2020年5月中考数学模拟试卷(含解析) (5)
2020年安徽省宣城市中考数学模拟试卷(5月份) (解析版)

2020年安徽省宣城市中考数学模拟试卷(5月份)一、选择题1.﹣1绝对值的相反数是()A.﹣2B.﹣1C.0D.12.计算a3•a•(﹣1)的结果是()A.a2B.﹣a2C.a4D.﹣a43.太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×105C.0.696×107D.6.96×1084.如图,该几何体的俯视图是()A.B.C.D.5.化简的结果是()A.x+1B.x﹣1C.﹣x D.x6.已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4D.x<﹣1或0<x<47.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则劣弧的长为()A.B.C.2πD.8.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a29.如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=.其中正确结论的个数是()A.4B.3C.2D.110.如图1,正△ABC的边长为4,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,图1中某线段的长度为y,y与x的函数关系的大致图象如图2,则这条线段可能是图1中的()A.线段AD B.线段AP C.线段PD D.线段CD二、填空题(本大题共4小题,每小题5分,满分20分)11.函数y=的自变量x的取值范围是.12.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是.13.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是.14.小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为分.三、(本大题共2小题,每小题0分,满分0分)15.计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|16.如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.四、(本大题共2小题,每小题0分,满分0分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.18.浮式起重机是海上打捞、海上救援和海上装卸的重要设备(如图①),某公司的浮式起重机需更换悬索,该公司设计了一个数学模型(如图②),测量知,∠A=30°,∠C =49°,AB=60m.请你利用以上数据,求出悬索AC和支架BC的长(结果取整数).参考数据:≈1.73,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15..五、(本大题共2小题,每小题0分,满分0分)19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.这本书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.用现代白话文可以这样理解:甲口袋中装有黄金9枚(每枚黄金重量相同),乙口袋中装有白银11枚(每枚白银重量相同),用称分别称这两个口袋的重量,它们的重量相等.若从甲口袋中拿出1枚黄金放入乙口袋中,乙口袋中拿出1枚白银放入甲口袋中,则甲口袋的重量比乙口袋的重量轻了13两(袋子重量忽略不计).问一枚黄金和一枚白银分别重多少两?请根据题意列方程(组)解之.20.如图,△ACE,△ACD均为直角三角形,∠ACE=90°,∠ADC=90°,AE与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.(2)若PC=PA,PF=1,求AF的长.六、(本大题满分0分)21.鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市“24℃夏天的独特魅力”,市旅游局工作人员依据2016年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;根据以上信息解答下列问题:(1)2016年7月份,鄂尔多斯市共接待游客万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是,并补全条形统计图;(2)预计2017年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作a、b、c,请用树状图或列表法求他们选择去同一个景点的概率.七、(本大题满分0分)22.2020年3月,我国湖北省A、B两市遭受严重新冠肺炎影响,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(2)经过当地政府的大力支持,从D市到B市的运输时间缩短了,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.八、(本大题满分0分)23.已知:△ABC和△ADE按如图所示方式放置,点D在△ABC内,连接BD、CD和CE,且∠DCE=90°.(1)如图①,当△ABC和△ADE均为等边三角形时,试确定AD、BD、CD三条线段的关系,并说明理由;(2)如图②,当BA=BC=2AC,DA=DE=2AE时,试确定AD、BD、CD三条线段的关系,并说明理由;(3)如图③,当AB:BC:AC=AD:DE:AE=m:n:p时,请直接写出AD、BD、CD三条线段的关系.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的.1.﹣1绝对值的相反数是()A.﹣2B.﹣1C.0D.1【分析】先根据负数的绝对值是其相反数,再利用相反数得出答案.解:﹣1的绝对值为1,所以﹣1绝对值的相反数是﹣1,故选:B.2.计算a3•a•(﹣1)的结果是()A.a2B.﹣a2C.a4D.﹣a4【分析】根据同底数幂的乘法法则计算即可.解:a3•a•(﹣1)=a3+1•(﹣1)=﹣a4.故选:D.3.太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×105C.0.696×107D.6.96×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.解:696000千米=6.96×105米,故选:B.4.如图,该几何体的俯视图是()A.B.C.D.【分析】找到从几何体的上面所看到的图形即可.解:从几何体的上面看可得,故选:A.5.化简的结果是()A.x+1B.x﹣1C.﹣x D.x【分析】将分母化为同分母,通分,再将分子因式分解,约分.解:=﹣===x,故选:D.6.已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4D.x<﹣1或0<x<4【分析】先求出两个函数的交点坐标,再根据函数的图象和性质得出即可.解:解方程组得:,,即A(4,1),B(﹣1,﹣4),所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,故选:B.7.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则劣弧的长为()A.B.C.2πD.【分析】先计算圆心角为120°,根据弧长公式=,可得结果.解:连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.8.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a2【分析】根据正八边形的性质得出∠CAB=∠CBA=45°,进而得出AC=BC=a,再利用正八边形周围四个三角形的特殊性得出阴影部分面积即可.解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a,∴AB=a,且∠CAB=∠CBA=45°,∴sin45°===,∴AC=BC=a,∴S△ABC=×a×a=,∴正八边形周围是四个全等三角形,面积和为:×4=a2.正八边形中间是边长为a的正方形,∴阴影部分的面积为:a2+a2=2a2,故选:A.9.如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=.其中正确结论的个数是()A.4B.3C.2D.1【分析】①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②根据已知条件得到四边形BMDE是平行四边形,求得BM=DE=BC,根据线段垂直平分线的性质得到DM垂直平分CF,于是得到结论,③根据三角形的面积公式即可得到结论;④设AE=a,AB=b,则AD=2a,根据相似三角形的性质即可得到结论.解:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,S△DCF=4S△DEF∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;②∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故②正确;③∵点E是AD边的中点,∴S△DEF=S△ADF,∵△AEF∽△CBF,∴AF:CF=AE:BC=,∴S△CDF=2S△ADF=4S△DEF,故③正确;④设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④正确;故选:A.10.如图1,正△ABC的边长为4,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,图1中某线段的长度为y,y与x的函数关系的大致图象如图2,则这条线段可能是图1中的()A.线段AD B.线段AP C.线段PD D.线段CD【分析】设出等边三角形的边长,根据等边三角形的性质确定各个线段取最小值时,x 的范围,结合图象得到答案.解:由图2知,当x取最小值2时,y=3.正△ABC的边长为4,则0≤x≤4,根据等边三角形的性质可知,当AP⊥BC即x=2时,线段AP、PD有最小值,此时AP=2,PD=AP=,AD=AP cos30°=3,CD=AC﹣AD=1,故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.函数y=的自变量x的取值范围是x≥2.【分析】根据被开方数大于等于0列式计算即可得解.解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.12.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是n2+2n.【分析】由第1个图形是2×3﹣3、第2个图形是3×4﹣4、第3个图形是4×5﹣5,据此可得答案.解:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要云子的个数是(n+1)(n+2)﹣(n+2)=n2+2n,故答案为:n2+2n.13.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是10或4.【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,即可求出斜边的长.解:①如图,因为CD=,点D是斜边AB的中点,所以AB=2CD=4;②如图,因为CE═=5,E是斜边AB的中点,所以AB=2CE=10,综上,原直角三角形纸片的斜边长是10或4,故答案为:10或4.14.小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为90分.【分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿﹣1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,根据50局比赛后小光总得分为﹣6分,即可得出关于x、y的二元一次方程,由x、y、(25﹣x﹣y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得﹣1分、平不得分,可求出小王的总得分.解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿﹣1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3﹣1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,根据题意得:19+3x﹣y=﹣6,∴y=3x+25.∵x、y、(25﹣x﹣y)均非负,∴x=0,y=25,∴小王的总得分=(﹣1+3+0)×8﹣1+25×3=90(分).故答案为:90.三、(本大题共2小题,每小题0分,满分0分)15.计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质、零指数幂的性质进而化简得出答案.解:原式=+1++2﹣=+1++2﹣=4﹣.16.如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.【分析】(1)由平行四边形的性质,结合角平分线的定义可证得AE∥CF,结合AF∥CE,可证得结论;(2)由条件可证得△DCG∽△AFG,利用相似三角形的性质可求得DG与AG的关系,结合条件可求得AG的长,从而可求得答案.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠BAD=∠BCD,∵AE、CF分别平分∠BAD和∠BCD,∴∠BCG=∠CGD=∠HAD,∴AE∥CF,∵AF∥CE,∴四边形AECF是平行四边形;(2)解:由(1)可知∠BCF=∠DCF=∠F,∴BF=BC=AD=8,∵AB=CD=5,∴AF=BF﹣AB=3,∵BF∥DE,∴∠DCG=∠F,∠D=∠FAG,∴△DCG∽△AFG,∴==,∴DG=AG,∴AD=AG+DG=AG=8,∴AG=3,∴AF+AG=3+3=6.四、(本大题共2小题,每小题0分,满分0分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.【分析】(1)利用△ABC三边长度,画出以A1为顶点的三角形三边长度即可,利用图象平移,可得出△A1B1C1,(2)利用点B关于直线AC的对称点D,得出D点坐标即可得出AD与AB的位置关系.解:(1)如图所示:根据AC=3,AB=,BC=5,利用△ABC≌△A1B1C1,利用图象平移,可得出△A1B1C1,(2)如图所示:AD可以看成是AB绕着点A逆时针旋转90度得到的.18.浮式起重机是海上打捞、海上救援和海上装卸的重要设备(如图①),某公司的浮式起重机需更换悬索,该公司设计了一个数学模型(如图②),测量知,∠A=30°,∠C =49°,AB=60m.请你利用以上数据,求出悬索AC和支架BC的长(结果取整数).参考数据:≈1.73,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15..【分析】过点B作CD⊥AC于点D,根据锐角三角函数的定义即可求出答案.解:过点B作CD⊥AC于点D,∵∠A=30°,AB=60,∴BD=AB=30,∴AD=BD=30,在Rt△CBD中,tan49°=,sin49°=,∴CD≈26,BC≈40,∴AC=AD+CD≈78.五、(本大题共2小题,每小题0分,满分0分)19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.这本书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.用现代白话文可以这样理解:甲口袋中装有黄金9枚(每枚黄金重量相同),乙口袋中装有白银11枚(每枚白银重量相同),用称分别称这两个口袋的重量,它们的重量相等.若从甲口袋中拿出1枚黄金放入乙口袋中,乙口袋中拿出1枚白银放入甲口袋中,则甲口袋的重量比乙口袋的重量轻了13两(袋子重量忽略不计).问一枚黄金和一枚白银分别重多少两?请根据题意列方程(组)解之.【分析】设每枚黄金重x两,每枚白银重y两,根据题意列出方程组即可求出答案.解:设每枚黄金重x两,每枚白银重y两,由题意得,解得,答:每枚黄金重两,每枚白银重两20.如图,△ACE,△ACD均为直角三角形,∠ACE=90°,∠ADC=90°,AE与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.(2)若PC=PA,PF=1,求AF的长.【分析】(1)根据圆周角定理,等角的余角相等可以证明结论成立;(2)根据(1)中的结论和三角形相似的知识可以求得AF的长.【解答】(1)证明:∵∠ADC=90°,∠ACE=90°,∴∠ADF+∠FDC=90°,∠EAC+∠CEF=90°,∵∠FDC=∠CEF,∴∠ADF=∠EAC;(2)连接FC,∵CD是圆O的直径,∴∠DFC=90°,∴∠FDC+∠FCD=90°,∵∠ADF+∠FDC=90°,∠ADF=∠EAC,∴∠FCD=∠EAC,即∠FCP=CAP,∵∠FPC=∠CPA,∴△FPC∽△CPA,∴,∵PC=PA,PF=1,∴,解得,PA=,∴AF=PA﹣PF=,即AF=.六、(本大题满分0分)21.鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市“24℃夏天的独特魅力”,市旅游局工作人员依据2016年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;根据以上信息解答下列问题:(1)2016年7月份,鄂尔多斯市共接待游客150万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是72,并补全条形统计图;(2)预计2017年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作a、b、c,请用树状图或列表法求他们选择去同一个景点的概率.【分析】(1)根据条形图和扇形图得到游“其他”的人数和所占的百分比,计算出共接待游客人数,用“乌兰木伦景观湖”所占的百分比乘以360°求出圆心角;用总人数减去各个旅游景点的人数求出黄河大峡谷的人数,从而补全条形统计图;(2)用总人数乘以去响沙湾旅游的人数所占的百分比,即可得出答案;(3)列树状图得出共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,根据概率公式计算即可.解:(1)由条形图和扇形图可知,游其他的人数是12万人,占8%,则鄂尔多斯市共接待游客人数为:12÷8%=150(万人),乌兰木伦景观湖所对应的圆心角的度数是:360°×=72°,黄河大峡谷人数为:150﹣45﹣27﹣30﹣24﹣12=12(万人),补全条形统计图如图:故答案为:150,72;(2)根据题意得:200×=60(万人)答:估计其中选择去响沙湾旅游的人数有60万人;(3)设a,b,c分别表示响沙湾、成吉思汗陵、蒙古源流,列树状图如下:由此可见,共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种则同时选择去同一个景点的概率是=七、(本大题满分0分)22.2020年3月,我国湖北省A、B两市遭受严重新冠肺炎影响,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(2)经过当地政府的大力支持,从D市到B市的运输时间缩短了,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.【分析】(1)根据题意可以求得w与x的函数关系式,并写出x的取值范围;(2)根据题意,利用分类讨论的数学思想可以解答本题.解:(1)由题意可得,w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,∴w=10x+10200(60≤x≤260);(2)由题意可得,w=10x+10200﹣mx=(10﹣m)x+10200,当0<m<10时,x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,解得,0<m≤8,当m>10时,x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,解得,m≤.∵<10,∴m>10这种情况不符合题意,由上可得,m的取值范围是0<m≤8.八、(本大题满分0分)23.已知:△ABC和△ADE按如图所示方式放置,点D在△ABC内,连接BD、CD和CE,且∠DCE=90°.(1)如图①,当△ABC和△ADE均为等边三角形时,试确定AD、BD、CD三条线段的关系,并说明理由;(2)如图②,当BA=BC=2AC,DA=DE=2AE时,试确定AD、BD、CD三条线段的关系,并说明理由;(3)如图③,当AB:BC:AC=AD:DE:AE=m:n:p时,请直接写出AD、BD、CD三条线段的关系.【分析】(1)先判断出∠BAD=∠CAE,进而判断出△ABD≌△ACE,最后用勾股定理即可得出结论;(2)先判断出△ABC∽△ADE,进而得出∠BAC=∠DAE,即可判断出△BAD∽△CAE,最后用勾股定理即可得出结论.解:(1)CD2+BD2=AD2,理由:∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE=DE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,(2)CD2+BD2=AD2,理由:∵BA=BC=2AC,DA=DE=2AE,∴,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴△BAD∽△CAE,∴=2,∴BD=2CE,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,(3)(mCD)2+(pBD)2=(nAD)2,理由:∵AB:BC:AC=AD:DE:AE=m:n:p,∴DE=AD,△ABC∽△ADE,∴∠BAC=∠DAE,∵,∴△ABD∽△ACE,∴,∴CE=BD,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,∴(mCD)2+(pBD)2=(nAD)2。
