八年级下期分式教案

合集下载

八年级数学分式教案

八年级数学分式教案

八年级数学分式教案
课程标题:分式
一、教学目标:
1.理解分式的概念和基本性质,掌握分式的约分和通分方法。

2.培养学生观察、分析、归纳和推理的能力,渗透数学模型思想。

3.激发学生对数学的兴趣,培养良好的学习习惯和态度。

二、教学内容:
1.分式的概念:定义、分母、分子、分式的基本性质。

2.分式的约分:定义、方法、例题。

3.分式的通分:定义、方法、例题。

三、教学重点与难点:
1.重点:分式的约分和通分方法。

2.难点:分式的基本性质的理解和应用。

四、教学方法与手段:
1.教学方法:讲解、演示、练习、讨论。

2.教学手段:黑板、投影仪、教学软件。

五、教学过程:
1.导入新课:通过实际问题引入分式的概念,让学生了解分式的
应用场景。

2.讲解新课:通过例题的讲解和演示,让学生理解分式的基本性
质和约分、通分方法。

3.巩固练习:通过练习题和讨论题,让学生进一步巩固所学知识,
并培养其观察、分析和推理能力。

4.归纳小结:总结本节课所学内容,强调重点和难点,让学生明
确自己的学习成果。

5.布置作业:布置相关练习题,让学生在家中复习和巩固所学知
识。

六、教学评价与反馈:
1.评价方法:通过练习题和测试题,评价学生对本节课的掌握情
况。

2.反馈方式:通过批改作业和测试结果,及时发现学生的问题并
给予指导。

八年级数学下册《分式》教案北师大版

八年级数学下册《分式》教案北师大版

八年级数学下册《分式》教案北师大版一、教学目标知识与技能:1. 理解分式的概念,掌握分式的基本性质和运算法则。

2. 能够运用分式解决实际问题,提高解决问题的能力。

过程与方法:1. 通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和逻辑推理能力。

2. 学会用数形结合的方法,理解分式的几何意义。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神和合作意识。

2. 感受数学与实际生活的联系,提高学生运用数学知识解决实际问题的能力。

二、教学内容第一课时:分式的概念及基本性质1. 学习分式的定义,理解分式中的分子、分母、分式值等概念。

2. 掌握分式的基本性质,如分式的正负性、分式的相等性、分式的乘除法等。

第二课时:分式的运算1. 学习分式的加减法运算,掌握运算法则。

2. 学习分式的乘除法运算,掌握运算法则。

第三课时:分式的应用1. 运用分式解决实际问题,如面积计算、浓度问题等。

2. 培养学生的应用能力和解决问题的能力。

第四课时:分式的几何意义1. 学习分式在几何中的应用,如面积的计算、比例的求解等。

2. 培养学生的数形结合思想,提高抽象思维能力。

第五课时:分式的综合练习1. 巩固分式的概念、运算和应用。

2. 提高学生的综合运用能力和解决问题的能力。

三、教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的抽象思维能力和逻辑推理能力。

四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的完成质量,巩固学习成果。

3. 单元测试:进行单元测试,了解学生的掌握情况,为下一步教学提供依据。

五、教学资源1. 教材:北师大版八年级数学下册。

2. 课件:制作精美的课件,辅助教学。

3. 练习题:提供适量的练习题,巩固所学知识。

4. 教学工具:黑板、粉笔、多媒体设备等。

六、第六课时:分式的拓展与深化1. 学习分式的进一步性质,如分式的分解、分式的有理化等。

分式教案(2)

分式教案(2)

分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。

本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。

二、教学目标1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的运算方法,提高运算能力。

3. 学会解分式方程,提高解决问题的能力。

三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。

难点:分式方程的解法。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:教材、练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。

