河南省中考数学试题(原卷版)精编版
中考河南数学试题及答案

中考河南数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是质数?A. 4B. 9C. 13D. 16答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 4答案:A4. 一个圆的半径是5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 以下哪个表达式的结果不是整数?A. 3 + 2 = 5B. 4 × 3 = 12C. 5 - 2 = 3D. 6 ÷ 2 = 3答案:C二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______或______。
答案:正数;07. 如果一个数的立方等于它本身,这个数是______、______或______。
答案:1;-1;08. 一个长方体的长、宽、高分别是2、3、4,那么这个长方体的体积是______。
答案:249. 一个数的倒数是1/5,这个数是______。
答案:510. 一个圆的直径是14,那么这个圆的周长是______π。
答案:14三、简答题(每题10分,共30分)11. 解释什么是有理数,并给出两个有理数的例子。
答案:有理数是可以表示为两个整数的比,其中分母不为零的数。
例如,1/2和3/4都是有理数。
12. 说明如何计算一个长方体的表面积。
答案:长方体的表面积可以通过以下公式计算:2lw + 2lh + 2wh,其中l是长,w是宽,h是高。
13. 描述如何使用勾股定理解决直角三角形的问题。
答案:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。
如果已知两条直角边的长度,可以通过将它们各自平方后相加,然后取平方根来找到斜边的长度。
四、计算题(每题15分,共30分)14. 计算下列表达式的值:(3x - 2y)(3x + 2y)。
河南初三数学试题及答案

河南初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7x - 1B. 3x - 2 = 2x + 3C. 4x + 5 = 5x - 4D. 6x - 7 = 7x - 6答案:C2. 一个数的平方根是它本身的数是:A. 0B. 1C. -1D. 以上都是答案:A3. 以下哪个是二次方程?A. 2x + 3 = 0B. x^2 - 4x + 4 = 0C. 3x - 2 = 0D. x^3 + 2x^2 - 5 = 0答案:B4. 以下哪个是正比例函数?A. y = 2x + 3B. y = 5xC. y = x^2D. y = 1/x答案:B5. 以下哪个是锐角三角形?A. 三角形内角和为180°B. 三角形的三个内角都小于90°C. 三角形的三个内角都大于90°D. 三角形的三个内角都等于90°答案:B6. 以下哪个是等腰三角形?A. 三角形的两边相等B. 三角形的三个边相等C. 三角形的三个角相等D. 三角形的三个内角相等答案:A7. 以下哪个是相似三角形?A. 三角形的对应角相等B. 三角形的对应边成比例C. 三角形的对应角和对应边都相等D. 三角形的对应角和对应边都成比例答案:D8. 以下哪个是圆的性质?A. 圆心到圆上任意一点的距离相等B. 圆上任意两点的距离相等C. 圆的周长是直径的两倍D. 圆的面积是半径的平方答案:A9. 以下哪个是勾股定理?A. a^2 + b^2 = c^2B. a^2 - b^2 = c^2C. a^2 * b^2 = c^2D. a^2 / b^2 = c^2答案:A10. 以下哪个是三角函数?A. sin(θ) = 对边/斜边B. cos(θ) = 邻边/斜边C. tan(θ) = 对边/邻边D. 以上都是答案:D二、填空题(每题4分,共20分)11. 已知一个等差数列的首项为3,公差为2,求第5项的值:______。
河南中考数学试题及答案

河南中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -1答案:C2. 如果一个角的度数是30°,那么它的余角是多少度?A. 30°B. 45°C. 60°D. 90°答案:C3. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B4. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A5. 一个直角三角形的两条直角边分别是3和4,斜边是多少?A. 5B. 6C. 7D. 8答案:A6. 下列哪个是二次根式?A. √3B. √(-1)C. √32D. √(1/2)答案:A7. 一个数列的前三项是2, 4, 6,这个数列是?A. 等差数列B. 等比数列C. 几何数列D. 既不是等差数列也不是等比数列答案:A8. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少立方米?A. 24B. 12C. 8D. 6答案:A9. 一个分数的分子和分母都除以2,这个分数的大小会?A. 变大B. 变小C. 不变D. 无法确定答案:C10. 一个圆的周长是2π,这个圆的直径是多少?A. 1B. 2C. 4D. 无法确定答案:B二、填空题(每题4分,共20分)11. 一个数的相反数是-5,这个数是______。
答案:512. 如果一个三角形的内角和是180°,那么一个四边形的内角和是多少度?答案:360°13. 一个数的绝对值是5,这个数可以是______或______。
答案:5 或 -514. 一个分数的分母是10,如果分子增加2,这个分数就变成1,原来的分数是______。