最新2022独家原创中考数学模拟试卷(5月份) (解析版)

一、选择题1.若一个数的绝对值是5,则这个数是()A.5B.﹣5C.±5D.0或52.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为()A.13×105B.1.3×105C.1.3×106D.1.3×1073.下列计算正确的是()A.a4+a4=a8B.a5•a4=a20C.a4÷a=a3D.(﹣a3)2=a5 4.如图,在▱ABCD中,以A为圆心,AB长为半径画弧交AD于F.分别以点F,B为圆心,大于BF长为半径作弧,两弧交于点G,作射线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.6C.8D.105.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.47.如图,四边形ABCD是平行四边形,⊙O经过点A、C、D,与BC交于点E,连接AE,若∠D=70°,则∠BAE=()A.70°B.50°C.40°D.30°8.在2017年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数和平均数分别是()A.26和26B.25和26C.27和28D.28和299.如图,正方形ABCO的顶点A、C在坐标轴上,BC是菱形BDCE 的对角线,若∠EBD=120°,BC=2,则点E的坐标是()A.(﹣2+,﹣1)B.(2﹣,﹣1)C.(,﹣1)D.(2﹣,1)10.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为()A.14B.11C.6D.3二、填空题(每小题3分,共15分)11.化简:2﹣=.12.一个不透明的口袋里装有分别标有汉字“文”、“明”、“濮”、“阳”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,两个球上的汉字能组成“文明”的概率是.13.不等式组的解集为.14.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是.15.在Rt△ABC中,∠ACB=90°,∠A=30°,D是线段AB上一动点,连接CD,把△ADC沿CD翻折得到△DCE,连接BE,AB=4,当△DBE是等腰三角形时,其腰长为.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:,其中a=1+.17.2019年12月12日被首次于中国武汉发现“新型冠状病毒”.为防范新型冠状病毒,油田某社区为了解辖区居民对“新型冠状病毒”的重视程度,在全社区范围内随机抽取部分居民进行问卷调查.根据调查结果,把居民对“新型冠状病毒”的重视程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两个不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为;(4)若该社区有1500人,则可以估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有人.18.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,=,过点C作CD∥AB交BE的延长线于D,连AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF.①当∠ABC=°时,点F为弧AE的中点;②若∠AOF=3∠FOE且AF=3,则⊙O的半径是.19.某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A 处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M 的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)20.2020年初,新冠肺炎肆虐全球.我国政府和人民采取了积极有效的防疫措施,疫情在我国得到了有效控制.小明为复学到药店购买N95口罩和一次性医用口罩.已知购买5个N95口罩和8个一次性医用口罩共需50元;购买7个N95口罩和6个一次性医用口罩共需57元.(1)求N95口罩与一次性医用口罩的单价;(2)小明准备购买N95口罩和一次性医用口罩共50个,且N95口罩的数量不少于一次性医用口罩数量的.请设计出最省钱的购买方案,并说明理由.21.小明为探究函数y=的图象和性质,需要画出函数图象,列表如下:x …﹣3 ﹣2 ﹣1 ﹣﹣ 1 2 3 …y … 1 2 3 3 2 1 …根据如表数据,在平面直角坐标系中描点,画出函数图象,如图如示,小明画出了图象的一部分.(1)请你帮小明画出完整的y=的图象;(2)观察函数图象,请写出这个函数的两条性质;性质一:;性质二:.(3)利用上述图象,探究函数y=,图象与直线y=﹣x+b的关系:①当b=时,直线y=﹣x+b与函数y=在第一象限的图象有一个交点A,则A的坐标是;②当b为何值时,讨论函数y=的图象与直线y=﹣x+b的交点个数.22.如图(1),在Rt△ABC中,∠C=90°,∠ABC=30°,点D,E 分别是AB,AC的中点,过点B作直线DE的垂线段BM,垂足为M,点F是直线ED上一动点,作Rt△BFG,使∠BFG=90°,∠FGB=30°,连接GD.【观察猜想】如图(2),当点F与点D重合时,则的值为.【问题探究】如图(1),当点F与点D不重合时,请求出的值及两直线GD、ED夹角锐角的度数,并说明理由.【问题解决】如图(3),当点F、G、A在同一直线上时,请直接写出的值.23.如图1,在平面直角坐标系中,O为原点,抛物线y=ax2+bx+c 经过A、B、C三点,且其对称轴为x=1,其中点C(0,),点B(3,0).(1)求抛物线的解析式;(2)①如图(1),点D是直线CB上方抛物线上的动点,当四边形DCAB的面积取最大值时,求点D的坐标;②如图(2),连接CA,在抛物线上有一点M,满足∠MCB=∠ACO,请直接写出点M的横坐标.参考答案一、选择题(每小题3分,共30分)1.若一个数的绝对值是5,则这个数是()A.5B.﹣5C.±5D.0或5【分析】当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数﹣a;所以若一个数的绝对值是5,则这个数是±5,据此判定即可.解:若一个数的绝对值是5,则这个数是±5.故选:C.2.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为()A.13×105B.1.3×105C.1.3×106D.1.3×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将1300000用科学记数法表示为:1.3×106.故选:C.3.下列计算正确的是()A.a4+a4=a8B.a5•a4=a20C.a4÷a=a3D.(﹣a3)2=a5【分析】根据整式的运算法则即可求出答案.解:(A)a4+a4=2a4,故A错误;(B)a5•a4=a9,故B错误;(C)a4÷a=a3,故B正确;(D)(﹣a3)2=a6,故D错误;故选:C.4.如图,在▱ABCD中,以A为圆心,AB长为半径画弧交AD于F.分别以点F,B为圆心,大于BF长为半径作弧,两弧交于点G,作射线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.6C.8D.10【分析】设AE交BF于点O.证明四边形ABEF是菱形,利用勾股定理求出OA即可解决问题.解:如图,设AE交BF于点O.由作图可知:AB=AF,AE⊥BF,∴OB=OF,∠BAE=∠EAF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠AEB,∴∠BAE=∠AEB,∴AB=BE=AF,∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴OA=OE,OB=OF=3,在Rt△AOB中,∵∠AOB=90°,∴OA==4,∴AE=2OA=8.故选:C.5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.6.已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.4【分析】根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1﹣3+k=0,然后解一次方程即可.解:把x=1代入方程得1+k﹣3=0,解得k=2.故选:B.7.如图,四边形ABCD是平行四边形,⊙O经过点A、C、D,与BC交于点E,连接AE,若∠D=70°,则∠BAE=()A.70°B.50°C.40°D.30°【分析】由平行四边形的性质得出∠DCB=180°﹣∠D=110°,∠B =∠D=70°,由圆内接四边形的性质得到∠AEB=∠D=70°,由三角形的内角和定理即可得到结论.解:∵四边形ABCD是平行四边形,∠D=70°,∴∠DCB=180°﹣∠D=110°,∠B=∠D=70°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=70°,∴∠BAE=180°﹣70°﹣70°=40°,故选:C.8.在2017年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数和平均数分别是()A.26和26B.25和26C.27和28D.28和29【分析】根据中位数、平均数的计算方法进行计算即可.解:6名同学的体育成绩从小到大排列处在第3、4位的数都是26分,因此中位数是26分,平均数为=26(分),故选:A.9.如图,正方形ABCO的顶点A、C在坐标轴上,BC是菱形BDCE 的对角线,若∠EBD=120°,BC=2,则点E的坐标是()A.(﹣2+,﹣1)B.(2﹣,﹣1)C.(,﹣1)D.(2﹣,1)【分析】连接ED交BC于H,根据正方形的性质得到OC=BC=2,根据菱形的性质求出EH,根据坐标与图形的性质解答即可.解:连接ED交BC于H,∵四边形ABCO是正方形,∴OC=BC=2,∵四边形BDCE是菱形,∴∠EBC=∠EBD=60°,EB=EC,CE=BH=BC=1,∴EH=BH×tan∠EBC=,∴点E的坐标是(2﹣,﹣1),故选:B.10.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为()A.14B.11C.6D.3【分析】首先由y=2x2﹣4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2﹣4x+8,得到y=14,所以CD=14﹣6=8,又DE=3,所以可知杯子高度.解:∵y=2x2﹣4x+8=2(x﹣1)2+6,∴抛物线顶点D的坐标为(1,6),∵AB=4,∴B点的横坐标为x=3,把x=3代入y=2x2﹣4x+8,得到y=14,∴CD=14﹣6=8,∴CE=CD+DE=8+3=11.故选:B.二、填空题(每小题3分,共15分)11.化简:2﹣=5.【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.解:原式=6﹣=5.故答案为5.12.一个不透明的口袋里装有分别标有汉字“文”、“明”、“濮”、“阳”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,两个球上的汉字能组成“文明”的概率是.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.解:画树状图如下:由树状图知,共有12种等可能结果,其中两个球上的汉字能组成“文明”的有2种结果,∴两个球上的汉字能组成“文明”的概率为=,故答案为:.13.不等式组的解集为2<x<6 .【分析】分别求出各不等式的解集,再求出其公共解集即可.解:,由①得,x>2,由②得,x<6,故不等式组的解集为:2<x<6.故答案为:2<x<6.14.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是8﹣π.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF 的面积、利用扇形面积公式计算即可.解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故答案为:8﹣π.15.在Rt△ABC中,∠ACB=90°,∠A=30°,D是线段AB上一动点,连接CD,把△ADC沿CD翻折得到△DCE,连接BE,AB=4,当△DBE是等腰三角形时,其腰长为2或.【分析】本题分两种情况:第一种情况,如图(1),当D为AB 的中点时,此时△DBE是等边三角形,腰长也是边长是AB的一半2;第二种情况,如图(2),当边CE与CB重合时,此时△DBE是等腰三角形,腰长BE=BD=,问题得解.解:(1)第一种情况,如图(1),当D为AB的中点时,∵∠ACB=90°,∠A=30°,AB=4,∴AD=BD=CD=AB=2,∴∠DCA=∠A=30°,∴∠BDC=60°,∵把△ADC沿CD翻折得到△DCE,∴∠DEC=∠A=30°,AD=DE=CD,∴∠ECD=∠A=30°,∴∠EDC=120°,∴∠BDE=60°,∴△BED是等边三角形,∴BD=DE=BE=2;(2)第二种情况,如图(2),当边CE与CB重合时,此时△DBE 是等腰三角形,∵把△ADC沿CD翻折得到△DCE,∴CE=AC,∵CB=2,AB=4,∴AC==2,∴CE=2,∴腰长BE=BD=CE﹣BC=.故答案为:2或.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:,其中a=1+.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.解:原式=•=•=,当a=1+,b=1﹣时,原式==.17.2019年12月12日被首次于中国武汉发现“新型冠状病毒”.为防范新型冠状病毒,油田某社区为了解辖区居民对“新型冠状病毒”的重视程度,在全社区范围内随机抽取部分居民进行问卷调查.根据调查结果,把居民对“新型冠状病毒”的重视程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两个不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了120 名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为108°;(4)若该社区有1500人,则可以估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有150 人.【分析】(1)根据一般的人数和所占的百分比求出抽取的总人数;(2)用总人数乘以较强的人数所占的百分比,求出较强的人数,从而补全统计图;(3)用360°乘以“很强”的人数所占的百分比即可得出答案;(4)用该社区的人数乘以“淡薄”层次的人数所占的百分比即可得出答案.解:(1)18÷15%=120(名),即本次调查一共随机抽取了120名居民;故答案为:120;(2)“较强”层次的有:120×45%=54(名),补全统计图如下:(3)扇形统计图中,“很强”所对应扇形圆心角的度数为:360°×=108°,故答案为:108°;(4)1500×=150(人),答:估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有150人;故答案为:150.18.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,=,过点C作CD∥AB交BE的延长线于D,连AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF.①当∠ABC=72 °时,点F为弧AE的中点;②若∠AOF=3∠FOE且AF=3,则⊙O的半径是 3 .【分析】(1)先根据圆的性质得:∠CBD=∠ABD,由平行线的性质得:∠ABD=∠CDB,根据直径和等式的性质得,则AB=BC,即可得出结论;(2)①由题意得出∠AOF=∠EOF=m,证出∠ABE=∠ADE=m,则∠OAF=∠OFA=∠EOF+∠ADE=2m,由三角形内角和定理得出方程,解方程即可;②先设∠FOE=x,则∠AOF=3x,根据∠ABC+∠BAD=180°,列方程求出x的值,证△AOF是等边三角形,得出OF=AF=3即可.【解答】(1)证明:∵=,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形;(2)解:如图所示:①F为弧AE的中点,则∠AOF=∠EOF,设∠AOF=∠EOF=m,∵四边形ABCD是菱形,∴AB=AD,∠ABE=∠ADE,∵∠AOD=2∠ABE,∴∠ABE=∠ADE=m,∴∠OAF=∠OFA=∠EOF+∠ADE=2m,∵∠AOF+∠OAF+∠OFA=180°,∴2m+2m+m=180°,∴m=36°,∴∠ABE=72°,即∠ABC=72°时,点F为弧AE的中点,故答案为:72;②∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180°﹣3x),∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180°﹣3x)=180°,解得:x=20°,∴∠AOF=3x=60°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=3,即⊙O的半径是3;故答案为:3.19.某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A 处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M 的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)【分析】在Rt△APN中根据已知条件得到PA=PN,设PA=PN=x,得到MP=AP•tan∠MAP=1.6x,根据三角函数的定义列方程即可得到结论.解:在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP=,∵∠MBP=31°,AB=5,∴0.6=,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.20.2020年初,新冠肺炎肆虐全球.我国政府和人民采取了积极有效的防疫措施,疫情在我国得到了有效控制.小明为复学到药店购买N95口罩和一次性医用口罩.已知购买5个N95口罩和8个一次性医用口罩共需50元;购买7个N95口罩和6个一次性医用口罩共需57元.