问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。

2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。

3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。

4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。

5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。

6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。

7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。

8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。

9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。

10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。

六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。

分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。

苏科版数学八年级下册10.1《分式》教学设计

苏科版数学八年级下册10.1《分式》教学设计

苏科版数学八年级下册10.1《分式》教学设计一. 教材分析《分式》是苏科版数学八年级下册第10章的内容,本节课的主要内容是分式的概念、分式的基本性质和分式的运算。

本节课的内容是学生学习更高级数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维和抽象思维能力。

但部分学生对于抽象概念的理解和运用还不够熟练,需要通过实例和练习来进一步巩固。

三. 教学目标1.理解分式的概念,掌握分式的基本性质。

2.学会分式的运算,并能灵活运用。

3.培养学生的逻辑思维和抽象思维能力。

四. 教学重难点1.分式的概念和基本性质。

2.分式的运算及其运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探索、发现和解决问题,提高学生的动手实践能力和团队协作能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学课件和板书。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如:“某商店进行打折活动,原价100元的商品打八折后,顾客实际支付80元。

请问,顾客实际支付的价格是原价的多少?”让学生思考并解答,从而引出分式的概念。

2.呈现(10分钟)通过PPT呈现分式的定义、基本性质和运算规则,引导学生观察和理解。

同时,给出相应的例子,让学生跟随讲解,逐步掌握分式的基本知识。

3.操练(10分钟)让学生独立完成一些分式的基本运算题目,如分式的加减、乘除等。

教师巡回指导,解答学生遇到的问题,并给予反馈。

4.巩固(10分钟)通过一些综合性的题目,让学生运用所学的分式知识解决问题。

如:“已知a、b、c为实数,且a+b+c=0,求证:a/b+b/c+c/a=0。

”教师引导学生思考和解答,巩固所学知识。

5.拓展(10分钟)引导学生思考分式在实际生活中的应用,如经济、物理、化学等领域。

让学生举例说明,进一步拓宽视野。

八年级数学下册《分式》教案北师大版

八年级数学下册《分式》教案北师大版

【推荐】猜灯谜作文(精选30篇)【推荐】猜灯谜作文(精选30篇)在平时的学习、工作或生活中,大家对作文都不陌生吧,借助作文可以宣泄心中的情感,调节自己的心情。

你知道作文怎样才能写的好吗?下面是小编整理的猜灯谜作文,仅供参考,欢迎大家阅读。

猜灯谜作文篇1一年一度的中秋节快到了,中秋节的时候的习俗有:博饼,放孔明灯,敬田头,听香……看着妈妈忙忙碌碌地准备着,陷入美好的记忆中。

去年的中秋节,妈妈决定吃完饭后上天台边赏月边猜谜语,我们乐得直拍手叫好。

“一起赏月,猜谜语啦!”妈妈大喊。

我和弟弟都还在做自己的事。

妈妈提高嗓音:“快来一起赏月,猜谜语啦!”我和弟弟迅速打开房门,以最快的速度赶到天台上。

爸爸妈妈已经坐在天台的椅子上等我们了,我和弟弟也跟着坐在了旁边的椅子上。

开始猜谜语了,妈妈先下手为强:“我先出,听好了。

充耳不闻无话讲,打一茶叶名。

”妈妈话音刚落,爸爸马上接:“是龙井。

”爸爸平日里可爱喝茶了,这种简单的问题怎能难倒他。

“不能常喝浓茶,会生病哦!”我一本正经地说道,“书上就是这样写的!”爸爸微笑着说:“女儿长大了,懂事了!好吧,听你的,我以后要少喝浓茶。

”我们一家人就在这月光下,开始品尝月饼。