答案:8/1015. 一个长方体的底面积是12平方米,高是4米,它的体积是______立方米。
答案:48三、解答题(每题10分,共50分)16. 解方程:2x - 5 = 7解:2x = 12x = 617. 一个直角三角形的两条直角边分别是6厘米和8厘米,求斜边的长度。
2021年河南省中考数学试卷原卷版答案和解析

2021年河南省中考数学试卷原卷版答案和解析1.【答案】A【解析】解:−2的绝对值是2,即|−2|=2.故选:A.根据负数的绝对值等于它的相反数解答.本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.【答案】B【解析】解:2.94亿=294000000=2.94×108,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是确定a的值以及n的值.3.【答案】A【解析】解:该几何体的主视图有三层,最上面有一个正方形,中间一层有两个正方形,最下面有三个正方形,且左侧是对齐的,故选:A.将图形分成三层,第一层主视图有一个正方形,第二层有两个正方形,第三层有三个正方形,且左边是对齐的.本题主要考查三视图的定义,在理解三视图的基础上,还要有较强的空间想象能力.4.【答案】C【解析】解:A.(−a)2=a2,故本选项不符合题意;B.2a2−a2=a2,故本选项不符合题意;C.a2⋅a=a3,故本选项符合题意;D.(a−1)2=a2−2a+1,故本选项符合题意;故选:C.A.根据幂的乘方运算法则判断;B.根据合并同类项法则判断;C.根据同底数幂的乘法法则判断;D.根据完全平方公式判断.本题考查了合并同类项,完全平方公式,合并同类项以及幂的乘方,掌握相关公式与运算法则是解答本题的关键.5.【答案】D【解析】解:由图得∠2的补角和∠1是同位角,∵∠1=60°且a//b,∴∠1的同位角也是60°,∠2=180°−60°=120°,故选:D.先根据图得出∠2的补角,再由a//b得出结论即可.本题主要考查平行线的性质,平行线的性质与判定是中考必考内容,平行线的三个性质一定要牢记.6.【答案】B【解析】解:A.菱形的四条边相等,正确,不符合题意,B.菱形的对角线互相垂直且平分,对角线不一定相等,不正确,符合题意,C.菱形的对角线互相垂直且平分,正确,不符合题意,D.菱形是轴对称图形,正确,不符合题意,故选:B.根据菱形的性质逐一推理分析即可选出正确答案.本题考查菱形的性质,熟练掌握菱形的基本性质并能正确分析推理是解题的关键.7.【答案】D【解析】解:∵关于x的方程x2−2x+m=0没有实数根,∴△=(−2)2−4×1×m=4−4m<0,解得:m>1,∴m只能为√3,故选:D.根据根的判别式和已知条件得出△=(−2)2−4×1×m=4−4m<0,求出不等式的解集,再得出答案即可.本题考查了根的判别式和解一元一次不等式,注意:已知一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),①当△=b2−4ac>0时,方程有两个不相等的实数根,②当△=b2−4ac=0时,方程有两个相等的实数根,③当△=b2−4ac<0时,方程没有实数根.8.【答案】A【解析】解:把4张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,∴两张卡片正面图案恰好是“天问”和“九章”的概率为212=16,故选:A.画树状图,共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,再由概率公式求解即可.此题考查的是列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.9.【答案】B【解析】解:延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,如图,∵A(1,2),∴AD=1,OD=2,∴OA=√AD2+OD2=√12+22=√5.由题意:△OA′D′≌△OAD,∴A′D′=AD=1,OA′=OA=√5,OD′=OD=2,∠A′D′O=∠ADO=90°,∠A′OD′=∠DOD′.则OD′⊥A′E,OA平分∠A′OE,∴△A′OE为等腰三角形.∴OE=OA′=√5,ED′=A′D′=1.∵EO⊥OC,OD′⊥EC,∴△OED′∽△CEO.∴ED′OD′=EOOC.∴12=√5OC.∴OC=2√5.∴C(2√5,0).故选:B.延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,利用点A的坐标可求得线段AD,OD,OA的长,由题意:△OA′D′≌△OAD,可得对应部分相等;利用OD′⊥A′E,OA平分∠A′OE,可得△A′OE为等腰三角形,可得OE= OA′=√5,ED′=A′D′=1;利用△OED′∽△CEO,得到比例式可求线段OC,则点C坐标可得.本题主要考查了旋转的性质,平行四边形的性质,坐标与图形的性质,三角形相似的判定与性质,利用点的坐标表示出相应线段的长度和利用线段的长度表示相应点的坐标是解题的关键.10.【答案】C【解析】解:由函数图象知:当x=0,即P在B点时,BA−BE=1.在△PAE中,∵三角形任意两边之差小于第三边,∴PA−PE<AE,当且仅当P与E重合时有:PA一PE=AE.∴y的最大值为AE,∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,设BE的长度为t,则BA=t+1,∴(t+1)2+t2=25,即:t2+t−12=0,∴(t+4)(t−3)=0,由于t>0,∴t+4>0,∴t−3=0,∴t=3.