(1)求N95口罩与一次性医用口罩的单价;(2)小明准备购买N95口罩和一次性医用口罩共50个,且N95口罩的数量不少于一次性医用口罩数量的.请设计出最省钱的购买方案,并说明理由.【分析】(1)设N95口罩单价为x元,一次性医用口罩的单价为y元,根据题意列方程组解答即可;(2)设购买N95罩z个,购买口罩的花费为W元,根据题意列不等式求出z的取值范围,并求出W与z之间的函数关系式,再根据一次函数的性质解答即可.解:(1)设N95口罩单价为x元,一次性医用口罩的单价为y元,根据题意,得:,∴,∴N95口罩单价为6元,一次性医用口罩单价2.5元;(2)设购买N95罩z个,则购买一次性医用口罩为(50﹣z)个,购买口罩的花费为W元,由题意可知,z≥(50﹣z),∴z≥12.5,W=6z+2.5(50﹣z)=3.5z+125,∵3.5>0,∴W随z的增大而增大,∴当z=13时,W有最小值为170.5元,即购买N95口罩13个,购买一次性医用口罩37个,花费最少.21.小明为探究函数y=的图象和性质,需要画出函数图象,列表如下:x …﹣3 ﹣2 ﹣1 ﹣﹣ 1 2 3 …y … 1 2 3 3 2 1 …根据如表数据,在平面直角坐标系中描点,画出函数图象,如图如示,小明画出了图象的一部分.(1)请你帮小明画出完整的y=的图象;(2)观察函数图象,请写出这个函数的两条性质;性质一:图象有两个分支,分别在第一、第二象限;性质二:图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大.(3)利用上述图象,探究函数y=,图象与直线y=﹣x+b的关系:①当b= 2 时,直线y=﹣x+b与函数y=在第一象限的图象有一个交点A,则A的坐标是(1,1);②当b为何值时,讨论函数y=的图象与直线y=﹣x+b的交点个数.【分析】(1)描点即可绘制完整图象;(2)指出函数的性质即可,答案不唯一,只要说法合理都给满分;(3)①在第一象限时,则y=,将该式与y=﹣x+b联立并整理得:x2﹣bx+1=0,由△=b2﹣4=0,求得b=2;②由①知,当b=2时,两个函数有两个交点;故当b<2时,两函数有一个交点,当b>2时,两个函数有三个交点;解:(1)绘制完整图象如下图:(2)性质一:图象有两个分支,分别在第一、第二象限;性质二:图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大;故答案为:图象有两个分支,分别在第一、第二象限;图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大;说明:答案不唯一,只要说法合理都给满分;(3)①在第一象限时,则y=,将该式与y=﹣x+b联立并整理得:x2﹣bx+1=0,∵两个函数只有一个交点,故△=b2﹣4=0,解得:b=±2(舍去负值),故b=2,则,解得:,故当b=2时,点A的坐标为(1,1),答案为:2,(1,1);②由①知,当b=2时,两个函数有两个交点;∴当b<2时,两函数有一个交点,当b>2时,两个函数有三个交点;22.如图(1),在Rt△ABC中,∠C=90°,∠ABC=30°,点D,E 分别是AB,AC的中点,过点B作直线DE的垂线段BM,垂足为M,点F是直线ED上一动点,作Rt△BFG,使∠BFG=90°,∠FGB=30°,连接GD.【观察猜想】如图(2),当点F与点D重合时,则的值为 2 .【问题探究】如图(1),当点F与点D不重合时,请求出的值及两直线GD、ED夹角锐角的度数,并说明理由.【问题解决】如图(3),当点F、G、A在同一直线上时,请直接写出的值.【分析】【观察猜想】如图(2)中,结论:当点F与点D重合时,则的值为2.设BM=a,求出DM,GD即可解决问题.【问题探究】如图(1)中,结论:的值为2,两直线GD、ED 夹角锐角的度数为60°.证明△BGD∽△BFM,可得结论.【问题解决】分两种情形:如图(3)﹣1中,当点G在线段AF 上时,如图(3)﹣2中.当点G在线段AF的延长线上时,分别求解即可.解:【观察猜想】如图(2)中,结论:当点F与点D重合时,则的值为2.理由:设BM=a.∵AE=EC,AD=DB,∴DE∥BC,∴∠BDM=∠ABC=30°,∵BM⊥EM,∴∠BMD=90°,∴BD=2BM=2a,DM=BM=a,在Rt△GDB中,∵∠GDB=90°,∠G=30°,∴GD=BD=2a,∴==2.故答案为2.【问题探究】如图(1)中,结论:的值为2,两直线GD、ED 夹角锐角的度数为60°.理由:延长GD交BF的延长线于P.在Rt△BDM中,设BM=a,则BD=2a,DM=a,在Rt△BGF中,设BF=b,则BG=2b,FG=,在△BGD与△BFM中,∵BG:BF=2b:b=2a:a=BF:BM,∠DBG=60°﹣∠FBD=∠FBM,∴△BGD∽△BFM,∴DG:FM=BD:BM=2a:a=2:1,即的值为2,∵△BGD∽△BFM,∴∠PFD=∠MFB=∠BGD,则在△PDF与△PBG中,∠PDF=∠PBG=60°.故的值为2,两直线GD、ED夹角锐角的度数为60°.【问题解决】结论:的值为4+或4﹣.如图(3)﹣1中,当点G在线段AF上时,∵△BDG∽△BMF,∴∠BDG=∠BMF=90°,∴GD⊥AB,∵AD=BD,∴GD垂直平分线段AB,∴GA=GB,设BF=x,则BG=2x=AG,FG=,∴BG:AF=2x:=4﹣.如图(3)﹣2中,当点G在线段AF的延长线上时,设BF=x,同法可得:BG=AG=2x,GF=x,∴AF=2x﹣x,∴BG:AF=2x:(2x﹣x)=4+.∴的值为4+或4﹣.23.如图1,在平面直角坐标系中,O为原点,抛物线y=ax2+bx+c 经过A、B、C三点,且其对称轴为x=1,其中点C(0,),点B(3,0).(1)求抛物线的解析式;(2)①如图(1),点D是直线CB上方抛物线上的动点,当四边形DCAB的面积取最大值时,求点D的坐标;②如图(2),连接CA,在抛物线上有一点M,满足∠MCB=∠ACO,请直接写出点M的横坐标.【分析】(1)由题意得:,即可求解;(2)①当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值,进而求出直线m的表达式,即可求解;②分点M在CB的上方和下方两种情况,分别求解即可.解:(1)由题意得:,解得:,故抛物线的解析式是:①;(2)①设直线BC的解析式为y=kx+.∵直线BC过点B(3,0),∴0=3k+,则k=,故直线BC解析式为y=x+.设直线m解析式为,且直线m∥直线BC,当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值.令,∴,△=(﹣3)2﹣4××(3b﹣3)=0时,直线m与抛物线有唯一交点,解之得:,则直线m的表达式为:y=﹣x+②,联立①②并解得,∴D;②存在,点M的横坐标为或;符合条件的直线有两条:CM1和CM2(分别在CB的上方和下方),(Ⅰ)∵在Rt△ACO中,∠ACO=30°,在Rt△COB中,∠CBO=30°,∴∠BCM1=∠BCM2=15°,∵在△BCE中,∠BCE=∠BEC2=15°,∴BC=BE=,则E(,0),设直线CE解析式为:,∴,解之得:k=,∴直线CE解析式为:,∴,解得:x1=0,x2=2﹣1;(Ⅱ)∵在Rt△OCF中,∠CBO=30°,∠BCF=15°,∴在Rt△COF中,∠CFO=45°,∴OC=OF=,∴F(,0),∴直线CF的解析式为③,联立①③并解得:x3=0(舍去),,即点M的横坐标为:或.。
河南中考数学模拟试卷(05)

河南中考数学模拟试卷(05)一.选择题(共10小题,满分30分,每小题3分)1.(3分)21的相反数是()A.21B.﹣21C.D.﹣2.(3分)有一个正方体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2022次后,骰子朝下一面的点数是()A.5B.3C.4D.23.(3分)如图,直线AB,CD相交于点O,若CO⊥AB,∠1=56°,则∠2等于()A.30°B.45°C.34°D.56°4.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.=﹣3C.x2•x4=x6D.(2x2)3=6x65.(3分)如图,菱形ABCD的对角线AC、BD相交于O点,E、F分别是AB、BC边上的中点,连接EF,若EF=3,BD=8,则菱形ABCD的周长为()A.5B.14C.20D.286.(3分)一元二次方程6x2+2x+1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.(3分)甲同学射靶8次,成绩分别为:5,7,6,7,7,8,6,7,则甲同学的射靶成绩的众数为()A.5B.6C.7D.88.(3分)一种计算机每秒可以进行4×108次运算,则它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.1.2×1013 9.(3分)如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.10.(3分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)写出同时具备下列两个条件的一次函数表达式:(1)y随着x的增大而减小;(2)图象经过点(﹣2,﹣1):(写出一个即可).12.(3分)不等式组的解集是.13.(3分)小南和小开在新华书店选购了部分课外阅读书籍,结账时发现该书店自助收银系统允许购书读者从“微信”“支付宝”“云闪付”“网银”四种支付方式中任选一种方式进行支付,则他们分别独立结账,恰好选择的是同一种支付方式的概率为.14.(3分)如图,在扇形ABC中,∠BAC=90°,AB=1,若以点C为圆心,CA为半径画弧,与交于点D,则图中阴影部分的面积和是.15.(3分)如图,直线CD与EF相交于点O,∠COE=60°,将一等腰直角三角尺AOB 的直角顶点与O重合,OA平分∠COE.将三角尺AOB以每秒2°的速度绕点O顺时针旋转,同时直线EF以每秒6°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤60),若直线EF平分∠BOD,则t的值为.三.解答题(共8小题,满分75分)16.(10分)计算:﹣|﹣1|+.17.(9分)为倡导绿色健康节约的生活方式,某社区开展“垃圾分类,从我做起”的活动,志愿者随机抽取了社区内50名居民,对其3月份垃圾分类投放次数进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:信息1:垃圾分类投放次数分布表信息组别投放次数频数A0≤x<5aB5≤x<1010C10≤x<15cD15≤x<2014E x≥20e合计50信息2:垃圾分类投放次数占比统计图信息3:C组包含的数据:12,12,10,12,13,10,11,13,12,11,13.请结合以上信息完成下列问题:(1)统计表中的a=,e=.(2)统计图中B组对应扇形的圆心角为度;(3)C组数据的众数是,抽取的50名居民3月份垃圾分类投放次数的中位数是;(4)根据调查结果,请你估计该社区2000名居民中3月份垃圾分类投放次数不少于15次的人数.18.(9分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B.(1)若AB=2,求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.19.(9分)如图,从一栋两层楼的楼顶A处看对面的教学楼CD,测得教学楼底部点C处的俯角是45°,测得此大楼楼顶D处的仰角为60°,已知两栋楼的水平距离为8米.求该大楼CD的高度(结果保留根号).20.(9分)2020年5月,全国两会召开以后,应势复苏的“地摊经济”带来了市场新活力,雅苑社区拟建A,B两类摊位以激活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为50元,建B类摊位每平方米的费用为40元,用120平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共100个,且B类摊位的数量不少于A类摊位数量的4倍,求建造这100个摊位的最大费用.21.(9分)某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可售出200千克,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?22.(10分)如图,AB是⊙O的直径,弦CD⊥AB于H,E为CD延长线上一点,过E点作⊙O的切线,切点为G,连接AG交CD于F点.(1)求证:EF=EG;(2)若FG2=FD•FE,试判断AC与GE的位置关系,并说明理由;(3)在(2)的条件下,若sin E=,AH=3,求⊙O半径的长.23.(10分)如图,已知正方形ABCD的顶点D关于射线CP的对称点G落在正方形内,连接BG并延长交边AD于点E,交射线CP于点F.连接DF,AF,CG.(1)试判断DF与BF的位置关系,并说明理由;(2)若CF=4,DF=2,求AE的长;(3)若∠ADF=2∠F AD,求tan∠F AD的值.。
2024年湖北省武汉市部分学校中考模拟数学试题(五)(含答案)

2024年武汉市中考模拟试题数学试卷(五)亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本卷共8页,24题,满分120分.考试用时120分钟.2.答题前,请将你的学校、班级、姓名、考号填在试卷和答题卡相应的位置,并核对条码上的信息.3.答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.实数2024的相反数是( )A .2024B .2024-C .12024D .12024-2.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形是()A .B .C .D .3.不透明袋子中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他区别,从袋子中随机取出1个球,下列说法正确的是()A .可以事先确定取出的小球是哪种颜色B .取出每种颜色小球的概率相等C .取出红球的概率是12,取出绿球的概率是13,取出蓝球的概率是14D .将其中1个蓝球换成红球,则取出每种颜色小球的概率相等4.下列计算结果是6x 的是( )A .33x x +B .82x x -C .23x x ⋅D .()32x 5.如图是水平放置的正三棱柱,关于它的三视图的描述正确的是()A .主视图与俯视图相同B .主视图与左视图相同C .左视图与俯视图相同D .三视图都不相同6.如图,12180∠+∠=︒,3108∠=︒,则4∠=()A .72°B .80°C .82°D .108°7.两次掷一枚质地均匀的骰子,第二次掷出的点数能够被第一次掷出的点数整除的概率是( )A .518B .13C .718D .128.甲、乙二人都以不变的速度在环形跑道上跑步,如果同时同地出发,相向而行,每隔2min 相遇一次;如果同向而行,每隔6min 相遇一次.则( )A .甲每分跑13圈,乙每分跑16圈B .甲每分跑13圈,乙每分跑16圈或甲每分跑16圈,乙每分跑13圈C .甲每分跑12圈,乙每分跑14圈D .甲每分跑12圈,乙每分跑14圈或甲每分跑14圈,乙每分跑12圈9.如图,AB 是半圆O 的直径,点C ,D 在半圆上, CD与 DB 相等,连接OC ,CA ,OD .过点B 作EB AB ⊥,交OD 的延长线于点E .设△OAC 的面积为1S ,△OBE 的面积为2S ,若1223S S =,则tan ∠ACO 的值是()ABC .75D .3210.如图,在矩形ABCD 中,23AB BC =,动点N 从A 出发,沿边AD 向点D 匀速运动,动点M 从B 出发,沿边BC 向点C 匀速运动,连接MN .动点N ,M 同时出发,点N 运动速度为1v ,点M 的运动速度为2v ,且12v v <.当点M 到达C 时,M ,N 两点同时停止运动.在运动过程中,将四边形NABM 沿MN翻折,得到四边形NA B M ''.若在某一时刻,点B 的对应点B '恰好与CD 的中点重合,则12v v 的值是()A .25B .35C .45D .34二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.2023年全球人数约为80.86亿,数80.86亿用科学记数法表示是______.12.反比例函数图象经过三点()11,x y ,()22,x y 和(1,k ),若120x x <<,则12y y >,写出一个满足条件的k 的值是______.13.计算22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭的结果是______.14.如图,在Rt △ABC 中,90C ∠=︒,棱长为1的立方体展开图有两边分别在AC ,BC 上,有两个顶点在斜边AB 上,则△ABC 的面积为______.15.四边形ABCD 中,3AB =,CD =,105A ∠=︒,120D ∠=︒,E 为AD 的中点,若90BEC ∠=︒,则BC 的长度为______.16.已知二次函数()20y ax bx c a =++≠的图象如图所示,下列结论:①0abc >;②一元二次方程2ax bx c +=-的解为13x =-,25x =;③a c b +>;④150a c +=.其中,正确的是______.三、解答题(共8 小题,共 72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8分)求满足不等式组()11,273x x -->⎧⎪⎨+≥⎪⎩①②的整数解.18.(本小题满分8分)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点.(1)求证:BE DF =;(2)直接写出BD 与AC 满足什么数量关系时,四边形DEBF 为矩形.19.(本小题满分8分)某校为响应进一步深化全民阅读号召,随机抽取了八年级若干名学生,对“双减”后学生周末课外阅读时间进行了调查.根据收集到的数据,整理后得到下列不完整的图表:时间段/分钟3060x ≤<6090x ≤<90120x ≤<120150x ≤<组中值75105135频数/人6204请你根据图表中提供的信息,解答下列问题:(1)扇形统计图中,120~150分钟时间段对应的扇形的圆心角度数为______,a =______;(2)样本数据的中位数位于______~______分钟时间段;(3)请通过计算估计该校八年级学生周末课外平均阅读时间.20.(本小题满分8分)阅读:《几何原本》是古希腊数学家欧几里得所著的一部数学著作,它是欧洲数学的基础,总结了平面几何五大公设,被广泛地认为是历史上学习数学几何部分最成功的教科书.下面是其中的切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.即,如图1,AB 是⊙O 的切线,则2AB AC AD =⋅.下面是切割线定理的证明过程(不完整):证明:如图1所示,连接BD ,连接BO 并延长交⊙O 与点E ,连接CE ,BC .图1 图2∵AB 是⊙O 的切线,OB 是⊙O 的半径,90ABC CBE ∴∠+∠=︒.∵BE 是⊙O 的直径,90BCE ∴∠=︒(____________).90E CBE ∴∠+∠=︒.∴____________,E CDB ∠=∠ (____________),∴____________,BAC DAB ∠=∠ ,ABC ADB ∴△∽△,AB ACAD AB∴=.2AB AC AD ∴=⋅.任务:(1)请在上面横线上补充证明过程,在括号内补充推理的依据;(2)如图2,已知AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,割线CF 交AB 于点E ,且满足::1:2:1CD DE EF =,8AC =,求AB 的长.21.(本小题满分8分)如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,C 均落在格点上,点B 在网格线上.(1)线段AC 的长等于______;(2)半圆O 以AB 为直径,仅用无刻度直尺,在如图所示的网格中完成画图:①画∠BAC 的角平分线AE ;②在线段AB 上画点P ,使AP AC =.22.(本小题满分10分)某园林专业户计划投资种植花卉和树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,种植花卉的利润2y 与投资量x 的平方成正比例关系,并得到了表格中的数据:投资量x (万元)2种植树木的利润1y (万元)4种植花卉的利润2y (万元)2(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉的金额为m 万元,种植花卉和树木共获利润W 万元,求出W 关于m 的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不利于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的取值范围.23.