我们大口大口地往嘴里塞。

妈妈嘱咐我们:“吃慢点,别噎着了。

”我对妈妈说:“一定不会的,如果噎着了,我就是个大傻子。

”爸爸妈妈放声大笑。

吃完月饼后,爸爸说:“该我出了。

七品小官不明断,打一食品。

”妈妈马上反应过来,说:“是芝麻糊。

”弟弟急了:“现在该我出了。

谜语是话到嘴边又咽下,打一食品。

”“我知道,谜底是云吞。

”我高兴地大喊。

妈妈对我说:“小声点,别吵到人家赏月。

”“好吧,不过该我出了。

三两木耳,打一地理名词。

”我严肃地说。

这可把全家给难住了,“哈哈,不懂了吧?我来告诉你们吧,是森林。

”我得意地说道,爸爸妈妈哈哈大笑。

全家人沉浸在浓浓的月光中。

又是中秋月圆时,月儿圆,人团圆。

仰望夜空,昨夜星辰早已坠落,今日明月正当空。

八年级数学下册《分式》教案北师大版

八年级数学下册《分式》教案北师大版

八年级数学下册《分式》教案北师大版第一章:分式的概念与基本性质1.1 分式的概念学习目标:理解分式的定义,掌握分式的构成要素。

教学内容:介绍分式的定义,解释分子和分母的概念。

教学方法:通过实际例子,让学生理解分式的含义,并进行练习。

1.2 分式的基本性质学习目标:掌握分式的基本性质,包括分式的乘除法、乘方等。

教学内容:介绍分式的基本性质,解释分式的乘除法规则,展示乘方运算的例子。

教学方法:通过实际例子,让学生掌握分式的基本性质,并进行练习。

第二章:分式的运算2.1 分式的加减法学习目标:掌握分式的加减法运算规则,能够正确进行计算。

教学内容:介绍分式的加减法规则,展示例题,并进行练习。

教学方法:通过实际例子,让学生理解分式的加减法运算规则,并进行练习。

2.2 分式的乘除法学习目标:掌握分式的乘除法运算规则,能够正确进行计算。

教学内容:介绍分式的乘除法规则,展示例题,并进行练习。

教学方法:通过实际例子,让学生理解分式的乘除法运算规则,并进行练习。

第三章:分式的应用3.1 分式在实际问题中的应用学习目标:学会将实际问题转化为分式问题,并运用分式进行解决。

教学内容:介绍分式在实际问题中的应用,展示例题,并进行练习。

教学方法:通过实际问题,让学生学会将问题转化为分式问题,并运用分式进行解决。

3.2 分式在几何问题中的应用学习目标:学会将几何问题转化为分式问题,并运用分式进行解决。

教学内容:介绍分式在几何问题中的应用,展示例题,并进行练习。

教学方法:通过几何问题,让学生学会将问题转化为分式问题,并运用分式进行解决。

第四章:分式的综合练习4.1 分式的综合练习(一)学习目标:综合运用分式的概念、基本性质和运算规则进行练习。

教学内容:提供一系列分式的练习题,让学生综合运用所学知识进行解答。

教学方法:通过练习题,让学生巩固分式的概念、基本性质和运算规则,提高解题能力。

4.2 分式的综合练习(二)学习目标:综合运用分式的概念、基本性质和运算规则进行练习。

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。

但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。

下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。

一定要让学生充分活动起来。

在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。

可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。

今后要防止类似事情的发生。

2、问题(1) 分式的运算错的较多。

分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。

所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。

其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。

(2)分式方程也是错误重灾区。

一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。

八年级数学下册《认识分式》教案、教学设计

八年级数学下册《认识分式》教案、教学设计
(1)采用形成性评价,关注学生的学习过程,及时发现和解决学生在学习中的问题。
(2)实施总结性评价,通过阶段性的测试和作业,检验学生对分式知识的掌握程度。
(3)鼓励学生进行自我评价和同伴评价,提高他们的自我监控和反思能力。
四、教学内容与过程
(一)导入新课
1.教学策略:通过生活情境引入,激发学生的兴趣,为新课的学习做好铺垫。
3.教学重点:分式的定义、化简方法、运算规则。
(三)学生小组讨论
1.教学策略:组织学生进行小组讨论,培养学生的合作意识和解决问题的能力。
教师给出几个关于分式的实际问题,让学生分组讨论,共同探讨如何将问题转化为分式方程,并求解。
2.学生活动:学生在小组内积极讨论,共同分析问题,尝试解决问题。