∴BC=2BE=2t=2×3=6.故选:C.当x=0,即P在B点时,BA−BE=1;在△PAE中,根据三角形任意两边之差小于第三边得:PA−PE<AE,当且仅当P与E重合时有:PA一PE=AE,得y的最大值为AE=5;在Rt△ABE中,由勾股定理求出BE的长,再根据BC=2BE 求出BC的长.本题考查了动点问题的函数图象,根据勾股定理求出BE的长是解题的关键.11.【答案】x≠1【解析】解:依题意得:x−1≠0,解得x≠1,故答案为:x≠1.分式有意义时,分母x−1≠0,据此求得x的取值范围.本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.12.【答案】y=x(答案不唯一)【解析】解:依题意,一次函数的图象经过原点,函数解析式的常数项为0,如y=x(答案不唯一).故答案为:y=x(答案不唯一).图象经过原点,要求解析式中,当x=0时,y=0,只要一次函数解析式常数项为0即可.本题考查了正比例函数的性质,正比例函数的图象经过原点.13.【答案】甲【解析】解:从图中折线可知,乙的起伏大,甲的起伏小,所以乙的方差大于甲的方差,因为方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,所以产品更符合规格要求的厂家是甲.故答案为:甲.由于平均质量相同,根据图中所示两组数据波动大小可得两组数据的方差,波动越小,方差越小越稳定.本题考查了平均数与方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.【答案】5π4【解析】解:如图,圆心为O,连接OA,OB,OC,OD.∵OA=OB=OD=5,∠BOC=2∠BAC=45°,∴BC⏜的长=45π×5180=5π4.故答案为:5π4.如图,圆心为O,连接OA,OB,OC,OD.利用弧长公式求解即可.本题考查弧长公式,解题的关键是正确寻找圆心O的位置,属于中考常考题型.15.【答案】12或2−√3【解析】解:①点D′恰好落在直角三角形纸片的AB边上时,设A′C交AB边于点E,如图,由题意:△ADC≌△A′DC≌△A′D′C,A′C垂直平分线段DD′.则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠ACB=90°,∠B=30°,AC=1,∴BC=AC⋅tanA=1×tan60°=√3.∵S△ABC=12AC⋅BC=12AB⋅CE,∴CE=√32.∴A′E=A′C−CE=1−√32.在Rt△A′D′E中,∵cos∠D′A′E=A′EA′D′,∴A′EA′D′=12,∴A′D′=2A′E=2−√3.②点D′恰好落在直角三角形纸片的BC边上时,如图,由题意:△ADC≌△A′DC≌△A′D′C,∠ACD=∠A′CD=∠A′CD′=13∠ACB=30°;则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠D′A′C=60°,∠A′CD′=30°,∴∠A′D′C=90°,∴A′D′=12A′C=12×1=12.综上,线段A′D′的长为:12或2−√3.故答案为:12或2−√3.分两种情形解答:①点D′恰好落在直角三角形纸片的AB边上时,由题意:△ADC≌△A′DC≌△A′D′C,则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1;A′C垂直平分线段DD′;利用S△ABC=12AC⋅BC=12AB⋅CE,可求得CE,则A′E=A′C−CE,解直角三角形A′D′E可求线段A′D′;②点D′恰好落在直角三角形纸片的BC 边上时,由题意:△ADC≌△A′DC≌△A′D′C,则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1,∠ACD=∠A′CD=∠A′CD′=13∠ACB=30°;在Rt△A′D′C中,利用30°所对的直角边等于斜边的一半可得结论.本题主要考查了翻折问题,含30°角的直角三角形,直角三角形的边角关系,特殊角的三角函数值,全等三角形的性质.翻折属于全等变换,对应部分相等,这是解题的关键,当点D′恰好落在直角三角形纸片的边上时,要注意分类讨论.16.【答案】解:(1)原式=13−13+1=1;(2)原式=x−1x ⋅x2 2(x−1)=x2.【解析】(1)直接利用负整数指数幂的性质以及算术平方根、零指数幂的性质分别化简得出答案;(2)将括号里面通分运算,再利用分式的乘除运算法则化简得出答案.此题主要考查了分式的混合运算以及实数运算,正确掌握分式的混合运算法则是解题关键.17.【答案】③17%【解析】解:(1)由统计图可知,抽取的这500名学生平均每天睡眠时间的中位数为第250个和第251个数据的平均数,故落在第③组;睡眠达到9小时的学生人数占被调查人数的百分比为:85500×100%=17%,故答案为:③,17%.(2)答案不唯一,言之有理即可.例如:该校大部分学生睡眠时间没有达到通知要求;建议①:该校各学科授课老师精简家庭作业内容,师生一起提高在校学习效率;建议②:建议学生减少参加校外培训班,校外辅导机构严禁布置课后作业.(1)由中位数的定义即可得出结论;(2)求出每天睡眠时间达到9小时的学生人数,计算即可.本题考查的是频数分布直方图和扇形统计图的知识,读懂频数分布直方图和利用统计图获取正确是解题的关键.18.【答案】解:(1)∵反比例函数y=k的图象经过点A(1,2),x∴2=k,1∴k=2,∴反比例函数的解析式为y=2;x(2)∵小正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,∴设B点的坐标为(m,m),∵反比例函数y=2的图象经过B点,x∴m=2,m∴m2=2,∴小正方形的面积为4m2=8,∵大正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,且A(1,2),∴大正方形在第一象限的顶点坐标为(2,2),∴大正方形的面积为4×22=16,∴图中阴影部分的面积=大正方形的面积为−小正方形的面积=16−8=8.