(本小题满分10分)背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E ,A ,D 在同一条直线上),发现BE DG =且BE DG ⊥.小组讨论后,提出了三个问题,请你帮忙解答:背景图 图1(1)将正方形AEFG 绕点A 按逆时针方向旋转,如图1,还能得到BE DG =吗?如果能,请给出证明,如果不能,请说明理由;(2)把背景中的正方形改为菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转,如图2,试问当∠EAG 与∠BAD 的大小满足什么关系时,背景中的结论BE DG =仍成立?请说明理由;图2图3(3)把背景中的正方形改为矩形AEFG 和矩形ABCD ,且23AE AB AG AD ==,4AE =,8AB =,将矩形AEFG 绕点A 按逆时针方向旋转,如图3,连接DE ,BG ,小组发现,在旋转过程中22BG DE +是定值,请求出这个定值.24.(本小题满分12分)已知:抛物线23y x bx =-++与直线1y x =+相交于A ,B 两点,与y 轴相交于点C ,点A 在x 轴的负半轴上.图1图2(1)求抛物线的函数表达式及顶点D 的坐标;(2)如图1,直线AB 上方的抛物线上有一动点P ,过点P 作PH AB ⊥于点H ,求垂线段PH 的最大值;(3)如图2,当点P 运动到抛物线对称轴右侧时,连接AP ,交抛物线的对称轴于点M ,当AM DM +最小时,直接写出此时线段AP 的长度.2024武汉市中考模拟数学试题(五)参考答案一、选择题(共10小题,每小题3分,共30分)题号12345678910答案BCDDDACBAB二、填空题(共6小题,每小题3分,共18分)11.98.08610⨯12.1(答案不唯一)13.1a b-14.161516.①②④三、解答题(共8小题,共72分)17.解:解不等式①,得0x <.解不等式②,2x ≥-.∴不等式组的解集为20x -≤<.∴满足不等式组的整数解为1,2--.18.(1)证明:∵四边形ABCD 是平行四边形,AO CO ∴=,BO DO =,又∵E ,F 分别是OA ,OC 的中点,12EO AO ∴=,12FO CO =,EO FO ∴=,∴四边形DEBF 是平行四边形,BE DF ∴=.(2)12BD AC = 答案不唯一.19.(1)36°,25.(2)60,90(3)45675201051013548440⨯+⨯+⨯+⨯=(分钟)答:估计该校八年级学生周末课外平均阅读时间为84分钟.20.(1)直径所对的圆周角是直角ABC E∠=∠同弧所对的圆周角相等,ABC CDB∠=∠(2)::1:2:1CD DE EF = ,设CD x =,则2DE x =,EF x =,4CF x ∴=由切割线定理得2AC CD CF =⋅,即2284x =,0x > ,4x ∴=,4CD ∴=,8DE =,4EF =,12CE CD DE =+=,∵AB 是圆O 的直径,AC 是圆O 的切线,AB AC ∴⊥,在Rt △ACE 中,AE ===连接AD ,BF ,ADF ABF ∠=∠ ,DEA FEB ∠=∠,ADE FBE∴△∽△AE DEFE BE∴=8BE =,BE ∴=,AB AE BE ∴=+==.21.解:(1)AC ==(2)①如图②如图22.解:(1)由题意得:设()1110y k x k =≠,()1110y k x k =≠将2x =,14y =与2x =,22y =分别代入上述关系式中,得:124k =,242k =,12k ∴=,212k =,12y x ∴=,2212y x =.(2)由题意得:()21282W m m =+-211622m m =+-()212142m =-+∴当2m =时,W 有最小值14,08m <≤ ∴当8m =时,W 有最大值32.答:他至少获得14万元利润,能获得的最大利润为32万元.(3)当22W =时,()21214222m -+=,解得12m =-,26m =,0m > ,∴当68m ≤≤时,获利不低于22万元.23.(1)还能得到BE DG =,理由如下:90EAB BAG ∠+∠=︒ ,90BAG GAD ∠+∠=︒,EAB DAG ∴∠=∠,AE AG = ,AB AD =,()SAS EAB GAD ∴△≌△,BE DG ∴=;(2)当EAG BAD ∠=∠时,BE DG =,理由如下:EAG BAD ∠=∠ ,EAB GAD ∴∠=∠,又AE AG = ,AB AD =,()SAS EAB GAD ∴△≌△,BE DG ∴=;(3)23AE AB AG AD ==,4AE FG ==,8AB DC ==,6AG EF ∴==,12AD BC ==,连接EG ,BD ,令EB 与GD 相交于点N ,EAG BAD ∠=∠ ,EAB GAD ∴∠=∠,又12AE AG AB AD == ,EAB GAD ∴△∽△,EBA GDA ∴∠=∠,又90GDA BDG ABD ∠+∠+∠=︒ ,90NBD BDN ∴∠+∠=︒,EB GD ∴⊥,222GN NB GB += ,222EN ND ED +=,222222GN EN NB ND GB ED ∴+++=+,又22222CN EN EG EF EG +==+ ,22222NB DN BD BC DC +==+,222222222264128260GB ED EF FG BC DC ∴+=+++=+++=.24.(1)∵点A 在直线1y x =+上,且在x 轴的负半轴上,10x ∴+=,解得1x =-,()1,0A ∴-,把()1,0A -代入23y x bx =-++得()2130b ---+=,解得2b =,∴抛物线解析式为223y x x =-++,又()222314y x x x =-++=--+ ,∴顶点D 的坐标为(1,4).(2)设直线AB 和y 轴相交于点E ,过点P 作PQ y ∥轴交AB 于点Q设点P 的坐标为()2,23m m m -++,则点Q 的坐标为(),1m m +,∵点P 在直线AB 上方,2231PQ m m m ∴=-++--221992244m m m ⎛⎫=-++=--+≤ ⎪⎝⎭,令0x =,则011y =+=,()0,1E ∴,1OA OE ∴==,45OAE AEO ∴∠=∠=︒,PQ y ∥,45PQH AEO ∴∠=∠=︒,在Rt ΔPHQ 中,sin sin 45PH PQH PQ PQ =∠⋅=︒⋅=,∵PH 随PQ 增大而增大,∴PH 94=.(3.。
2020年浙江省台州市路桥区中考数学(5月份)模拟试卷 (解析版)

2020年台州市路桥区中考数学模拟试卷(5月份)一、选择题(共10小题).1.﹣的相反数是()A.2B.﹣2C.D.±2.计算(3a)2的结果是()A.6a B.3a2C.6a2D.9a23.如图,由5个相同的正方体组合而成的几何体,它的主视图是()A.B.C.D.4.若正多边形的一个外角是36°,则该正多边形为()A.正八边形B.正九边形C.正十边形D.正十一边形5.在战“疫”诗歌创作大赛中,有7名同学进入了决赛,他们的最终成绩均不同.小弘同学想知道自己能否进入前3名,除要了解自己的成绩外,还要了解这7名同学成绩的()A.中位数B.平均数C.众数D.方差6.某公司拟购进A,B两种型号机器人.已知用240万元购买A型机器人和用360万元购买B型机器人的台数相同,且B型机器人的单价比A型机器人多10万元.设A型机器人每台x万元,则所列方程正确的是()A.B.C.=10D.=107.如图,BC是⊙O的一条弦,经过点B的切线与CO的延长线交于点A,若∠C=23°,则∠A的度数为()A.38°B.40°C.42°D.44°8.如图,在矩形ABCD中,将△ABE沿着BE翻折,使点A落在BC边上的点F处,再将△DEG沿着EG翻折,使点D落在EF边上的点H处.若点A,H,C在同一直线上,AB=1,则AD的长为()A.B.C.D.9.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为xkg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A.甲园的门票费用是60元B.草莓优惠前的销售价格是40元/kgC.乙园超过5kg后,超过的部分价格优惠是打五折D.若顾客采摘12kg草莓,那么到甲园或乙园的总费用相同10.如图,Rt△ABC中,∠C=90°,BC=6,DE是△ABC的中位线,点D在AB上,把点B绕点D按顺时针方向旋转α(0°<α<180°)角得到点F,连接AF,BF.下列结论:①△ABF是直角三角形;②若△ABF和△ABC全等,则α=2∠BAC或2∠ABC;③若α=90°,连接EF,则S△DEF=4.5;其中正确的结论是()A.①②B.①③C.①②③D.②③二、填空题(本题有6小题,每小题5分,共30分)11.二次根式中字母x的取值范围是.12.已知点A(2,﹣3)和B(﹣1,m)均在双曲线y=(k为常数,且k≠0)上,则m =.13.在一个不透明的袋子中有三张完全相同的卡片,分别编号为1,2,3.若从中随机取出两张卡片,则卡片上编号之和为偶数的概率是.14.如图,已知△ABC中,AB=AC,∠A=36°,分别以点A,C为圆心,大于AC的长度为半径画弧,两弧相交于点P,Q,直线PQ与AB交于点M,若BC=a,MB=b,则AC=.15.定义:有一组邻边相等的凸四边形叫做等邻边四边形.如图,在Rt△ABC中,∠ABC =90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB'的方向平移,得到A'B'C',连接AC',CC',若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是.16.如图,在正方形ABCD中,AB=6,点E在AB边上,CE与对角线BD交于点F,连接AF,若AE=2,则sin∠AFE的值是.三、解答题(本题共8小题,其中第17-20题每题8分,第21题10分,第22-23题每题12分,第24题14分,共80分)17.计算:.18.解方程组.19.等腰三角形的屋顶,是建筑中经常采用的结构形式.在如图所示的等腰三角形屋顶ABC 中,AB=AC,测得BC=20米,∠C=41°,求顶点A到BC边的距离是多少米?(结果精确到0.1米.参考数据:sin41°≈0.656,cos41°≈0.755,tan41°≈0.869)20.如图,“漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x(小时)表示漏水时间,y(厘米)表示壶底到水面的高度,某次计时过程中,记录到部分数据如表:漏水时间x(小时)…3456…壶底到水面高度y(厘米)…9753…(1)问y与x的函数关系属于一次函数、二次函数和反比例函数中的哪一种?求出该函数解析式及自变量x的取值范围;(2)求刚开始计时时壶底到水面的高度.21.为了解阳光社区年龄20~60岁居民对垃圾分类的认识,学校课外实践小组随机抽取了该社区、该年龄段的部分居民进行了问卷调查,并将调查数据整理后绘成如下两幅不完整的统计图.图中A表示“全部能分类”,B表示“基本能分类”,C表示“略知一二”,D表示“完全不会”.请根据图中信息解答下列问题:(1)补全条形统计图并填空:被调查的总人数是人,扇形图中D部分所对应的圆心角的度数为;(2)若该社区中年龄20~60岁的居民约3000人,请根据上述调查结果,估计该社区中C类有多少人?(3)根据统计数据,结合生活实际,请你对社区垃圾分类工作提一条合理的建议.22.已知AB是⊙O的直径,C是⊙O上的一点(不与点A,B重合),过点C作AB的垂线交⊙O于点D,垂足为E点.(1)如图1,当AE=4,BE=2时,求CD的长度;(2)如图2,连接AC,BD,点M为BD的中点.求证:ME⊥AC.23.已知y关于x的二次函数y=x2﹣bx+b2+b﹣5的图象与x轴有两个公共点.(1)求b的取值范围;(2)若b取满足条件的最大整数值,当m≤x≤时,函数y的取值范围是n≤y≤6﹣2m,求m,n的值;(3)若在自变量x的值满足b≤x≤b+3的情况下,对应函数y的最小值为,求此时二次函数的解析式.24.已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB 交对角线BD于点P,连接PC.(1)如图1,当BM=1时,求PC的长;(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:=;(3)如图3,取PC的中点Q,连接MQ,AQ.①请探究AQ和MQ之间的数量关系,并写出探究过程;②△AMQ的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.参考答案一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣的相反数是()A.2B.﹣2C.D.±【分析】根据只有符号不同的两数叫做互为相反数解答.解:实数﹣的相反数是.故选:C.2.计算(3a)2的结果是()A.6a B.3a2C.6a2D.9a2【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积.解:(3a)2=32•a2=9a2.故选:D.3.如图,由5个相同的正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.解:根据主视图的定义可知,此几何体的主视图有两层,底层3个正方形,上层中间是1个正方形.故选:B.4.若正多边形的一个外角是36°,则该正多边形为()A.正八边形B.正九边形C.正十边形D.正十一边形【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成36°n,列方程可求解.解:设所求正多边形边数为n,则36n=360,解得n=10.故正多边形的边数是10.故选:C.5.在战“疫”诗歌创作大赛中,有7名同学进入了决赛,他们的最终成绩均不同.小弘同学想知道自己能否进入前3名,除要了解自己的成绩外,还要了解这7名同学成绩的()A.中位数B.平均数C.众数D.方差【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.解:由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选:A.6.某公司拟购进A,B两种型号机器人.已知用240万元购买A型机器人和用360万元购买B型机器人的台数相同,且B型机器人的单价比A型机器人多10万元.设A型机器人每台x万元,则所列方程正确的是()A.B.C.=10D.=10【分析】设A型机器人每台x万元,则B型机器人每台(x+10)万元,根据数量=总价÷单价结合用240万元购买A型机器人和用360万元购买B型机器人的台数相同,即可得出关于x的分式方程,此题得解.解:设A型机器人每台x万元,则B型机器人每台(x+10)万元,依题意,得:=.故选:A.7.如图,BC是⊙O的一条弦,经过点B的切线与CO的延长线交于点A,若∠C=23°,则∠A的度数为()A.38°B.40°C.42°D.44°【分析】连接OB,如图,先利用切线的性质得∠OBA=90°,然后根据等腰三角形的性质和三角形外角性质可计算出∠A的度数.解:连接OB,如图,∵AB为切线,∴OB⊥AB,∴∠OBA=90°,∵OC=OB,∴∠C=∠OBC=23°,∴∠BOC=180°﹣2×23°=134°,∵∠BOC=∠A+∠OBA,∴∠A=134°﹣90°=44°.故选:D.8.如图,在矩形ABCD中,将△ABE沿着BE翻折,使点A落在BC边上的点F处,再将△DEG沿着EG翻折,使点D落在EF边上的点H处.若点A,H,C在同一直线上,AB=1,则AD的长为()A.B.C.D.【分析】由折叠的性质可得AB=BF=1,AE=EF,∠ABE=∠FBE,∠A=∠EFB=90°,DE=EH,可证四边形CDEF是矩形,可得DE=FC,由平行线分线段成比例可得,可求AD的长.解:连接AC,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AD=BC,∵将△ABE沿着BE翻折,使点A落在BC边上的点F处,再将△DEG沿着EG翻折,使点D落在EF边上的点H处,∴AB=BF=1,AE=EF,∠ABE=∠FBE,∠A=∠EFB=90°,DE=EH,∴AB∥EF,∠FEB=∠EBF=45°,∴EF=BF=1=AE,∵∠EFC=∠C=∠ADC=90°,∴四边形CDEF是矩形,∴DE=FC,∴DE=EH=FC=AD﹣AE=AD﹣1,∴HF=1﹣(AD﹣1)=2﹣AD,∵点A,H,C在同一直线上,EF∥AB,∴,∴,∴AD=或(舍去)∴AD=,故选:B.9.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为xkg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A.甲园的门票费用是60元B.草莓优惠前的销售价格是40元/kgC.乙园超过5kg后,超过的部分价格优惠是打五折D.若顾客采摘12kg草莓,那么到甲园或乙园的总费用相同【分析】根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.解:由图象可得,甲园的门票为60元,故选项A正确;乙园草莓优惠前的销售价格是:200÷5=40(元/千克),故选项B正确;=0.5,即乙园超过5kg后,超过的部分价格优惠是打5折,故选项C正确;若顾客采摘12kg草莓,甲园花费为:60+12×40×0.6=344(元),乙园的花费为:40×5+(12﹣5)×40×0.5=340(元),∵344>340,∴若顾客采摘12kg草莓,那么到甲园比到乙园的总费用高,故选项D错误;故选:D.10.如图,Rt△ABC中,∠C=90°,BC=6,DE是△ABC的中位线,点D在AB上,把点B绕点D按顺时针方向旋转α(0°<α<180°)角得到点F,连接AF,BF.下列结论:①△ABF是直角三角形;②若△ABF和△ABC全等,则α=2∠BAC或2∠ABC;③若α=90°,连接EF,则S△DEF=4.5;其中正确的结论是()A.①②B.①③C.①②③D.②③【分析】由三角形中位线定理和旋转的性质可得AD=BD=DF,可得△ABF是直角三角形,可判断①;由全等三角形的性质和等腰三角形的性质,可得∠BDF=α=2∠DAF,∠DAF=∠BAC或∠DAF=∠ABC,可判断②;过点B作BN⊥DE,交ED的延长线于N,过点F作FH⊥DE,交交ED的延长线于H,由“AAS”可证△DFH≌△BDN,可得DN=FH=3,由三角形面积公式可得S△DEF=4.5,可判断③,即可求解.解:∵DE是△ABC的中位线,∴AD=DB,∵把点B绕点D按顺时针方向旋转α(0°<α<180°)角得到点F,∴BD=DF,∴BD=AD=DF,∴△ABF是直角三角形,故①正确,∵AD=BD=DF,∴∠DAF=∠DFA,∴∠BDF=α=2∠DAF,若△ABF和△ABC全等,且∠AFB=∠C=90°,∴∠DAF=∠BAC或∠DAF=∠ABC,∴α=2∠BAC或2∠ABC,故②正确,如图,过点B作BN⊥DE,交ED的延长线于N,过点F作FH⊥DE,交交ED的延长线于H,∵BC=6,DE是△ABC的中位线,∴DE∥BC,DE=BC=3,∵BN⊥DE,∠C=90°,∴∠NEC+∠C=180°,∴∠C=∠NEC=90°,又∵BN⊥DE,∴四边形BCEN是矩形,∴BC=NE=6,∴DN=3,∵把点B绕点D按顺时针方向旋转90°,∴DF=DB,∠FDB=90°,∴∠FDH+∠BDN=90°,又∵∠FDH+∠F=90°,∴∠F=∠BDN,又∵DF=BD,∠FHD=∠BND=90°,∴△DFH≌△BDN(AAS),∴DN=FH=3,∴S△DEF=4.5,故③正确,故选:C.二、填空题(本题有6小题,每小题5分,共30分)11.二次根式中字母x的取值范围是x≥﹣2.【分析】根据被开方数大于等于0列式计算即可得解.解:根据题意得,x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.12.已知点A(2,﹣3)和B(﹣1,m)均在双曲线y=(k为常数,且k≠0)上,则m =6.【分析】根据反比例函数图象上点的坐标特征得到2×(﹣3)=﹣1×k,然后解一次方程即可.解:∵点A(2,﹣3)和B(﹣1,m)均在双曲线y=(k为常数,且k≠0)上,∴2×(﹣3)=﹣1×m,∴m=6.故答案为:6.13.在一个不透明的袋子中有三张完全相同的卡片,分别编号为1,2,3.