3.教学难点:从实际问题中抽象出分式方程,并求解。
五、作业布置
为了巩固学生对分式知识的掌握,提高他们的实际应用能力,特布置以下作业:
1.基础作业:完成课本第15页练习题1、2、3,要求学生独立完成,加强对分式定义和化简规则的理解。
2.提高作业:完成课本第16页练习题4、5、6,培养学生解决实际问题的能力,特别是将实际问题转化为分式方程并求解的能力。
3.教学过渡:从分数的分配问题引出分式的概念,指出分式在解决实际问题中的重要性。
(二)讲授新知
1.教学策略:采用讲解与演示相结合的方法,让学生理解分式的定义和性质。
教师通过PPT展示分式的定义,解释分式的组成,强调分式与分数的区别与联系。接着,通过具体的例子,讲解分式的化简和运算规则。
2.学生活动:学生认真听讲,做好笔记,跟随教师思路理解分式的相关知识。
5.通过对分式的学习,提高学生的逻辑思维能力和数学运算能力。
(二)过程与方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章《分式》课题:16.1.1从分数到分式第1课时教学目标:1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;3.能熟练地求出分式有意义的条件,分式的值为零的条件.4. 熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.教学重点:理解分式有意义的条件,分式的值为零的条件.教学难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 教学时间:2009年2月24日 教学准备:小黑板教学方法:分组讨论、引导启发、讲练结合 教学过程: 一、复习提问1.什么是整式?什么是单项式?什么是多项式? 2.判断下列各式中,哪些是整式?哪些不是整式?①38n m ++m 2 ; ②1+x +y 2-z 1; ③π213-x ; ④x 1⑤1222++x x ; ⑥222ab b a +;二、创设情景,1.让学生填写P2[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看章前图的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 观察:以上的式子v+20100,v-2060,a s,sv ,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是 (即A 〔B )的形式.分数的分子A 与分母B 都是整数,而这些式子中的A 、B 都是整式,并且B 中都含有字母. 三、新课讲解:小结:1.分式的概念:一般地,形如BA的式子叫做分式,其中A 和B 均为整式,B 中含有字母。

练习:下列各式中,哪些是分式哪些不是?(小黑板出示)(1)、x 4、(2)4a 、(3)y x -1、(4)43x 、(5)21x 2、(6)1-x ;2.小结:对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。

3. 由学生举几个分式的例子.学生小结分式的概念中应注意的问题 四、例题讲解P3例1: 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围. [提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念. (补充)例: 当m 为何值时,分式的值为0 (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件: ○1分母不能为零; ○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. 解:略 五、补充练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 六、随堂练习(学生独立完成) 1、列式表示下列各量:(1)某村有n 个人,耕地40公顷,人均耕地面积为 公顷; (2)ABC ∆的面积为S ,BC 边长为a ,则高AD 为 ;(3)一辆汽车行驶a 千米用b 小时,它的平均车速为 千米/小时;一列火车行驶a 千米比这辆汽车少用1小时,它的平均车速为 千米/小时。

2、下列式子中,哪些是是分式?哪些是整式?两类式子的区别是什么?.)(3,1212,,,352,534,3,122222b a c x x x x n m n m y x x a b x x -+-+++---+ 1-m m 32+-m m 112+-m m 452--x x x x 235-+23+x xx 57+x x 3217-x x x --2213、下列分式中的字母满足什么条件时分式有意义? (1)a 2;(2)11-+x x ;(3)232+m m ;(4)y x -1;(5)b a b a -+32;(6)122-x .七、课堂小结1、分式的概念:一般地,形如BA的式子叫做分式,其中A 和B 均为整式,B 中含有字母。