【解析】(1)根据待定系数法求出k即可得到反比例函数的解析式;(2)先根据反比例函数系数k的几何意义求出小正方形的面积为4m2=8,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积为4×22=16,根据图中阴影部分的面积=大正方形的面积−小正方形的面积即可求出结果.本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数k的几何意义,正方形的性质,熟练掌握反比例函数系数k的几何意义是解决问题的关键.19.【答案】解:根据题意可知:∠DAB=45°,∴BD=AD,在Rt△ADC中,DC=BD−BC=(AD−4)m,∠DAC=37.5°,∵tan∠DAC=DC,AD≈0.77,∴tan37.5°=AD−4AD解得AD≈17.4m,答:佛像的高度约为17.4m.=tan37.5°≈0.77,列出方程即可解决问题.【解析】根据tan∠DAC=DCAD本题考查解直角三角形的应用−仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.20.【答案】(1)证明:如图1,连接OP,延长BO与圆交于点C,则OP=OB=OC,∵AP与⨀O相切于点P,∴∠APO=90°,∴∠PAO+∠AOP=90°,∵MO⊥CN,∴∠AOP+∠POC═90°,∴∠PAO=∠POC,∵OP=OB,∴∠OPB=∠PBO,∴∠POC═∠OPB=∠PBO═2∠PBO,∴∠AOP=2∠PBO,(2)解:如图2所示,连接OP,延长BO与圆交于点C,连接PC,过点P作PD⊥OC于点D,则有:AO=√AP2+OP2=253,由(1)可知∠POC=∠PAO,∴Rt△POD~Rt△OAP,∴PDPO =POOA=ODAP,即PD5=5253=OD203,解得PD=3,OD=4,∴CD═OC−OD=1,在Rt△PDC中,PC=√PD2+CD2=√10,∵CB为圆的直径,∴∠BPC=90°,∴BP=√BC2−PC2=√100−10=3√10,故PC长为3√10.【解析】(1)连接切点与圆心,根据角之间的互余关系及等量代换代换求解即可.(2)作出相关辅助线,构造相似三角形Rt△POD与Rt△OAP,利用相似三角形的性质求得PD=3,OD=4,最后根据直角三角形的勾股定理求解即可.本题考查切线的性质及圆周角定理,解此类型题目的关键是作出适当的辅助线,比如连接切点与圆心、将直径的两端与圆上某一点连接、过圆上某点作垂直于半径的线段等,根据辅助线构造直角三角形及相似三角形,再根据相关性质进行求解.21.【答案】解:(1)设A款玩偶购进x个,B款玩偶购进(30−x)个,由题意,得40x+30(30−x)=1100,解得:x=20.30−20=10(个).答:A款玩偶购进20个,B款玩偶购进10个;(2)设A款玩偶购进a个,B款玩偶购进(30−a)个,获利y元,由题意,得y=(56−40)a+(45−30)(30−a)=a+450.∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.(30−a),∴a≤12∴a≤10,∵y=a+450.∴k=1>0,∴y随a的增大而增大.∴a=10时,y最大=460元.∴B款玩偶为:30−10=20(个).答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;×100%≈42.7%,(3)第一次的利润率=20×(56−40)+10×(45−30)1100×100%≈46%,第一次的利润率=46010×40+20×30∵46%>42.7%,∴对于小李来说第二次的进货方案更合算.【解析】(1)设A款玩偶购进x个,B款玩偶购进(30−x)个,由用1100元购进了A,B两款玩偶建立方程求出其解即可;(2)设A款玩偶购进a个,B款玩偶购进(30−a)个,获利y元,根据题意可以得到利润与A款玩偶数量的函数关系,然后根据A款玩偶进货数量不得超过B款玩偶进货数量的一半,可以求得A款玩偶数量的取值范围,再根据一次函数的性质,即可求得应如何设计进货方案才能获得最大利润,最大利润元;(3)分别求出两次进货的利润率,比较即可得出结论.本题考查了列一元一次方程解实际问题的运用,一次函数的的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.22.【答案】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=−2,将点A的坐标代入直线表达式得:0=−2+b,解得b=2;故m=−2,b=2;(2)由(1)得,直线和抛物线的表达式为:y=−x+2,y=x2−2x,联立上述两个函数表达式并解得{x=−1 y=3,即点B的坐标为(−1,3),从图象看,不等式x2+mx>−x+b的解集为x<−1或x>2;(3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,∵MN的距离为3,而AB的距离为3,故此时只有一个交点,即−1≤x M<2;当点M在点B的左侧时,线段MN与抛物线没有公共点;当点M在点A的右侧时,当x M=3时,抛物线和MN交于抛物线的顶点(1,−1),即x M=3时,线段MN与抛物线只有一个公共点,综上,−1≤x M<2或x M=3.