若从中随机取出两张卡片,则卡片上编号之和为偶数的概率是.【分析】依据题意先用列表法或画树状图法分析所有等可能和出现所有结果的可能,然后根据概率公式求出该事件的概率.解:列表如下:1 2 3134235345由上表可知,所有等可能结果共有6种,其中两张卡片数字之和为偶数的结果有2种.所以卡片上编号之和为偶数的概率是=,故答案为:.14.如图,已知△ABC中,AB=AC,∠A=36°,分别以点A,C为圆心,大于AC的长度为半径画弧,两弧相交于点P,Q,直线PQ与AB交于点M,若BC=a,MB=b,则AC=a+b.【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.解:由题意得,直线PQ是AC的垂直平分线,连接CM,∴AM=CM,∴∠A=∠ACM=36°,∵AB=AC,∴∠B=∠ACB=72°,∴∠BCM=36°,∴∠BMC=180°﹣36°﹣72°=72°,∴CM=BC=a,∴AM=CM=a,∴AB=AM+BM=a+b,故答案为:a+b.15.定义:有一组邻边相等的凸四边形叫做等邻边四边形.如图,在Rt△ABC中,∠ABC =90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB'的方向平移,得到A'B'C',连接AC',CC',若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是1或.【分析】由平移的性质得到BB′=CC′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,①如图,当CC′=BC时,BB′=CC′=BC=1;②如图,当AC′=AB=2时,③如图2,当AC′=C′C时,则AC′=BB′,延长C′B′交AB于H,设BH=B′H=x,根据勾股定理即可得到结论.解:∵将Rt△ABC平移得到△A′B′C′,∴BB′=CC′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,①如图1,当CC′=BC时,BB′=CC′=BC=1;②如图1,当AC′=AB=2时,∵∠ABC=90°,BB′是∠ABC的角平分线,∴∠B′BA=45°,延长C′B′交AB于H,∵A′B′∥AB,∠A′B′C′=90°,∴∠AHC′=∠A′B′C′=90°,∴∠BHB′=90°,设BH=B′H=x,∴BB′=x,AH=2﹣x,C′H=1+x,∵AC′2=AH2+C′H2,∴22=(2﹣x)2+(1+x)2,整理方程为:2x2﹣2x+1=0,∵△=4﹣8=﹣4<0,∴此方程无实数根,故这种情况不存在;③如图2,当AC′=C′C时,则AC′=BB′,延长C′B′交AB于H,∵A′B′∥AB,∠A′B′C′=90°,∴∠AHC′=∠A′B′C′=90°,∴∠BHB′=90°,设BH=B′H=x,∴BB′=AC′=x,AH=2﹣x,C′H=1+x,∵AC′2=AH2+C′H2,∴(x)2=(2﹣x)2+(1+x)2,解得:x=,∴BB′=,综上所述,若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是1或,故答案为:1或.16.如图,在正方形ABCD中,AB=6,点E在AB边上,CE与对角线BD交于点F,连接AF,若AE=2,则sin∠AFE的值是.【分析】过F作FG⊥AB于G,根据正方形的性质得到BC=AB=6,∠ABD=45°,求得BG=FG,根据相似三角形的性质得到FG=,根据勾股定理得到EF==,AF==,过E作EH⊥AF于H,根据相似三角形的性质得到EH=,根据三角函数的定义即可得到结论.解:过F作FG⊥AB于G,∵在正方形ABCD中,AB=6,∴BC=AB=6,∠ABD=45°,∴BG=FG,∵AE=2,∴BE=4,∵FG⊥AB,∠ABC=90°,∴FG∥BC,∴△EFG∽△ECB,∴=,∴=,∴FG=,∴BG=FG=,∴EG=4﹣=,∴AG=AB﹣BG=,∴EF==,AF==,过E作EH⊥AF于H,∴∠AHE=∠AGF=90°,∵∠EAH=∠FAG,∴△AEH∽△AFG,∴=,∴=,∴EH=,∴sin∠AFE===.故答案为:.三、解答题(本题共8小题,其中第17-20题每题8分,第21题10分,第22-23题每题12分,第24题14分,共80分)17.计算:.【分析】先计算零指数幂、化简二次根式、去绝对值符号,再计算加减可得.解:原式==3.18.解方程组.【分析】方程组利用加减消元法求出解即可.解:,①+②得:7x=14,解得:x=2,把x=2代入①得:10+y=9,解得:y=﹣1,∴原方程组的解为:.19.等腰三角形的屋顶,是建筑中经常采用的结构形式.在如图所示的等腰三角形屋顶ABC 中,AB=AC,测得BC=20米,∠C=41°,求顶点A到BC边的距离是多少米?(结果精确到0.1米.参考数据:sin41°≈0.656,cos41°≈0.755,tan41°≈0.869)【分析】作AD⊥BC,垂足为D点.根据等腰三角形三线合一的性质得出BD=CD =BC =10,再解Rt△ACD,求出AD=CD•tan41°≈8.7米.解:如图,作AD⊥BC,垂足为D点.∵AB=AC,BC=20,∴BD=CD =BC=10.∵在Rt△ACD中,∠C=41°,∴tan C=tan41°=,∴AD=CD•tan41°≈10×0.869≈8.7(米).答:顶点A到BC边的距离约为8.7米.20.如图,“漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x(小时)表示漏水时间,y(厘米)表示壶底到水面的高度,某次计时过程中,记录到部分数据如表:漏水时间x(小时)…3456…壶底到水面高度y(厘…9753…米)(1)问y与x的函数关系属于一次函数、二次函数和反比例函数中的哪一种?求出该函数解析式及自变量x的取值范围;(2)求刚开始计时时壶底到水面的高度.【分析】(1)观察可得该函数是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同;(2)把x=0代入解析式即可解答.解:(1)y是x的一次函数;设y=k x+b,把(3,9)与(4,7)代入得:,解,,∴y=﹣2x+15 (0≤x≤7.5),(2)把x=0代入y=﹣2x+15,得y=15,∴刚开始计时时壶底到水面的高度为15厘米.21.为了解阳光社区年龄20~60岁居民对垃圾分类的认识,学校课外实践小组随机抽取了该社区、该年龄段的部分居民进行了问卷调查,并将调查数据整理后绘成如下两幅不完整的统计图.图中A表示“全部能分类”,B表示“基本能分类”,C表示“略知一二”,D表示“完全不会”.请根据图中信息解答下列问题:(1)补全条形统计图并填空:被调查的总人数是50人,扇形图中D部分所对应的圆心角的度数为36°;(2)若该社区中年龄20~60岁的居民约3000人,请根据上述调查结果,估计该社区中C类有多少人?(3)根据统计数据,结合生活实际,请你对社区垃圾分类工作提一条合理的建议.【分析】(1)根据“全部能分类”的人数和所占的百分比,求出被调查的总人数,用总人数减去其他类别的人数求出B类的人数;用360°乘以D部分所占的百分比,求出D 部分所对应的圆心角的度数,再把条形统计图补全即可;(2)用总人数乘以社区中C类所占的百分比即可;(3)通过数据分析可知,该社区多数居民对垃圾分类知识了解不够,应多加宣传.解:(1)被调查的总人数是:5÷10%=50(人),B类的人数有:50﹣5﹣30﹣5=10(人),扇形图中D部分所对应的圆心角的度数为:360°×=36°,补全条形统计图如下:故答案为:50,36°;(2)根据题意得:3000×=1800(人),答:根据样本估计总体,该社区中C类约有1800人;(3)通过数据分析可知,该社区多数居民对垃圾分类知识了解不够,社区工作人员可以通过宣传橱窗加强垃圾分类知识的普及.22.已知AB是⊙O的直径,C是⊙O上的一点(不与点A,B重合),过点C作AB的垂线交⊙O于点D,垂足为E点.(1)如图1,当AE=4,BE=2时,求CD的长度;(2)如图2,连接AC,BD,点M为BD的中点.求证:ME⊥AC.【分析】(1)如图1,连接OC,在直角△OEC中,OC=3,OE=1,利用勾股定理求得CE的长度;则CD=2CE;(2)如图2,延长ME与AC交于点N.由直角三角形斜边上中线的性质和等腰三角形的两底角相等得到:∠DEM=∠D,由对顶角相等知∠CEN=∠DEM=∠D,易得∠CNE =∠BED=90°,即ME⊥AC.解:(1)如图1,连接OC,∵AE=4,BE=2,∴AB=6,∴CO=AO=3.∴OE=AE﹣AO=1.∵CD⊥AB,∴由勾股定理可得:CE=.由垂径定理可得CE=DE.∴CD=2CE=;(2)证明:如图2,延长ME与AC交于点N,∵CD⊥AB,∴∠BED=90°.∵M为BD中点,∴EM=BD=DM.∴∠DEM=∠D,∴∠CEN=∠DEM=∠D.∵∠B=∠C,∴∠CNE=∠BED=90°,即ME⊥AC.23.已知y关于x的二次函数y=x2﹣bx+b2+b﹣5的图象与x轴有两个公共点.(1)求b的取值范围;(2)若b取满足条件的最大整数值,当m≤x≤时,函数y的取值范围是n≤y≤6﹣2m,求m,n的值;(3)若在自变量x的值满足b≤x≤b+3的情况下,对应函数y的最小值为,求此时二次函数的解析式.【分析】(1)由b2﹣4ac>0列出不等式进行解答;(2)根据二次函数的增减性质列出m、n的方程进行解答;(3)分三种情况,对称轴在x=b与x=b+3之间;在x=b的左边;在x=b+3的右边.根据二次函数的增减性和局部范围内的最小值,列出b的方程,求得b值便可.解:(1)由题意知,△>0,即,∴﹣4b+20>0,解得:b<5;(2)由题意,b=4,代入得:y=x2﹣4x+3,∴对称轴为直线,又∵a=1>0,函数图象开口向上,∴当m≤x≤时,y随x的增大而减小,∴当x=时,y=n=;当x=m时,y=6﹣2m=m2﹣4m+3,m2﹣2m﹣3=0,解得:m1=﹣1,m2=3(不合题意,舍去);∴m=﹣1,n=;(3)∵,∴对称轴为x=0.5b,开口向上,∴①当b≤0.5b≤b+3,即﹣6≤b≤0时,函数y在顶点处取得最小值,有b﹣5=,∴b=(不合题意,舍去);②当b+3<0.5b,即b<﹣6时,取值范围在对称轴左侧,y随x的增大而减小,∴当x=b+3时,y最小值=,代入得:,b2+16b+15=0,解得:b1=﹣15,b2=﹣1(不合题意,舍去),∴此时二次函数的解析式为:;③当0.5b<b,即b>0时,取值范围在对称轴右侧,y随x的增大而增大,∴当x=b时,y最小值=,代入得:,b2+4b﹣21=0,解得:b1=﹣7(不合题意,舍去),b2=3,∴此时二次函数的解析式为:.综上所述,符合题意的二次函数的解析式为:或.24.已知菱形ABCD中,∠ABC=60°,AB=4,点M在BC边上,过点M作PM∥AB 交对角线BD于点P,连接PC.(1)如图1,当BM=1时,求PC的长;(2)如图2,设AM与BD交于点E,当∠PCM=45°时,求证:=;(3)如图3,取PC的中点Q,连接MQ,AQ.①请探究AQ和MQ之间的数量关系,并写出探究过程;②△AMQ的面积有最小值吗?如果有,请直接写出这个最小值;如果没有,请说明理由.【分析】(1)作PF⊥BC于点F.根据菱形的性质即可得到PF和CF的长,再根据勾股定理即可得到PC的长;(2)作PG⊥BC于点G.设MG=x,由(1)可知:BM=PM=2x,GC=PG=x,再根据△BEM∽△DEA,即可得出=;(3)①延长MQ与CD交于点H,连接AH,AC.根据△PMQ≌△CHQ,即可得出PM =CH=BM,MQ=HQ,进而得到△ABM≌△ACH,可得AM=AH,∠BAM=∠CAH,根据△AMH为等边三角形,即可得到AQ=MQ.②根据△AMH为等边三角形,Q是MH的中点,即可得到△AMQ的面积等于△AMH 的面积的一半,根据AM⊥BC时AM最短,即可得到△AMH的面积的最小值为,进而得到△AMQ的面积最小值为.解:(1)如图1,作PF⊥BC于点F.∵四边形ABCD是菱形,∠ABC=60°,∴∠ABD=∠CBD=30°,AB=BC=CD=AD=4.∵PM∥AB,∴∠ABD=∠BPM=∠CBD=30°,∠PMF=∠ABC=60°,∴PM=BM=1,∴MF=PM=,PF=,FC=BC﹣BM﹣MF=4﹣1﹣=,∴PC==.(2)证明:如图2,作PG⊥BC于点G.∵∠PCM=45°,∴∠CPG=∠PCM=45°,∴PG=GC,设MG=x,由(1)可知:BM=PM=2x,GC=PG=x,由BM+MG+GC=BC得:2x+x+x=4,∴x=,∴BM=.∵四边形ABCD是菱形,∴BM∥AD,∴△BEM∽△DEA,∴=.(3)①如图3,延长MQ与CD交于点H,连接AH,AC.∵PM∥AB∥CD,∴∠PMQ=∠CHQ,∠MPQ=∠HCQ.∵Q是PC的中点,∴PQ=CQ,∴△PMQ≌△CHQ(AAS),∴PM=CH=BM,MQ=HQ,由四边形ABCD是菱形,∠ABC=60°,可得△ABC为等边三角形,∴AB=AC,∠ABM=∠ACH=60°,∴△ABM≌△ACH(SAS),∴AM=AH,∠BAM=∠CAH,∴∠MAH=∠BAC=60°,∴△AMH为等边三角形,∴AQ⊥MH,∠MAQ=∠MAH=30°,∴AQ=MQ.②△AMQ的面积有最小值,最小值为.。
【最新】中考一模测试《数学试题》附答案解析

2020年中考综合模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共12小题,每小题4分,共48分.在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题纸的相应位置上)1.2019年1月3日上午10点26分,中国嫦娥四号探测器成功在月球背面软着陆,成为人类首次在月球背面软着陆的探测器,首次实现月球背面与地面站通过中继卫星通信月球距离地球的距离约为384000km ,将384000用科学记数法表示为( )A. 53.8410⨯B. 33.8410⨯C. 438.410⨯D. 30.38410⨯ 2.使二次根式2x -有意义的x 的取值范围为( )A. 2x >B. 2x ≥C. 2x =D. 2x ≠3.如图,∠AOB 的角平分线是( )A. 射线OBB. 射线OEC. 射线ODD. 射线OC 4.方程组20529x y x y -=⎧⎨+=⎩的解为( ) A. 17x y =-⎧⎨=⎩ B. 36x y =⎧⎨=⎩ C. 12x y =⎧⎨=⎩ D. 12x y =-⎧⎨=⎩5.图1是数学家皮亚特•海恩(Piet Hein )发明索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图( )A. B. C. D.6.下列命题中,真命题是( )A. 对角线相等的四边形是等腰梯形B. 两个相邻的内角相等的梯形是等腰梯形C. 一组对边平行,另一组对边相等的四边形是等腰梯形D. 平行于等腰三角形底边的直线截两腰所得的四边形是等腰梯形7.半径分别为1和5的两个圆相交,它们的圆心距可以是( )A. 3B. 4C. 5D. 68.三名快递员某天的工作情况如图所示,其中点1A ,2A ,3A 的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点1B ,2B ,3B ,的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②D. ②③9.将抛物线y =x 2﹣2x+3向上平移1个单位,平移后所得的抛物线的表达式为( )A. y =x 2﹣2x+4B. y =x 2﹣2x+2C. y =x 2﹣3x+3D. y =x 2﹣x+310.如图,O e 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,6OC =,则CD 的长为( )A. 3B. 32 C. 62 D. 611.如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于( )A. 144°B. 126°C. 108°D. 72°12.如图1,矩形的一条边长为x,周长的一半为y,定义(x,y)为这个矩形的坐标.如图2,在平面直角坐标系中,直线x=1,y=3将第一象限划分成4个区域,已知矩形1的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中,则下面叙述中正确的是()A. 点A的横坐标有可能大于3B. 矩形1是正方形时,点A位于区域②C. 当点A沿双曲线向上移动时,矩形1的面积减小D当点A位于区域①时,矩形1可能和矩形2全等二、填空题(本大题共5小题,每小题4分,共计20分.不需写出解答过程,请把最后结果直接填写在答题卡相应位置上........)13.如图,在线段AD,AE,AF中,△ABC的高是线段________.14.分解因式:ab 2﹣2ab+a =_____.15.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为__.16.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点,若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后2分钟内,两人相遇的次数为_____.17.已知抛物线y =ax 2﹣2ax +c (a <0)的图象过点A (3,m ).(1)当a =﹣1,m =0时,求抛物线的顶点坐标_____;(2)如图,直线l :y =kx +c (k <0)交抛物线于B ,C 两点,点Q (x ,y )是抛物线上点B ,C 之间的一个动点,作QD ⊥x 轴交直线l 于点D ,作QE ⊥y 轴于点E ,连接DE .设∠QED =β,当2≤x ≤4时,β恰好满足30°≤β≤60°,a =_____.三、解答题(本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.)18.解不等式组:6244 2133x xx x->-⎧⎪⎨>-⎪⎩19.下面是小明设计的“作三角形的高线”的尺规作图过程.已知:△ABC.求作:BC边上的高线.作法:如图,①以点C圆心,CA为半径画弧;②以点B为圆心,BA为半径画弧,两弧相交于点D;③连接AD,交BC的延长线于点E.所以线段AE就是所求作的BC边上的高线.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面证明.证明:∵CA=CD,∴点C在线段AD的垂直平分线上()(填推理的依据).∵= ,∴点B在线段AD的垂直平分线上.∴BC是线段AD的垂直平分线.∴AD⊥BC.∴AE就是BC边上的高线.20.费尔兹奖是国际上享有崇高荣誉的一个数学奖项,每4年评选一次,在国际数学家大会上颁给有卓越贡献的年龄不超过40岁的年轻数学家,美籍华人丘成桐1982年获得费尔兹奖.为了让学生了解费尔兹奖得主的年龄情况,我们查取了截止到2018年60名费尔兹奖得主获奖时的年龄数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.截止到2018年费尔兹奖得主获奖时的年龄数据的频数分布直方图如图1(数据分成5组,各组是28≤x<31,31≤x <34,34≤x <37,37≤x <40,x≥40):b .如图2,在a 的基础上,画出扇形统计图;c .截止到2018年费尔兹奖得主获奖时的年龄在34≤x <37这一组的数据是:3635 34 35 35 34 34 35 36 36 36 36 34 35d .截止到2018年时费尔兹奖得主获奖时的年龄的平均数、中位数、众数如下:年份平均数 中位数 众数截止到201835.58 m 37,38根据以上信息,回答下列问题:(1)依据题意,补全频数直方图; (2)31≤x <34这组的圆心角度数是度,并补全扇形统计图;(3)统计表中中位数m 的值是;(4)根据以上统计图表试描述费尔兹奖得主获奖时的年龄分布特征.21.关于x 的一元二次方程()()22310mx m x m --+-=有两个实数根.(1)求m 的取值范围:(2)若m 为最大负整数,求此时方程的根.22.为了增强体质,小明计划晚间骑自行车调练,他在自行车上安装了夜行灯.如图,夜行灯A 射出的光线AB 、AC 与地面MN 的夹角分别为10°和14°,该夜行灯照亮地面的宽度BC 长为149米,求该夜行灯距离地面的高度AN 的长.(参考数据:17961 1010141410050254 sin,tan,sin,tan︒︒︒︒≈≈≈≈)23.如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.(1)求证:△ABE∽△DAF;(2)当AC•FC=AE•EC时,求证:AD=BE.24.在平面直角坐标系xOy中,已知P(x1,y1)Q(x2,y2),定义P、Q两点的横坐标之差的绝对值与纵坐标之差的绝对值的和为P、Q两点的直角距离,记作d(P,Q).