或积)。

要注意项数与左边相等,首项与末项是什么。

还要注意是从第几项开始放缩。

3.有时还需要对不等式进行加强(当然放缩法本身就是加强的过程,但有时仍需要二次加强)四、函数放缩法的特征与思路特征:构造与所证不等式相关的函数,研究函数的单调性(主要用导数),最值,利用单调性与最值的紧密联系,得出不等式,水到渠成。

思路:1.先将不等式的一端移项(有时也可能除以一边),另一端剩下0(或某个常数),构造函数,将0(或某个常数)看成某个函数值,由单调性得出不等式。

2.为了更清晰的看出所要构造的函数,有时需要换元,当然要求出新元的范围。

1111()()n n k k n n k =-++、1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++1a b =-五、例题例1. (08年福建)已知函数x x x f -+=)1ln()(.若)(x f 在区间*)](,0[N n n ∈上的最小值为n b , 令n n b n a -+=)1ln(.求证:112264212531423121-+<⋅⋅⋅⋅⋅⋅⋅⋅++⋅⋅+-nnn a a a a a a a a a a a a a a a .分析:首先:可以得到n a n =.即证明113135(21)12242462n n⨯⨯⨯⨯⨯-+++⨯⨯⨯⨯⨯1=1)...+++, 只需证135(21)2462n n⨯⨯⨯⨯-⨯⨯⨯⨯>=, 需证明加强不等式135(21)2462n n⨯⨯⨯⨯-⨯⨯⨯⨯09年广东的题目。

例 2.(06广东)A 是由定义在]4,2[上且满足如下条件的函数)(x ϕ组成的集合:①对任意]2,1[∈x ,都有)2,1()2(∈x ϕ ; ②存在常数)10(<<L L ,使得对任意的]2,1[,21∈x x ,都有|||)2()2(|2121x x L x x -≤-ϕϕ(1)设]4,2[,1)(3∈+=x x x ϕ,证明:A x ∈)(ϕ;(2)设A x ∈)(ϕ,如果存在)2,1(0∈x ,使得)2(00x x ϕ=,那么这样的0x 是唯一的;(3)设A x ∈)(ϕ,任取1(1,2)x ∈,令,,2,1),2(1⋅⋅⋅==+n x x n n ϕ证明:给定正整数k,对任意的正整数p,成立不等式121||||1k k p k L x x x x L++-≤--。

解:(1)略 (2)反证法,略。

(3)分析:右边可以看成等比数列求和,左边也需要相应裂项。

()()()11211121||k p k k p k p k p k p k k k p k p k p k p k k x x x x x x x x x x x x x x +++-+-+-+++-+-+-+-=-+-+-≤-+-+-由于121223)2()2(x x L x x x x -≤-=-ϕϕ,所以1121k k k x x L x x -+-≤-故()()()1121||k p k k p k p k p k p k k x x x x x x x x +++-+-+-+-=-+-+-k k p k p k p k p k x x x x x x -+-+-≤+-+-+-++1211≤123122x x Lx x Lp k p k -+--+-++…+121x x Lk --1211k L x x L-=--例3.求证:nn n 1211)1ln(113121+++<+<++++分析:1212ln(1)ln ln ln ln1111n n n n n nn nn +++=⋅⋅⋅=+++--,只需证111ln 1n n n n+<<+为了更好的看出不等式的结构特征,换元:令11n t n +=>,变成证明11ln 1t t t-<<- 先证右边:即证ln 10t t -+<,构造()ln 1(1)f t t t t =-+≥,则(1)0f =,通过求导易知()f t 在[1,)+∞递减,故当1t >时,()(1)0f t f <=;再证左边:即证1ln 10(1)t t t +->>,构造1()ln 1(1)g t t t t=+-≥,则(1)0g =,通过求导易知()g t 在[1,)+∞递增,故当1t >时,()(1)0g t g >=。

例4. 2ln 2ln3ln 212,(2)232(1)n n n n n n ααααααα--≥+++<≥+求证: 解析:2212(1)n n n --+=111()21n n ---+,1n -看成1n -个1相加,1121n -+=111111()()...()23341n n -+-++-+ 故只需证ln 1n n αα<-111()11(1)n n n n -=-++,两边同时加强,22ln ln n n n n αα≤,21111(1)n n n ->-+,先证22ln ln n n n n αα≤,构造函数ln ()x f x x =,得到22ln ln n n n n αα≤,再证222ln 11n n n ≤-,构造函数ln 1()1x g x x x =+-,得到222ln 11n n n≤-。

例5.求证:23(112)(123)[1(1)]n n n e -+⨯⋅+⨯⋅⋅++>分析:两边取自然对数,即证ln(112)+⨯+...ln[(1)1]23n n n +++>-,1111133(1...)2231n n -<--+-++-+,即证加强不等式:ln[(1)1]n n ++>32(1)n n -+,进一步加强:ln[(1)1]n n ++>32(1)1n n -++,即证:3ln 2(3)ln 23(3)ln 230(3)x x x x x x x x x x x >-≥⇔>-≥⇔-+>≥构造()ln 23f x x x x =-+,则()f x 在[3,)+∞递增,(3)3ln330f =->。

相关文档
最新文档