【解析】(1)用待定系数法即可求解;(2)求出点B的坐标为(−1,3),再观察函数图象即可求解;(3)分类求解确定MN的位置,进而求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,其中(3),分类求解确定MN的位置是解题的关键.23.【答案】⑤【解析】解:(1)如图1,由作图得,OC=OD,OE=OF,PG垂直平分CE,PH垂直平分DF,∴∠PGO=∠PHO=90°,∵OE−OC=OF−OD,∴CE=DF,∵CG=12CE,DH=12DF,∴CG=DH,∴OC+DG=OD+DH,∴OG=OH,∵OP=OP,∴Rt△PGO≌Rt△PHO(HL),故答案为:⑤.(2)射线OP是∠AOB的平分线,理由如下:如图2,∵OC=OD,∠DOE=∠COF,OE=OF,∴△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠CPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,∠PEO=∠PFO,PE=PF,∴△OPE≌△OPF(SAS),∴∠POE=∠POF,即∠POA=∠POB,∴OP是∠AOB的平分线.(3)如图3,OC<OE,连接OP,作PM⊥OA,则∠PMO=∠PME=90°,由(2)得,OP平分∠AOB,∠PEC=∠PFD,∴∠PEC+30°=∠PFD+30°,∵∠AOB=60°,∴∠POE=∠POF=12∠AOB=30°,∵∠CPE=30°,∴∠OCP=∠PEC+∠CPE=∠PEC+30°,∠OPC=∠PFD+∠POF=∠PFD+30°,∴∠OCP=∠OPC=12(180°−∠POE)=12×(180°−30°)=75°,∴OC=OP,∠OPE=75°+30°=105°,∴∠OPM=90°−30°=60°,∴∠MPE=105°−60°=45°,∴∠MEP=90°−45°=45°,∴MP=ME,设MP=ME=m,则OM=MP⋅tan60°=√3m,由OE=√3+1,得m+√3m=√3+1,解得m=1,∴MP=ME=1,∴OP=2MP=2,∴OC=OP=2;如图4,OC>OE,连接OP,作PM⊥OA,则∠PMO=∠PMC=90°,同理可得,∠POE=∠POF=12∠AOB=30°,∠OEP=∠OPE=75°,∠OPM=60°,∠MPC=∠MCP=45°,∴OE=OP=√3+1,∵MC=MP=12OP=12OE=√3+12,∴OM=MP⋅tan60°=√3+12×√3=3+√32,∴OC=OM+MC=3+√32+√3+12=2+√3.综上所述,OC的长为2或2+√3.(1)由作图得,∠PGO=∠PHO=90°,OG=OH,OP=OP,可知Rt△PGO≌Rt△PHO的依据HL;(2)由作图得,OC=OC,OE=OF,再根据对顶角相等、公共角等条件可依次证明△DOE≌△COF、△CPE≌△DPF、△OPE≌△OPF,从而得到∠POE=∠POF,所以OP是∠AOB的平分线;(3)连接OP,由已知条件可证明∠OPC=∠OCP=75°,从而得OP=OC,再过点P作OA的垂线构造含有特殊角的直角三角形,利用其三边的特殊关系求出OC的长.此题重点考查角平分线的作法、全等三角形的判定与性质、特殊角的三角函数值、解直角三角形、二次根式的化简等知识与方法,根据三角形全等的判定定理证明三角形全等是解题的关键,解第(3)题需作辅助线构造含特殊角的直角三角形,且需要分类讨论,求出所有符合条件的值.。
2024年河南省中考数学试题(原卷版)

2024年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1. 如图,数轴上点P 表示的数是( )A. 1−B. 0C. 1D. 22. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示( ) A. 8578410×B. 105.78410×C. 115.78410×D. 120.578410×3. 如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B.50°C. 40°D. 30°4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A. B.C. D.为5. 下列不等式中,与1x −>组成的不等式组无解的是( ) A. 2x >B. 0x <C. <2x −D. 3x >−6. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A.12B. 1C.43D. 27. 计算3···a a a a个的结果是( )A 5aB. 6aC. 3a a +D. 3a a8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A.19B.16C.15D.139. 如图,O是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A.8π3B. 4πC.16π3D. 16π.10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A ,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项:_______.12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班宣传板报进行评分,得分情况如图,则得分的众数为___________分.13. 若关于x 的方程2102x x c −+=有两个相等的实数根,则c 的值为___________. 