即d(P,Q)=|x2﹣x1|+|y2﹣y1|如图1,在平面直角坐标系xOy中,A(1,4),B(5,2),则d(A,B)=|5﹣1|+|2﹣4|=6.(1)如图2,已知以下三个图形:①以原点为圆心,2为半径的圆;②以原点为中心,4为边长,且各边分别与坐标轴垂直的正方形;③以原点为中心,对角线分别在两条坐标轴上,对角线长为4的正方形.点P是上面某个图形上的一个动点,且满足d(O,P)=2总成立.写出符合题意的图形对应的序号.(2)若直线y=k(x+3)上存在点P使得d(O,P)=2,求k的取值范围.(3)在平面直角坐标系xOy中,P为动点,且d(O,P)=3,⊙M圆心为M(t,0),半径为1.若⊙M 上存在点N使得PN=1,求t的取值范围.答案与解析一、选择题(本题共12小题,每小题4分,共48分.在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题纸的相应位置上)1.2019年1月3日上午10点26分,中国嫦娥四号探测器成功在月球背面软着陆,成为人类首次在月球背面软着陆的探测器,首次实现月球背面与地面站通过中继卫星通信月球距离地球的距离约为384000km ,将384000用科学记数法表示为( )A. 53.8410⨯B. 33.8410⨯C. 438.410⨯D. 30.38410⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:384000用科学记数法表示为3.84×105. 故选:A .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.x 的取值范围为( )A. 2x >B. 2x ≥C. 2x =D. 2x ≠ 【答案】B【解析】【分析】根据二次根式有意义的条件,被开方数大于或等于0,可以求出x 的范围.【详解】根据题意得:x-2≥0,解得:x≥2.故选B .a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.如图,∠AOB的角平分线是()A. 射线OBB. 射线OEC. 射线ODD. 射线OC 【答案】B【解析】【分析】借助于图中的量角器得到各个角的度数,再结合角平分线的定义进行分析判断即可.【详解】由图中信息可知,∠AOB=70°,∠AOE=∠BOE=35°,∴∠AOB的平分线是射线OE.故选B.【点睛】“能用量角器测量角的度数,且熟悉角平分线的定义”是解答本题的关键.4.方程组20529x yx y-=⎧⎨+=⎩的解为()A.17xy=-⎧⎨=⎩B.36xy=⎧⎨=⎩C.12xy=⎧⎨=⎩D.12xy=-⎧⎨=⎩【答案】C【解析】【分析】方程组利用加减消元法求出解即可.【详解】20529x yx y-=⎧⎨+=⎩①②,①×2+②得:9x=9,即x=1,把x=1代入①得:y=2,则方程组的解为12 xy=⎧⎨=⎩,【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.5.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A. B. C. D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.6.下列命题中,真命题是()A. 对角线相等的四边形是等腰梯形B. 两个相邻的内角相等的梯形是等腰梯形C. 一组对边平行,另一组对边相等的四边形是等腰梯形D. 平行于等腰三角形底边的直线截两腰所得的四边形是等腰梯形【答案】D【解析】根据等腰梯形的判定定理即可判断出A 、B 、C 、D 选项是否正确,【详解】解析:对于A 选项, 应为两条对角线相等的梯形是等腰梯形;对于B 选项, 为同一底上的两个内角相等的梯形是等腰梯形;对于C 选项,应为一组对边平行,另一组对边不平行且相等的四边形是等腰梯形;故选D.【点睛】本题主要考查等腰梯形的判定.等腰梯形的判定:(1)一组对边平行,另一组对边不平行且相等的四边形是等腰梯形;(2)对角线相等的梯形是等腰梯形;(3)两腰相等的梯形是等腰梯形;(4)同一底边上的两个底角相等的梯形是等腰梯形7.半径分别为1和5的两个圆相交,它们的圆心距可以是( )A. 3B. 4C. 5D. 6【答案】C【解析】【分析】针对两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系得出5-1<d <5+1,即可得出答案.【详解】∵半径分别为1和5的两圆相交,∴此时两圆的圆心距为:5−1<d <5+1,∴4<d <6.4个选项中只有C 在这个范围内.故选C.【点睛】考查圆与圆的位置关系,掌握两个圆相交时,圆心距与两圆半径之间的位置关系是解题的关键. 8.三名快递员某天的工作情况如图所示,其中点1A ,2A ,3A 的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点1B ,2B ,3B ,的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②D. ②③【答案】B【解析】【分析】 根据所给的点的信息进行辨析即可得解.【详解】①上午派送快递所用时间最短的是A 1,即甲,不足2小时;故①正确;②下午派送快递件数最多的是B 2即乙,超过40件,其余的不超过40件,故②错误;③在这一天中派送快递总件数为:甲:40+25=65(件),乙:45+30=75;丙:30+20=50,所以这一天中派送快递总件数最多的是乙,故③正确.故选B.【点睛】本题考查的知识点是函数的图象,分析出图象中点的几何意义,是解答的关键.9.将抛物线y =x 2﹣2x+3向上平移1个单位,平移后所得的抛物线的表达式为( )A. y =x 2﹣2x+4B. y =x 2﹣2x+2C. y =x 2﹣3x+3D. y =x 2﹣x+3【答案】A【解析】【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】y=x 2−2x+3=(x−1)2+2,其顶点坐标为(1,2).向上平移1个单位长度后的顶点坐标为(1,3), 得到的抛物线的解析式是y=x 2−2x+4.故选A.【点睛】本题考查的是抛物线的平移,熟练掌握平移的规律是解题的关键.10.如图,O e 直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,6OC =,则CD 的长为( )C. 62D. 6【答案】C【解析】【分析】根据圆周角定理得出∠COE=45°,进而利用垂径定理和直角三角形的性质解答即可.【详解】解:∵22.5A∠=︒,∴∠COE=45°,∵⊙O的直径AB垂直于弦CD,OC=6,∴∠CEO=90°,∵∠COE=45°,∴CE=OE=22OC=32,∴CD=2CE=62,故选:C.【点睛】本题考查垂径定理和圆周角定理.熟记垂径定理和圆周角定理是解题的关键.11.如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于( )A. 144°B. 126°C. 108°D. 72°【答案】B【解析】A.3B. 32【详解】解:根据折叠的性质可以得到:折叠前、后两部分图形一定全等,由已知得∠DMN=∠D'MN=∠MNF=12(180°-36°)=72°,在四边形D'MNF中,∠NFD'=360°-90°-72°-72°=126°.故选:B12.如图1,矩形的一条边长为x,周长的一半为y,定义(x,y)为这个矩形的坐标.如图2,在平面直角坐标系中,直线x=1,y=3将第一象限划分成4个区域,已知矩形1的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中,则下面叙述中正确的是()A. 点A的横坐标有可能大于3B. 矩形1是正方形时,点A位于区域②C. 当点A沿双曲线向上移动时,矩形1的面积减小D. 当点A位于区域①时,矩形1可能和矩形2全等【答案】D 【解析】【分析】A、根据反比例函数k一定,并根据图形得:当x=1时,y<3,得k=xy<3,因为y是矩形周长的一半,即y>x,可判断点A的横坐标不可能大于3;B、根据正方形边长相等得:y=2x,得点A是直线y=2x与双曲线的交点,画图,如图2,交点A在区域③,可作判断;C、先表示矩形面积S=x(y-x)=xy-x2=k-x2,当点A沿双曲线向上移动时,x的值会越来越小,矩形1的面积会越来越大,可作判断;D、当点A位于区域①,得x<1,另一边为:y-x>2,矩形2的坐标的对应点落在区域④中得:x>1,y>3,即另一边y-x>0,可作判断.【详解】如图,设点A(x,y),A、设反比例函数解析式为:y=kx(k≠0),由图形可知:当x=1时,y<3,∴k=xy<3,∵y>x,∴x<3,即点A的横坐标不可能大于3,故选项A不正确;B、当矩形1为正方形时,边长为x,y=2x,则点A是直线y=2x与双曲线的交点,如图2,交点A在区域③,故选项B不正确;C、当一边为x,则另一边为y-x,S=x(y-x)=xy-x2=k-x2,∵当点A沿双曲线向上移动时,x的值会越来越小,∴矩形1的面积会越来越大,故选项C不正确;D、当点A位于区域①时,∵点A(x,y),∴x<1,y>3,即另一边为:y-x>2,矩形2落在区域④中,x>1,y>3,即另一边y-x>0,∴当点A位于区域①时,矩形1可能和矩形2全等;故选项④正确;故选D.【点睛】本题考查了函数图象和新定义,有难度,理解x和y的意义是关键,并注意数形结合的思想解决问题.二、填空题(本大题共5小题,每小题4分,共计20分.不需写出解答过程,请把最后结果直接填写在答题卡相应位置上........)13.如图,在线段AD , AE , AF 中,△ABC 的高是线段________.【答案】AF【解析】【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【详解】∵AF ⊥BC 于F ,∴AF 是△ABC 的高线,故答案为AF .【点睛】本题主要考查了三角形的高线,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.14.分解因式:ab 2﹣2ab+a =_____.【答案】a (b ﹣1)2【解析】【分析】先提取公因式a ,再对余下的多项式利用完全平方公式继续分解.【详解】解:ab 2﹣2ab+a ,=a (b 2﹣2b+1),=a (b ﹣1)2.【点睛】考查提公因式法分解因式和利用完全平方公式分解因式,难点在于提取公因式后利用完全平方公式进行二次因式分解.15.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为__.【答案】a b c +-【解析】【分析】利用AAS 证出ABF CDE ∆≅∆,从而得出AF CE a ==,BF DE b ==,然后根据()AD AF DF AF DE EF =+=+-即可得出结论.【详解】解:AB CD ⊥Q ,CE AD ⊥,BF AD ⊥,90AFB CED ∴∠=∠=︒,∴90A D ∠+∠=︒,90C D ∠+∠=︒,A C ∴∠=∠,在△ABF 和△CDE 中A C AFB CED AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABF CDE AAS ∴∆≅∆,AF CE a ∴==,BF DE b ==,EF c =Q ,()()AD AF DF AF DE EF a b c a b c ∴=+=+-=+-=+-,故答案为:a b c +-.【点睛】此题考查的是全等三角形的判定及性质,掌握利用AAS 判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.16.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点,若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后2分钟内,两人相遇的次数为_____.【答案】5【解析】【分析】在120s内,求两人相遇的次数,关键一是求出两人每一次相遇间隔时间,二是找出隐含等量关系:每一次相遇时间×次数=总时间构建一元一次方程.【详解】解:设两人起跑后120s内,两人相遇的次数为x次,依题意得;每次相遇间隔时间t,A、B两地相距为S,V甲、V乙分别表示甲、乙两人的速度,则有:(V甲+V乙)t=2S∴t=2100200 549⨯=+∴2009x=120,解得:x=5.4又∵x是正整数,且只能取整,∴x=5.故答案为5.【点睛】本题考查了一元一次方程解决行程中的相遇问题,突破口就是相遇时间等于每个人走的时间;结合实际问题中x的取值只能取整数,此题与方程的解既有区别又有联系.17.已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).(1)当a=﹣1,m=0时,求抛物线的顶点坐标_____;(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=_____.【答案】(1). (1,4)(2). ﹣3 3【解析】【分析】(1)利用待定系数法求得抛物线解析式,然后利用配方法将抛物线解析式转化为顶点式,可以直接得到答案;(2)将点Q(x,y)代入抛物线解析式得到:y=ax2﹣2ax+c.结合一次函数解析式推知:D(x,kx+c).则由两点间的距离公式知QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.在Rt△QED中,由锐角三角函数的定义推知tanβ=2(2)QD ax a k xQE x-+==ax﹣2a﹣k.所以tanβ随着x的增大而减小.结合已知条件列出方程组2242a a ka a k⎧--=⎪⎨--=⎪⎩a的值.【详解】(1)当a=﹣1,m=0时,y=﹣x2+2x+c,A点的坐标为(3,0),∴﹣9+6+c=0.解得c=3.∴抛物线的表达式为y=﹣x2+2x+3.即y=﹣(x﹣1)2+4.∴抛物线的顶点坐标为(1,4),故答案为(1,4).(2)∵点Q(x,y)在抛物线上,∴y=ax2﹣2ax+c.又∵QD⊥x轴交直线l:y=kx+c(k<0)于点D,∴D点的坐标为(x,kx+c).又∵点Q是抛物线上点B,C之间的一个动点,∴QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.∵QE=x,∴在Rt△QED中,tanβ=2(2)QD ax a k xQE x-+==ax﹣2a﹣k.∴tanβ是关于x的一次函数,∵a<0,∴tanβ随着x的增大而减小.又∵当2≤x≤4时,β恰好满足30°≤β≤60°,且tanβ随着β的增大而增大,∴当x=2时,β=60°;当x=4时,β=30°.∴22423a a k a a k ⎧--=⎪⎨--=⎪⎩,解得k a ⎧=⎪⎨=⎪⎩故答案为﹣3. 【点睛】考查了二次函数综合题,涉及了待定系数法求二次函数解析式,二次函数图象的性质,二次函数解析式的三种性质,一次函数的性质,锐角三角函数的定义等知识点,综合性较强,难度较大.三、解答题(本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.)18.解不等式组:62442133x x x x ->-⎧⎪⎨>-⎪⎩ 【答案】﹣1<x <1 【解析】 【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:62442133x x x x ->-⎧⎪⎨>-⎪⎩①② ∵解不等式①得:x >﹣1, 解不等式②得:x <1,∴不等式组的解集是﹣1<x <1.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键. 19.下面是小明设计的“作三角形的高线”的尺规作图过程. 已知:△ABC . 求作:BC 边上的高线. 作法:如图,①以点C为圆心,CA为半径画弧;②以点B为圆心,BA为半径画弧,两弧相交于点D;③连接AD,交BC的延长线于点E.所以线段AE就是所求作的BC边上的高线.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面证明.证明:∵CA=CD,∴点C在线段AD的垂直平分线上()(填推理的依据).∵= ,∴点B在线段AD的垂直平分线上.∴BC是线段AD的垂直平分线.∴AD⊥BC.∴AE就是BC边上的高线.【答案】补全图形见解析;到线段两个端点距离相等的点在线段的垂直平分线上;BA BD.【解析】【分析】(1)根据题目中的作图步骤补全图形即可.(2)由作法得CA=CD,BA=BD,则点B、C在AD的垂直平分线上,即可证明AE就是BC边上的高线.【详解】(1)如图所示:(2)证明:∵CA=CD,∴点C在线段AD的垂直平分线上(到线段两个端点距离相等的点在线段的垂直平分线上)(填推理的依据).∵BA = BD.∴点B在线段AD的垂直平分线上.∴BC是线段AD的垂直平分线.∴AD⊥BC.∴AE就是BC边上的高线.【点睛】考查基本作图,掌握线段的垂直平分线的性质是解题的关键.20.费尔兹奖是国际上享有崇高荣誉的一个数学奖项,每4年评选一次,在国际数学家大会上颁给有卓越贡献的年龄不超过40岁的年轻数学家,美籍华人丘成桐1982年获得费尔兹奖.为了让学生了解费尔兹奖得主的年龄情况,我们查取了截止到2018年60名费尔兹奖得主获奖时的年龄数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.截止到2018年费尔兹奖得主获奖时的年龄数据的频数分布直方图如图1(数据分成5组,各组是28≤x <31,31≤x<34,34≤x<37,37≤x<40,x≥40):b.如图2,在a的基础上,画出扇形统计图;c.截止到2018年费尔兹奖得主获奖时的年龄在34≤x<37这一组的数据是:36 35 34 35 35 34 34 35 36 36 36 36 34 35d.截止到2018年时费尔兹奖得主获奖时的年龄的平均数、中位数、众数如下:年份平均数中位数众数截止到2018 35.58 m 37,38根据以上信息,回答下列问题: (1)依据题意,补全频数直方图;(2)31≤x <34这组的圆心角度数是度,并补全扇形统计图; (3)统计表中中位数m 的值是;(4)根据以上统计图表试描述费尔兹奖得主获奖时的年龄分布特征.【答案】(1)如图见解析;(2)31≤x <34这组的圆心角度数是 78度,补全扇形统计图见解析;(3)中位数m 的值是 36;(4)答案不唯一,如:费尔兹奖得主获奖时年龄集中在37岁至40岁. 【解析】 【分析】(1)根据总人数为60求出第二组的人数即可解决问题; (2)根据圆心角=360°×百分比计算即可,根据百分比的和为1,求出第二组的百分比,即可画出扇形统计图;(3)根据中位数的定义,中位数等于第30,31的年龄的平均数; (4)答案不唯一,合理即可. 【详解】(1)如图;(2)31≤x <34这组的圆心角度数=360°×21.7%≈78°;(3)中位数等于第30,31的年龄的平均数,第30,31的年龄位于34≤x <37组的最后2个,为36,36,故统计表中中位数m 的值是 36;(4)答案不唯一,如:费尔兹奖得主获奖时年龄集中在37岁至40岁.【点睛】本题考查频数分布表,频数分布直方图,扇形统计图,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 21.关于x一元二次方程()()22310mx m x m --+-=有两个实数根.(1)求m 的取值范围:(2)若m 为最大负整数,求此时方程的根.【答案】(1)98m ≤且0m ≠;(2)152x =,252x = 【解析】 【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()223410m m m ∆=----≥⎡⎤⎣⎦,然后解不等式即可;(2)m 为最大负整数-1,则方程变形为2520x x -+-=,然后利用求根公式解方程. 【详解】解:(1)()()22341m m m ∆=----⎡⎤⎣⎦Q89m =-+.依题意,得0890m m ≠⎧⎨∆=-+≥⎩,解得98m ≤且0m ≠. (2)m Q 为最大负整数,1m ∴=-.∴原方程为2520x x -+-=.解得152x +=,252x -=. 【点睛】本题考查根的判别式,解一元一次不等式、解一元二次方程等知识,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.22.为了增强体质,小明计划晚间骑自行车调练,他在自行车上安装了夜行灯.如图,夜行灯A 射出的光线AB 、AC 与地面MN 的夹角分别为10°和14°,该夜行灯照亮地面的宽度BC 长为149米,求该夜行灯距离地面的高度AN 的长. (参考数据:179611010141410050254sin ,tan ,sin ,tan ︒︒︒︒≈≈≈≈)【答案】该夜行灯距离地面的高度AN的长为1m.【解析】【分析】过点A作AD⊥MN于点D,在Rt△ADB与Rt△ACD中,由锐角三角函数的定义可知tan10°14919,tan14504ADDCADADDC BC DC︒+====+=,即可得出AD的长.【详解】过点A作AD⊥MN于点D,在Rt△ADB与Rt△ACD中,由锐角三角函数的定义可知:tan10°=914509AD ADDC BC DC==++,tan14°=14ADDC=,故4AD=DC,则9145049ADAD=+解得:AD=1,答:该夜行灯距离地面的高度AN的长为1m.【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.23.如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.(1)求证:△ABE∽△DAF;(2)当AC•FC=AE•EC时,求证:AD=BE.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)想办法证明∠B=∠DAF,∠BAE=∠ADF即可解决问题.(2)只要证明四边形ADEB是平行四边形即可解决问题.【详解】(1)∵AD∥BC,∴∠DAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠DAF=∠B,∵∠AEC=∠AED+∠DEC=∠B+∠BAE,∠AED=∠CAD=∠ACB,∴∠DEC=∠BAE,∵AD∥BC,∴∠DEC=∠ADF,∴∠BAE=∠ADF,∴△ABE∽△DAF.(2)∵AC•FC=AE•EC,AC=AB,∴AB•FC=AE•EC,∴AB AE EC FC=,∵∠B=∠FCE,∠BAE=∠FEC,∴△BAE∽△CEF,∴AB AE EC EF=,∴AE AE FC EF=,∴FC=EF,∴∠FEC=∠FCE,∵∠FCE=∠B,。