分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。

2、分式与整式的区别.3、分式有意义、无意义的条件;4、分式值为零的条件。

八、作业:1、课本第8页习题16.1——第1,2题(书面);第3题(作业本)。

2、预习16.1.2——分式的基本性质 板书设计:课 题:16.1.1从分数到分式一、分式的概念; 三、随堂练习 分式与整式的区别;二、例题讲解 四、课堂小结 例题1: 例题2: 五、作业课题:16.1.2分式的基本性质第2课时教学目标:1.理解分式的基本性质.2.会用分式的基本性质将分式变形.教学重点:理解分式的基本性质. 分式的分子、分母和分式本身符号变号的法则。

教学难点:灵活应用分式的基本性质将分式变形。

利用分式的变号法则,把分子或分母是多项式的变形。

教学准备:小黑板教学突破:灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形. 教学方法:类比学习、引导启发、讲练结合、归纳 教学过程: 一、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么? 2.说出 与 之间变形的过程, 与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.分式的基本性质:分式的分子、分母同乘以(或除以)同一个整式,使分式的值不变. 可用式子表示为:B A =C B C A ∙∙ BA=C B C A ÷÷(C ≠0)二、例题讲解 P5例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P6例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式. P7例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母. 学生归纳总结月份、同分的基本方法。

(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.4320152498343201524983a b 56--, yx 3-, nm --2, nm 67--, yx 43---。

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变. 解:ab56--=ab 56, yx 3-=yx 3-,nm --2=nm 2,n m 67--=nm67 , y x 43---=-y x 43。

三、随堂练习(学生独立思考完成,部分学生可以通过讨论交流完成,或寻求教师的帮助) 1.填空:(1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x - 2.约分:(1)cab b a 2263 (2)2228mn nm (3)532164xyz yz x - (4)x y y x --3)(23.通分: (1)321ab 和c b a 2252 (2)xy a 2和23x b(3)223ab c 和28bca- (4)11-y 和11+y 4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317b a --- (3) 2135x a -- (4) m b a 2)(--四、应用提高【例1】不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1)13232-+---a a a a (2)32211x x x x ++-- (3)1123+---a a a 分析:由于要求分式的分子、分母的最高次项的系数是正数,而对分式本身的符号未做规定,所以根据分式的符号法则,使分式中分子、分母与分式本身改变两处符号即可。

解:(1)原式=13232-+-+--a a a a =)13()2(32+---+-a a a a =13232+--+a a a a 。

(2)原式=11232+++--x x x x =1)1(232++-+-x x x x =11232++-+-x x x x 。

(3)原式=1123+-+--a a a =1)1(23+----a a a =1123+--a a a 。

说明:两个整式相除,所得的分式,其符号法则与有理数除法的符号法则相类似,也同样遵循“同号得正,异号得负”的原则。

总结:1.分式的分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

2.分式的变号法则,在分式运算中应用十分广泛。

应用时要注意:分子与分母是多项式时,若第一项的符号不能作为分子或分母的符号,应将其中的每一项变号。

五、课后练习1.判断下列约分是否正确: (1)c b c a ++=b a(2)22yx y x --=y x +1 (3)nm nm ++=0 2.通分:(1)231ab 和b a 272 (2)x x x --21和x x x +-21 3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)ba ba +---2 (2)y x y x -+--32六、课堂小结1、约分及最简分式的概念;2、约分的基本方法;3、通分、最简公分母及通分的方法;4、分数和分式在约分和通分的做法上有什么异同?依据是什么? 七、作业课本P8习题16.1第4、8题(书面);第5、6、7题(作业本)。

课题:16.2.1分式的乘除(1)第3课时教学目标:1.理解分式乘除法的法则,会进行分式乘除运算;2. 通过教学使学生掌握类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识 教学重点:会用分式乘除的法则进行运算.教学难点:灵活运用分式乘除的法则进行运算 . 教学准备:教学方法:类比学习、引导启发、归纳与讲练结合、 教学过程:一、创设情景引入1、引导学生分析课本第10页问题: 问题1求容积的高,水面的高。

相关文档
最新文档