14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.15. 如图,在Rt ABC △中,90ACB ∠=°,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.的的三、解答题(本大题共8个小题,共75分)16. (1(01−;(2)化简:231124a a a + +÷−−. 17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表 队员 平均每场得分 平均每场篮板 平均每场失误 甲26.5 82 乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1×−,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象. (3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E D C 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30°,在点P 处看塑像顶部点A 的仰角APE ∠为60°,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m1.73≈). 21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A ,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A ,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品?22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示). (2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由. 23. 综合与实践在学习特殊四边形过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.的(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号). (2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质. 如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线. ①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示). (3)拓展应用如图3,在Rt ABC △中,90B ∠=︒,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.。
河南中考数学试题及答案

河南中考数学试题及答案一、选择题1. 设函数 $f(x)=2x^2-3x+1$,则 $f(-3)+2f(0)-3f(1)=$()A. -3B. 5C. 9D. 13【答案】B. 52. 在平面直角坐标系中,正方形 $ABCD$ 的边长为 2,点 $E$ 在$AB$ 上,点 $F$ 在 $BC$ 上,且 $BE=CF=1$。
连接 $AC$ 并延长交$BE$ 于点 $G$。
则 $\angle AGC$ 的度数是()A. 60B. 90C. 120D. 135【答案】A. 60二、填空题1. 某薄片中,甲、乙两段线段的长度之比为 $3: 5$,甲的长度比乙的长度少 4 厘米,甲、乙两段线段的长度分别是\(\underline{~~~~~~~~}\) 厘米。
【答案】甲段线段长度:\(3k\),乙段线段长度:\(5k\),\(5k - 3k = 4\),解得 \(k = 2\),甲段线段长度为 \(3 \times 2 = 6\) 厘米,乙段线段长度为 \(5 \times 2 = 10\) 厘米。
2. 对于任意实数 $x$,若 $x-2 < 1$,则 $x$ 取值范围是()。
【答案】$x-2 < 1$ 可变形为 $x < 3$,所以 $x$ 的取值范围为 $(-\infty, 3)$。
三、解答题1. 若点 $P(x, y)$ 满足 $2x^2+y^2=3$,求 $y$ 的最小值。
【解答】对于任意实数 $a$,有 $a^2 \geq 0$,所以 $2a^2 \geq 0$。
因此,对于任意实数 $x$ 和 $y$,有 $2x^2 \geq 0$ 和 $y^2 \geq 0$。
当 $2x^2=0$ 且 $y^2=0$ 时,$x=0$ 且 $y$ 可以为 0。
此时,点 $P(0, 0)$满足 $2x^2+y^2=3$。
因此,$y$ 的最小值为 0。
2. 已知等差数列 $\{a_n\}$ 的公差为 $d$,前 $n$ 项和为 $S_n$。
河南省中考数学试卷(有答案)

河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC 于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B 所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE(结为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC 于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC 于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=2.【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,==π.∴S阴【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B 所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC 于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m ﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,。