【2020年】贵州省中考数学模拟试卷(含解析)

2020年贵州省中考数学模拟试卷含答案一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是()A.2 B.﹣2 C.±2 D.162.2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×1063.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C.a6÷a3=a3D. +=4.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C. D.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.56.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.58.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.9.如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A.80 B.60 C.50 D.4010.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE 的面积是9,则k=()A.B.9 C.D.3二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2x2﹣8分解因式得:.12.在函数y=中,自变量x的取值范围是.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为.14.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.15.不等式组的解集是.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.三、解答题(本题共8小题,共86分)17.计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.18.先化简﹣÷,再求代数式的值,其中a=﹣3.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?23.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2,∠CAD=30°时,求劣弧AD的长.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.参考答案与试题解析一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是()A.2 B.﹣2 C.±2 D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.2.2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A.0.105×109B.1.05×109C.1.05×108D.105×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将105000000用科学记数法表示为1.05×108.故选C3.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C.a6÷a3=a3D. +=【考点】二次根式的加减法;同底数幂的除法;分式的加减法.【分析】直接利用合并同类项法则以及二次根式加减运算法则和同底数幂的除法运算法则、分式加减运算法则分别化简求出答案.【解答】解:A、5ab﹣ab=4ab,故此选项错误,不合题意;B、3﹣=2,故此选项错误,不合题意;C、a6÷a3=a3,正确,符合题意;D、+=+=,故此选项错误,不合题意;故选:C.4.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:B.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【考点】三角形中位线定理;平行四边形的性质.【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选C.6.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图的定义即可判断.【解答】解:如图所示的几何体的俯视图是D.故选D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.8.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.9.如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于()A.80 B.60 C.50 D.40【考点】三角形的外接圆与外心.【分析】根据圆周角定理计算即可.【解答】解:由圆周角定理得,∠A=∠BOC=40°,故选:D.10.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE 的面积是9,则k=()A.B.9 C.D.3【考点】反比例函数系数k的几何意义.【分析】设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m,),由此即可得出BD=3m、BE=n,再利用分割图形求面积法结合反比例函数系数k的几何意义即可得出S△ODE=k=9,解之即可得出k值.【解答】解:设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m,),∴BD=AB﹣AD=3m,BE=BC﹣CE=n.∵点D在反比例函数y=的图象上,∴k=mn,∴S△ODE=S矩形OABC﹣S△OAD﹣S△OCE﹣S△BDE=4k﹣k﹣k﹣k=k=9,∴k=.故选C.二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2x2﹣8分解因式得:2(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式分解.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案是:2(x+2)(x﹣2).12.在函数y=中,自变量x的取值范围是x≠﹣2 .【考点】函数自变量的取值范围.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≠0,解得x≠﹣2.故答案为:x≠﹣2.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为10% .【考点】一元二次方程的应用.【分析】等量关系为:原售价×(1﹣降低率)2=降低后的售价,依此列出方程求解即可.【解答】解:设平均每月降价的百分率为x,依题意得:1000(1﹣x)2=810,化简得:(1﹣x)2=0.81,解得x1=0.1,x2=﹣1.9(舍).所以平均每月降价的百分率为10%.故答案为10%.14.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1 .【考点】根的判别式.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.【解答】解:∵关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.15.不等式组的解集是<x<2 .【考点】解一元一次不等式组.【分析】分别解两个不等式得到x>和x<2,然后根据大小小大中间找确定不等式组的解集.【解答】解:,解①得x>,解②得x<2,所以不等式组的解集为<x<2.故答案为<x<2.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.【考点】翻折变换(折叠问题).【分析】要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE.【解答】解:设AE=x,由折叠可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=由折叠可知∠AEF=∠CEF,∵AD∥BC,∴∠CEF=∠AFE,∴∠AEF=∠AFE,即AE=AF=,∴S△AEF=×AF×AB=××3=.故答案为:.三、解答题(本题共8小题,共86分)17.计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣+1+2×+1=2﹣+1++1=4.18.先化简﹣÷,再求代数式的值,其中a=﹣3.【考点】分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣÷===,当a=﹣3时,原式=.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.【考点】作图﹣旋转变换;作图﹣轴对称变换.【分析】(1)根据网格特点,找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)分别找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,观察可知点B所经过的路线是半径为,圆心角是90°的扇形,然后根据弧长公式进行计算即可求解.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.点B旋转到点B2所经过的路径长为: =π.故点B旋转到点B2所经过的路径长是π.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC中,利用三角函数即可求解.【解答】解:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜爱电视剧的人数是69人,占总人数的23%,即可求得总人数;(2)根据总人数和喜欢娱乐节目的百分数可求的其人数,补全即可;利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60(人),补全如图;∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2000×23%=460(人),∴估计该校有460人喜爱电视剧节目.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设B树苗的单价为x元,则A树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式解答即可.【解答】解:设B树苗的单价为x元,则A树苗的单价为y元,可得:,解得:,答:B树苗的单价为300元,A树苗的单价为200元;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.23.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2,∠CAD=30°时,求劣弧AD的长.【考点】圆的综合题.【分析】(1)作AD的垂直平分线交AC于O,以AO为半径画圆O分别交AB、AC于点E、F,则⊙O即为所求;(2)连结OD,得到OD=OA,根据等腰三角形的性质得到∠OAD=∠ODA,等量代换得到∠ODA=∠CAD,根据平行线的判定定理得到OD∥AC,根据平行线的性质即可得到结论;(3)连接DE,根据圆周角定理得到∠ADE=90°,根据三角形的内角和得到∠AOD=120°,根据三角函数的定义得到AE==4,根据弧长个公式即可得到结论.【解答】(1)解:如图所示,(2)证明:连结OD,则OD=OA,∴∠OAD=∠ODA,∵∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,即BC⊥OD,∴BC与⊙O相切;(3)解:连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠ODA=30°,∴∠AOD=120°,在Rt△ADE中,AE===4,∴⊙O的半径=2,∴劣弧AD的长==π.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=﹣1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣x+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时, =,即=,CM=.如图1,过M作MH⊥y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,∴M(﹣,);当△OCM∽△CAB时, =,即=,解得CM=3,如图2,过M作MH⊥y轴于H,MH=CH=CM=3,当x=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).。
2020-2021学年辽宁省抚顺市中考数学模拟试卷(五)及答案解析

∴红球有9×5=45(个),
故选:A.
【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
8.如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为( )
A.7.5B.10C.15D.20
【考点】相似三角形的判定与性质.
9.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是( )
A. B. C. D.
【考点】动点问题的函数图象.
【专题】压轴题.
【分析】通过设出BE=x,FC=y,且△AEF为直角三角形,运用勾股定理得出y与x的关系,再判断出函数图象.
A. B. C. D.
10.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|PA﹣PB|的最大值是( )
A.4B.5C.6D.8
二、填空题:每小题3分,共24分.
11.不等式组 的整数解是.
12.计算:2×( ﹣1)0﹣12015+ 的值为.
13.函数 的自变量x的取值范围是.
【分析】根据主视图的定义,找到从正面看所得到的图形即可.
【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,
故选:C.
【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.
6.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:
辽宁省抚顺市中考数学模拟试卷(五)
一、选择题:每小题3分,共30分,在四个选项中只有一项是正确的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学模拟试卷(5月份)一、选择题1.﹣5的相反数是()A.B.5C.﹣5D.﹣2.下列运算中正确的是()A.2a2•a=3a3B.(ab2)2=ab4C.2ab2÷b2=2a D.(a+b)2=a2+b23.新冠病毒平均直径为0.0001毫米,但它以飞沫传播为主,而飞沫的直径是大于5微米的,所以N95或医用口罩能起到防护作用,用科学记数法表示0.0001毫米是()A.0.1×10﹣5毫米B.10﹣4毫米C.10﹣3毫米D.0.1×10﹣3毫米4.一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A.B.C.D.5.某露天舞台如图所示,它的俯视图是()A.B.C.D.6.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球()A.24个B.10个C.9个D.4个7.某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.58.如图,四边形ABCD中,点E,F分别在AB,BC上,将△BEF沿EF翻折得△GEF,若EG∥AD,FG∥DC,则以下结论一定成立的是()A.∠D=∠B B.∠D=180°﹣∠B C.∠D=∠C D.∠D=180°﹣∠C9.如图,5×3的网格图中,每个小正方形的边长均为1,设经过图中格点A,C,B三点的圆弧与AE交于H,则弧AH的弧长为()A.πB.πC.πD.π10.如图,四个菱形①②③④的较小内角均与已知平行四边形ABCD的∠A相等,边长各不相同.将这四个菱形如图所示放入平行四边形中,未被四个菱形覆盖的部分用阴影表示.若已知两个阴影部分的周长的差,则不需测量就能知道周长的菱形为()A.①B.②C.③D.④二、填空题(本题6小题,每小题5分,共30分)11.函数y=中,自变量x的取值范围是.12.分式方程=的解是.13.已知圆锥的底面半径为4cm,高为3cm,则这个圆锥的侧面积为cm2.(结果保留π)14.如图,平行四边形ABCD中,M,N分别为边BC,CD的中点,且∠MAN=∠ABC,则的值是.15.如图,已知平面直角坐标系中A点坐标为(0,4),以OA为一边在第一象限作平行四边形OABC,对角线AC、OB相交于点E,AB=2OA.若反比例函数y=的图象恰好经过点C和点E,则k的值为.16.如图,半径为2的⊙O分别与x轴,y轴交于A,D两点,⊙O上两个动点B,C,使∠BAC=60°恒成立,设△ABC的重心为G,则DG的最小值是.三、解答题(本题8小题,共80分.)17.(1)计算:2﹣1+2cos30°+(π﹣3.14)0﹣.(2)先化简,再求值:﹣,其中x=﹣2.18.延迟开学期间,学校为了全面分析学生的网课学习情况,进行了一次抽样调查(把学习情况分为三个层次,A:能主动完成老师布置的作业并合理安排课外时间自主学习;B:只完成老师布置的作业;C:不完成老师的作业),并将调查结果绘制成图1和图2的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将条形图补充完整;(3)求出图2中C所占的圆心角的度数;(4)如果学校开学后对A层次的学生奖励一次看电影,根据抽样调查结果,请你估计该校1500名学生中大约有多少名学生能获得奖励?19.如图,直线y=x+m与二次函数y=ax2+2x+c的图象交于点A(0,3),已知该二次函数图象的对称轴为直线x=1.(1)求m的值及二次函数解析式;(2)若直线y=x+m与二次函数y=ax2+2x+c的图象的另一个交点为B,求△OAB的面积;(3)根据函数图象回答:x为何值时该一次函数值大于二次函数值.20.如图,BC是坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是45°和60°.(1)求灯杆CD的高度;(2)求AB的长度(结果保留根号).21.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.22.在“前线医护人员”和全国人民的共同努力下,疫情得到了有效控制,宁波各大企业复工复产有序进行.为了实现员工“一站式”返岗,宁波某企业打算租赁5辆客车前往宁波东站接员工返岗.已知现有A、B两种客车,A型客车的载客量为45人/辆,每辆租金为400元;B型客车的载客量为30人/辆,每辆租金为280元.设租用A型客车为x辆,所需费用为y元.(1)求y关于x的函数解析式;(2)若该企业需要接的员工有205人,请求出租车费用最小值,并写出对应的租车方案.23.如图1,Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O 交BC于点D,与AC的另一个交点为E(点E在点P右侧),连结DE、BE,已知AB =3,BC=6.(1)求线段BE的长;(2)如图2,若BP平分∠ABC,求∠BDE的正切值;(3)是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;若不存在,请说明理由.24.定义:按螺旋式分别延长n边形的n条边至一点,若顺次连接这些点所得的图形与原多边形相似,则称它为原图形的螺旋相似图形.例如:如图1,分别延长多边形A1A2…A n 的边得A1′,A2′,…,A n′,若多边形A1′A2′…A n′与多边形A1A2…An相似,则多边形A1′A2′…A n′就是A1A2…A n的螺旋相似图形.(1)如图2,已知△ABC是等边三角形,作出△ABC的一个螺旋相似图形,简述作法,并给以证明.(2)如图3,已知矩形ABCD,请探索矩形ABCD是否存在螺旋相似图形,若存在,求出此时AB与BC的比值;若不存在,说明理由.(3)如图4,△ABC是等腰直角三角形,AC=BC=2,分别延长CA,AB,BC至A′,B′,C′,使△A′B′C′是△ABC的螺旋相似三角形.若AA′=kAC,请直接写出BB′,CC′的长(用含k的代数式表示)参考答案一.选择题(本大题共10小题,每小题4分,共40分)1.﹣5的相反数是()A.B.5C.﹣5D.﹣【分析】根据只有符号不同而绝对值相等两个数互为相反数,可得﹣5的相反数.解:﹣5的相反数是5,故选:B.2.下列运算中正确的是()A.2a2•a=3a3B.(ab2)2=ab4C.2ab2÷b2=2a D.(a+b)2=a2+b2【分析】根据整式的运算法则即可求出答案.解:(A)原式=2a3,故A错误.(B)原式=a2b4,故B错误.(D)原式=a2+2ab+b2,故D错误.故选:C.3.新冠病毒平均直径为0.0001毫米,但它以飞沫传播为主,而飞沫的直径是大于5微米的,所以N95或医用口罩能起到防护作用,用科学记数法表示0.0001毫米是()A.0.1×10﹣5毫米B.10﹣4毫米C.10﹣3毫米D.0.1×10﹣3毫米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0001毫米=10﹣4毫米;故选:B.4.一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A.B.C.D.【分析】根据数轴上的点表示的数,右边的总是大于左边的数.这个解集就是不等式x >﹣1和x≤2的解集的公共部分.解:数轴上﹣1<x≤2表示﹣1与2之间的部分,并且包含2,不包含﹣1,在数轴上可表示为:故选:A.5.某露天舞台如图所示,它的俯视图是()A.B.C.D.【分析】找到从上面看,所得到的图形即可.解:该几何体的俯视图为故选:D.6.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球()A.24个B.10个C.9个D.4个【分析】设口袋中红球有x个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x的方程,解之可得答案.解:设口袋中红球有x个,根据题意,得:=0.6,解得x=4,经检验:x=4是分式方程的解,所以估计口袋中大约有红球4个,故选:D.7.某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.5【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为=8.5;故选:D.8.如图,四边形ABCD中,点E,F分别在AB,BC上,将△BEF沿EF翻折得△GEF,若EG∥AD,FG∥DC,则以下结论一定成立的是()A.∠D=∠B B.∠D=180°﹣∠B C.∠D=∠C D.∠D=180°﹣∠C【分析】依据平行线的性质,即可得到∠BEG=∠A,∠BFG=∠C,再根据四边形内角和为360°,即可得到∠D的度数.解:∵GF∥CD,GE∥AD,∴∠BEG=∠A,∠BFG=∠C,由折叠可得:∠B=∠G,∴四边形BEGF中,∠B+∠G=2∠B=360°﹣∠BEG﹣∠BFG,∴四边形ABCD中,∠B+∠D=360°﹣∠A﹣∠C,∴2∠B=∠B+∠D,∴∠B=∠D,故选:A.9.如图,5×3的网格图中,每个小正方形的边长均为1,设经过图中格点A,C,B三点的圆弧与AE交于H,则弧AH的弧长为()A.πB.πC.πD.π【分析】连接EB,BH,AB,根据勾股定理得到BE=AB==,AE==,根据勾股定理的逆定理得到△ABE是等腰直角三角形,根据弧长公式即可得到结论.解:连接EB,BH,AB,∵BE=AB==,AE==,∴BE2+AB2=AE2,∴∠ABE=90°,∴△ABE是等腰直角三角形,∵∠ACB=90°,∴AB是圆的直径,∴∠AHB=90°,∴BH⊥AH,∴∠ABH=∠BAH=45°,∴弧AH所对的圆心角为90°,∴的长==.故选:B.10.如图,四个菱形①②③④的较小内角均与已知平行四边形ABCD的∠A相等,边长各不相同.将这四个菱形如图所示放入平行四边形中,未被四个菱形覆盖的部分用阴影表示.若已知两个阴影部分的周长的差,则不需测量就能知道周长的菱形为()A.①B.②C.③D.④【分析】设四个菱形①②③④的边长分别为a、b、c、d,设已知两个阴影部分的周长的差为l,分别用a,b,c,d表示出右上角和左下角阴影部分的周长,合并同类项,即可得出答案.解:设四个菱形①②③④的边长分别为a、b、c、d,设已知两个阴影部分的周长的差为l,由题意得:[(a+d﹣b﹣c)+b+b+(a+d﹣c)+c+(c﹣b)]﹣[(d﹣a)+(d﹣a)+a+a]=l,整理得:2a=l.∴若已知两个阴影部分的周长的差,则不需测量就能知道周长的菱形为①,故选:A.二、填空题(本题6小题,每小题5分,共30分)11.函数y=中,自变量x的取值范围是x≥2.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.12.分式方程=的解是x=﹣6.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:3x=2x﹣6,解得:x=﹣6,经检验x=﹣6是分式方程的解,故答案为:x=﹣6.13.已知圆锥的底面半径为4cm,高为3cm,则这个圆锥的侧面积为20πcm2.(结果保留π)【分析】利用勾股定理易求得圆锥的母线长,那么圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.解:∵圆锥的底面半径为4cm,高为3cm,∴母线长为5cm,∴圆锥的侧面积为2π×4×5÷2=20πcm2.14.如图,平行四边形ABCD中,M,N分别为边BC,CD的中点,且∠MAN=∠ABC,则的值是.【分析】延长AM与DC的延长线交于点E,先证明△ABM≌△ECM,得AM与AE的关系,AB与EN和ED的关系,再证明△EAN∽△EDA,由相似三角形比例线段便可得结论.解:延长AM与DC的延长线交于点E,∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∠B=∠D,∵∠B=∠MAN,∴∠ECM=∠B=∠MAN=∠D,∵M是BC的中点,N是CD的中点,∴BM=CM,CN=DN=,在△ABM和△ECM中,,∴△ABM≌△ECM(ASA),∴AB=CE,AM=EM,∴AE=2AM,EN=AB,ED=2AB,∵∠EAN=∠D,∠E=∠E,∴△EAN∽△EDA,∴,即EA2=ED•EN,∴,∴,∴.故答案为:.15.如图,已知平面直角坐标系中A点坐标为(0,4),以OA为一边在第一象限作平行四边形OABC,对角线AC、OB相交于点E,AB=2OA.若反比例函数y=的图象恰好经过点C和点E,则k的值为.【分析】过点C作CD⊥x轴于点D,由已知条件及平行四边形的性质可得BC=OA=4,OC=AB=8,设C(x,),则点E(,),点B(x,+4),分别按照点E在反比例函数图象上和作为线段BD的中点,用两种方式表示出点E的纵坐标,从而得到关于x和k的等式,解得x和k的关系,再在Rt△COD中,由勾股定理得关于k的方程,解得k的值,舍去负值,即可得出答案.解:如图,过点C作CD⊥x轴于点D,∵A点坐标为(0,4),AB=2OA.∴OA=4,AB=8,∵四边形OABC为平行四边形,∴BC=OA=4,OC=AB=8,点B、C、D共线,∵反比例函数y=的图象恰好经过点C和点E,∴设C(x,),则点E(,),点B(x,+4),∵E为平行四边形对角线的交点,∴E为OB中点,∴点E的坐标又可以表示为:(,+2),∴=+2,解得:=,∴x=,∴在Rt△COD中,由勾股定理得:+=64,解得k=.(负值舍去,因为反比例函数图象位于第一象限).故答案为:.16.如图,半径为2的⊙O分别与x轴,y轴交于A,D两点,⊙O上两个动点B,C,使∠BAC=60°恒成立,设△ABC的重心为G,则DG的最小值是﹣.【分析】连接AG并延长,交BC于点F,由△ABC的重心为G,可知F为BC的中点,再由垂径定理可知OF⊥BC,从而可求得OF的长;在AO上取点E,使AE=AO,连接GE,可判定△AGE∽△AFO,由相似三角形的性质列出比例式,求得GE的长,进而可得点E的坐标,利用勾股定理求出DE的长,根据G在以E为圆心,为半径的圆上运动,可知DG的最小值为DE的长减去,计算即可.解:连接AG并延长,交BC于点F,∵△ABC的重心为G,∴F为BC的中点,∴OF⊥BC,∵∠BAC=60°,∴∠BOF=60°,∴∠OBF=30°,∴OF=OB=1,∵△ABC的重心为G,∴AG=AF,在AO上取点E,使AE=AO,连接GE,∵==,∠FAO=∠GAE,∴△AGE∽△AFO,∴=,∴GE=.∴G在以E为圆心,为半径的圆上运动,∴E(,0),∴DE==,∴DG的最小值是﹣,故答案为:﹣.三、解答题(本题8小题,共80分.)17.(1)计算:2﹣1+2cos30°+(π﹣3.14)0﹣.(2)先化简,再求值:﹣,其中x=﹣2.【分析】(1)根据负整数指数幂的运算法则、特殊角的三角函数值、零指数幂的运算法则、二次根式的性质计算;(2)根据分式的加减混合运算法则把原式化简,代入计算得到答案.解:(1)2﹣1+2cos30°+(π﹣3.14)0﹣=+2×+1﹣2=++1﹣2=﹣;(2)﹣=﹣=x﹣=﹣=,当x=﹣2时,原式==﹣4.18.延迟开学期间,学校为了全面分析学生的网课学习情况,进行了一次抽样调查(把学习情况分为三个层次,A:能主动完成老师布置的作业并合理安排课外时间自主学习;B:只完成老师布置的作业;C:不完成老师的作业),并将调查结果绘制成图1和图2的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将条形图补充完整;(3)求出图2中C所占的圆心角的度数;(4)如果学校开学后对A层次的学生奖励一次看电影,根据抽样调查结果,请你估计该校1500名学生中大约有多少名学生能获得奖励?【分析】(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A的有50人,占调查学生的25%,即可求得总人数;(2)由(1)可知:C人数为:200﹣120﹣50=30人,将图①补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以求出:360°×(1﹣25%﹣60%)=54°;(4)从扇形统计图可知,A层次的学生数占得百分比为25%,再估计该市近1500名初中生中能获得奖励学生数就很容易了.解:(1)50÷25%=200(人)答:共调查了200名学生,故答案为:200;(2)C人数:200﹣120﹣50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1﹣25%﹣60%)=54°.(4)1500×25%=375(人).答:该校学生中大约有375名学生能获得奖励.19.如图,直线y=x+m与二次函数y=ax2+2x+c的图象交于点A(0,3),已知该二次函数图象的对称轴为直线x=1.(1)求m的值及二次函数解析式;(2)若直线y=x+m与二次函数y=ax2+2x+c的图象的另一个交点为B,求△OAB的面积;(3)根据函数图象回答:x为何值时该一次函数值大于二次函数值.【分析】(1)根据待定系数法即可求得m的值及二次函数解析式;(2)解析式联立组成方程组,解方程组求得B的坐标,然后根据三角形面积公式求得即可;(3)根据图象即可求得.解:(1)∵直线y=x+m经过点A(0,3),∴m=3,∴直线为y=x+3,∵二次函数y=ax2+2x+c的图象经过点A(0,3),且对称轴为直线x=1.∴,解得,∴二次函数解析式为y=﹣x2+2x+3;(2)解得或,∴B(1,4),∴△OAB的面积==;(3)由图象可知:当x<0或x>1时,该一次函数值大于二次函数值.20.如图,BC是坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是45°和60°.(1)求灯杆CD的高度;(2)求AB的长度(结果保留根号).【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题.解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5,∴DH=15,在Rt△ADH中,AH==15,∴AB=AH﹣BH=15﹣10=5(米).答:AB的长度约为5米.21.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF==4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.22.在“前线医护人员”和全国人民的共同努力下,疫情得到了有效控制,宁波各大企业复工复产有序进行.为了实现员工“一站式”返岗,宁波某企业打算租赁5辆客车前往宁波东站接员工返岗.已知现有A、B两种客车,A型客车的载客量为45人/辆,每辆租金为400元;B型客车的载客量为30人/辆,每辆租金为280元.设租用A型客车为x辆,所需费用为y元.(1)求y关于x的函数解析式;(2)若该企业需要接的员工有205人,请求出租车费用最小值,并写出对应的租车方案.【分析】(1)根据总费用=A型看成的费用+B型客车的费用,即可解决问题.(2)列出不等式求出x的范围,再根据x是整数,求出x的值,根据一次函数的性质即可解决问题.解:(1)设租用A型客车为x辆,则租用B型客车为(5﹣x)辆,由题意得:y=400x+280(5﹣x)=120x+1400.(2)由题意:45x+30(5﹣x)≥205,解得x≥,而费用y=120x+1400,∵x为整数,x取最小,费用y最低,∴x=4,∴方案为租用A型客车4辆,租用B型客车1辆.23.如图1,Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点为E(点E在点P右侧),连结DE、BE,已知AB =3,BC=6.(1)求线段BE的长;(2)如图2,若BP平分∠ABC,求∠BDE的正切值;(3)是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;若不存在,请说明理由.【分析】(1)求出AC=3,由三角形ABC的面积可求出BE的长;(2)连接DP,证明△CPD∽△CAB,得出=2,设DP=BD=x,则CD=2x,由CB=3x=6,得出x=2,根据tan∠BDE=tan∠BPE可得出答案;(3)分三种情况,求出CP=CD,求出CD,可得出答案.解:(1)∵∠ABC=90°,AB=3,BC=6,∴AC===3,∵BP为⊙O的直径,∴∠BEP=90°,∴BE⊥AC,∵S△ABC=×AB×AC,∴BE=;(2)∵BP平分∠ABC,∴∠DBP=∠ABC=45°,连接DP,如图1,∵BP为⊙O的直径,∴∠DBP=∠DPB=45°,∴可设DP=BD=x,∵∠CDP=∠ABC=90°∴PD∥AB,∴△CPD∽△CAB,∴=2,∴CD=2x,∴CB=3x=6,∴x=2,∴DP=BD=2,CD=4,∴CP===2,∴CE===,∴tan∠BDE=tan∠BPE===3.(3)解:存在这样的点P.由△DCP∽△BCA,得,,∴CP=CD,若△BDE是等腰三角形,可分三种情况:①当BD=BE时,BD=BE=,∴CD=BC﹣BD=6﹣,∴CP==3﹣3.②当BD=DE时,此时点D是Rt△CBE斜边的中点,∴CD=BC=3,∴CP=;③当DE=BE时,作EH⊥BC于点H,则H是BD的中点,∵∠ABC=∠EHC=90°,∴EH∥AB,∴,又∵AE=AC﹣CE=3﹣=,∴BH=DH==,∴CD=6﹣=,∴CP=.综上所述,△BDE是等腰三角形,符合条件的CP的长为3﹣3或或.24.定义:按螺旋式分别延长n边形的n条边至一点,若顺次连接这些点所得的图形与原多边形相似,则称它为原图形的螺旋相似图形.例如:如图1,分别延长多边形A1A2…A n 的边得A1′,A2′,…,A n′,若多边形A1′A2′…A n′与多边形A1A2…An相似,则多边形A1′A2′…A n′就是A1A2…A n的螺旋相似图形.(1)如图2,已知△ABC是等边三角形,作出△ABC的一个螺旋相似图形,简述作法,并给以证明.(2)如图3,已知矩形ABCD,请探索矩形ABCD是否存在螺旋相似图形,若存在,求出此时AB与BC的比值;若不存在,说明理由.(3)如图4,△ABC是等腰直角三角形,AC=BC=2,分别延长CA,AB,BC至A′,B′,C′,使△A′B′C′是△ABC的螺旋相似三角形.若AA′=kAC,请直接写出BB′,CC′的长(用含k的代数式表示)【分析】(1)如图2中,延长AB到E,延长BC到F,延长CA到D,使得BE=CF=AD,连接EF,DF,DE.则△DEF是△ABC的一个螺旋相似图形,证明△DEF是等边三角形即可解决问题.(2)如图3中,假设存在.四边形EFGH是矩形ABCD的螺旋相似图形,设AB=CD =a,BC=AD=b,BE=DG=x,CF=AH=y.分两种情形,利用相似三角形的性质以及相似矩形的性质,构建关系式证明a=b即可解决问题.(3)如图4中,作B′T⊥CB交CB的延长线于T.设TB=TB′=m,证明△A′CC′≌△A′TB′(ASA),推出A′C=TC′,CC′=TB′=BT,构建关系式推出m=k即可解决问题.解:(1)如图2中,延长AB到E,延长BC到F,延长CA到D,使得BE=CF=AD,连接EF,DF,DE.则△DEF是△ABC的一个螺旋相似图形.理由:∵△ABC是等边三角形,∴AB=BC=AC,∠CAB=∠ABC=∠ACB,∴∠DAE=∠FCD=∠EBF=120°,∵BE=CF=AD,∴CD=AE=BF,∴△FCD≌△DAE≌△EBF(SAS),∴DF=DE=EF,∴△DEF是等边三角形,∴△DEF∽△ABC,∴△DEF是△ABC的一个螺旋相似图形.(2)如图3中,假设存在.四边形EFGH是矩形ABCD的螺旋相似图形,设AB=CD =a,BC=AD=b,BE=DG=x,CF=AH=y.由题意:△BEF∽△AHE,∴==,∴=,当==时,==,∴x=•y,ax+x2=by+y2,∴by+•y2=by+y2,∴a2=b2,∴a=b,即AB:BC=1.当==时.==,∴x=•y,ax+x2=by+y2,∴•y+•y2=by+y2,∴•y(1+)=0,∵y≠0,1+≠0,∴a2=b2,∴a=b,即AB:BC=1,综上所述,AB:BC=1.(3)如图4中,作B′T⊥CB交CB的延长线于T.∵AC=BC=2,∠ACB=90°,∴∠ABC=∠CAB=45°,∴∠TBB′=∠ABC=45°,∴∠TB′B=∠TBB′=45°,∴TB=TB′,设TB=TB′=m,∵△A′B′C′是△ABC的螺旋相似三角形,∴A′C′=B′C′,∠A′C′B′=90°,∵∠A′C′C+∠B′C′=90°,∠A′CC+∠C′A′C=90°,∴∠C′A′C=∠B′C′T,∵∠A′CC′=∠T=90°,∴△A′CC′≌△A′TB′(ASA),∴A′C=TC′,CC′=TB′=BT,∴2+2k=2+2m,∴m=k,∴BB′=k,CC′=k.。