2022年河南省中招考试数学试题及答案

相切于点D,取值范畴是( ).中华人民共和国中东部大某些地区持续浮现雾霾天气,某市记者为了理解、为顶点四边形是直角梯形.需对原水库大坝进行混凝土培厚加品牌和3个B品牌计算器共需重叠放置,其中∠C=90°,∠B=∠E=30°数量关系是__________;AC.若AB =4,AC =6,则BD长是( )(B) 9 (C)10 (D)11Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点延长线上一点,过点P作⊙O切线PA、PB,切点分A3.据记录,国内高新产品出口总额达40570亿元,将数据40570亿用科学记数法表达为( )A.4.0570×109 B. 0.40570×1010 C. 40.570×1011 D. 4.0570×10124.如图,直线a,b 被直线c,d 所截,若∠1=∠2,∠3=1250,则∠4度数为( )A.550B.600 C .700 D.7505.不等式组解集在数轴上表达为( )x 503x 1+≥⎧⎨-⎩>GURUILINDCBAO 2-5O 22O -5-5O 26.小王参加某公司招聘测试,她笔试,面试,技能操作得分分别为85分,80分,90分,若依次按照2:3:5比例拟定成绩,则小王成绩是( )A.255分 B.84分 C.84.5分 D.86分7.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 平分线AG,交BC 于点E,若BF=6,AB=5,则AE 长为( ) A.4 B.6 C.8 D.108.在平面直角坐标系中,半径均为1个单位长度半圆O 1,O 2,O 3…构成一条平滑曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个2π单位长度,则秒时,点P 坐标是( )A.(,0) B.(,-1) C.(,1) D.(,0)PO 3O 2O 1Oy x二、填空题(每小题3分,共21分)9.计算:(-3)0+3-1= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9:162018年河南省中考数学试卷(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分)1. 25-的相反数是( )A .25-B .25C .52-D .522. 今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元.数据“214.7亿”用科学记数法表示为( ) A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10113. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( ) A .厉B .害C .了D .我4. 下列运算正确的是( )A .235()x x -=-B .235x x x +=C .347x x x ⋅=D .3321x x -=5. 河南省游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( ) A .中位数是12.7% B .众数是15.3% C .平均数是15.98%D .方差是06. 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A .54573y x y x =+⎧⎨=+⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=-⎩D .54573y x y x =-⎧⎨=-⎩7. 下列一元二次方程中,有两个不相等实数根的是( )国我的了害厉A .2690x x ++=B .2x x =C .232x x +=D .2(1)10x -+=8. 现有4张卡片,其中3张卡片正面上的图案是“♢”,1张卡片正面上的图案是“♣”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( )A .916 B .34 C .38 D .129. 如图,已知□AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上.按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在 ∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( )A.12),B.2) C.(32)D.22)-,10. 如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1 cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( ) AB .2C .52D.图1 图2二、填空题(每小题3分,共15分) 11.计算:|5|-=__________.12. 如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD =50°,则∠BOC的度数为____________.C13. 不等式组5243x x +>⎧⎨-⎩≥的最小整数解是___________.14. 如图,在△ABC 中,∠ACB =90°,AC =BC =2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A′B′C′,其中点B 的运动路径为BB'︵,则图中阴影部分的面积为____________.15. 如图,∠MAN =90°,点C 在边AM 上,AC =4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称.D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为____________.三、解答题(本大题共8个小题,满分75分)16. (8分)共化简,再求值:21111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中1x =.ABCDEONM F EAA′BC D NM F EAA′BC D17. (9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病,呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图. 治理杨絮——您选哪一项?(单选) A .减少杨树新面积,控制杨树每年的栽种量 B .调整树种结构,逐渐更换现有杨树 C .选育无絮杨品种,并推广种植D .对雌性杨树注射生物干扰素,避免产生飞絮E .其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有__________人;(2)扇形统计图中,扇形E 的圆心角度数是__________; (3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.C D B A调查结果扇形统计图E 25%40%12%15%调查结果条形统计图选项18. (9分)如图,反比例函数0ky x x=>()的图象过格点(网格线的交点)P .(1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O ,点P ; ②矩形的面积等于k 的值.19. (9分)如图,AB 是⊙O 的直径,DO ⊥AB 于点O ,连接DA 交⊙O 于点C ,过点C 作⊙O 的切线交DO 于点E ,连接BC 交DO 于点F . (1)求证:CE =EF ;(2)连接AF 并延长,交⊙O 于点G .填空:①当∠D 的度数为_________时,四边形ECFG 为菱形; ②当∠D 的度数为_________时,四边形ECOG 为正方形.BBA20. (9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自已的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A ,B 两点间的距离为90 cm .低杠上点C 到直线AB 的距离CE 的长为155 cm ,高杠上点D 到直线AB 的距离DF 的长为234 cm ,已知低杠的支架AC 与直线AB 的夹角∠CAE 为82.4°,高杠的支架BD 与直线AB 的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1 cm .参考数据:sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)A B CEFDH21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系.关于销售单价、日销售量、日销售利润的几组对应值如下表:注:日销售利润=日销售量×(销售单价-成本单价)(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是_______元.当销售单价x=_______元时,日销售利润w 最大,最大值是_________元;(3)公司计划开展科技创新,以降低该产品的成本.预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于 3 750元的销售目标,该产品的成本单价应不超过多少元?22. (10分)(1)问题发现如图1,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =40°,连接AC ,BD 交于点M .填空:①ACBD的值为_____________; ②∠AMB 的度数为_____________.(2)类比探究如图2,在△OAB 和△OCD 中,∠AOB =∠COD =90°,∠OAB =∠OCD =30°,连接AC 交BD 的延长线于点M .请判断ACBD的值及∠AMB 的度数,并说明理由. (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M .若OD =1,OBC 与点M 重合时AC 的长.图1 图2 备用图23. (11分)如图,抛物线y =ax 2+6x +c 交x 轴于A ,B 两点,交y 轴于点C .直线y =x -5经过点B ,C .MOD CBAM DCO BAOAB(1)求抛物线的解析式.(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.备用图备用图。