(完整版)2018-2019北京市丰台区高三第一学期期末数学(理科)试卷及答案

合集下载

2018年北京丰台区高三上学期期末数学(理)试题

2018年北京丰台区高三上学期期末数学(理)试题

丰台区2018年第一学期期末练习高三数学(理科)一、选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数0),(212≠∈=+-b R b bi imi且,则m 的值是( )A .-1B .0C 1D .22.已知集合{}{}|1,|21x M x x N x =<=>,则MN =( )A .∅B .{}|0x x <C .{}|1x x <D .{}|01x x <<3.已知向量(2,3),(3,)a b λ=-=,若//a b ,则λ等于( )A 、23B 、2-C 、92-D 、23-4. 设a 是函数()ln 4f x x x =+-的零点,则a 属于区间( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.已知平面α、β、γ及直线l ,m ,m l ⊥,γα⊥,m =⋂αγ,l =⋂βγ,以此作为条件得出下面三个结论:①γβ⊥ ②α⊥l ③β⊥m ,其中正确结论是( ) A 、①、② B 、①③ C 、②、③ D 、②6.已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率为( )A .53 B.3 C .54D.27.在平面直角坐标系xOy 中,已知A(1,0),B (0,1),点C 在第二象限内,56AOC π∠=,且|OC|=2,若OC OA OB λμ=+,则λ,μ的值是( )(A)1 (B) 1(C) -1,18.已知函数f(x)=2ax bx c ++,且,0a b c a b c >>++=,集合A={m|f(m)<0},则 (A) ,m A ∀∈都有f(m+3)>0 (B) ,m A ∀∈都有f(m+3)<0 (C) 0,m A ∃∈使得f(m 0+3)=0 (D) 0,m A ∃∈使得f(m 0+3)<0 二、填空题:共6小题,每小题5分,共30分.9.某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是 ______.10.已知直线y=x+b 与平面区域C:||2,||2x y ≤⎧⎨≤⎩的边界交于A ,B 两点,若,则b 的取值范围是________.11.12,l l 是分别经过A(1,1),B(0,-1)两点的两条平行直线,当12,l l 间的距离最大时,直线1l 的方程是 .12.圆22()1x a y -+=与双曲线221x y -=的渐近线相切,则a 的值是 _______. 13.已知ABC ∆中,,BC=1,,则ABC ∆的面积为______. 14.右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,______(3)mn a m =≥.三、解答题:共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(本题共13分)函数2()lg(23)f x x x =--的定义域为集合A ,函数()2(2)x g x a x =-≤的值域为集合B .(Ⅰ)求集合A ,B ; (Ⅱ)若集合A ,B 满足A B B =,求实数a 的取值范围.16.(本题共13分)如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于A ,B 两点.(Ⅰ)若点A 的横坐标是35,点B 的纵坐标是1213,求sin()αβ+的值;(Ⅱ) 若∣AB ∣=32, 求OA OB ⋅的值. 17.(本题共14分)如图,在三棱锥P-ABC 中,PA=PB=AB=2,3BC =,90=∠ABC °,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 中点.(Ⅰ)求证:DE‖平面PBC ; (Ⅱ)求证:AB ⊥PE ;(Ⅲ)求二面角A-PB-E 的大小. 18.(本题共14分)已知函数2()(0)xax bx cf x a e++=>的导函数'()y f x =的两个零点为-3和0. (Ⅰ)求()f x 的单调区间;(Ⅱ)若f(x)的极小值为3e -,求f(x)在区间[5,)-+∞上的最大值. 19.(本题共13分)曲线12,C C 都是以原点O 为对称中心、离心率相等的椭圆.点M 的坐标是(0,1),线段MN 是1C 的短轴,是2C 的长轴.直线:(01)l y m m =<<与1C 交于A,D 两点(A 在D 的左侧),与2C 交于B,C 两点(B 在C 的左侧).(Ⅰ)当m=2, 54AC =时,求椭圆12,C C 的方程; (Ⅱ)若OB ∥AN ,求离心率e 的取值范围. 20.(本题共13分)已知曲线2:2(0)C y x y =≥,111222(,),(,),,(,),n n n A x y A x y A x y ⋅⋅⋅⋅⋅⋅是曲线C 上的点,且满足120n x x x <<<⋅⋅⋅<<⋅⋅⋅,一列点(,0)(1,2,)i i B a i =⋅⋅⋅在x 轴上,且10(i i i B A B B -∆是坐标原点)是以i A 为直角顶点的等腰直角三角形. (Ⅰ)求1A 、1B 的坐标; (Ⅱ)求数列{}n y 的通项公式;(Ⅲ)令1,2iy i i ib c a -==,是否存在正整数N ,当n≥N 时,都有11n niii i b c ==<∑∑,若存在,求出N 的最小值并证明;若不存在,说明理由.。

丰台区2018-2019高三期末试题参考答案

丰台区2018-2019高三期末试题参考答案
丰台区 2018~2019 学年度第一学期期末练习
17.(15 分) (1) (1 分) (2)① SO2 Na2S(1 分)
高三化学参考答案
第Ⅰ卷(选择题 共 42 分)
题号 答案 题号 答案 1 A 8 B 2 C 9 B 3 C 10 A 4 A 11 D 5 D 12 C 6 D 13 D 7 B 14 B
- -
(3) H C O
O
COOC2H5 O O O CH CH O C H 或 H C O C O C H
CH
COOC2H5
② 加热棕色溶液(1 分)
(合理答案给分 每空 1 分) ② C (1 分) H2S +OH (写出第一步即给分,2 分)

(4) CH3 C
CH3 (1 分)
(7)(3 分,合理答案给分)
晶体析出的方向移动,提高 Ba(NO3)2 的析出率。 (2 分)
高三化学答案
第 1 页(共 2 页)
高三化学答案 第 2 页(共 2 页)
羧基 (2 分)
ΔH2= +57.2 kJ/mol(2 分)
(2)
C2 H5 OOC H
O
(2 分) (1 分) ③ 选择(1 分) ③ 0.15V (1 分)
② 阴极发生副反应 O2+4e-== 2O2(4)① C 中溶液变棕色(1 分) 16. (14 分) (1)高温焙烧 将重晶石和煤制成粉状 600℃ (2 分)
加成反应(2 分)
(5)
O O
(1 分)
(2)① 吸热(2 分) (3)① S2-+ H2O
(6) (1 分,合理答案给分)
O n C2H5O C CH2 O ⅰ . NaH H CH2 C OC2H5 ⅱ .HCl O CH CH2 C OC2H5 + (n-1) C2H5OH n COOC2H5

2019年1月丰台区高三数学理期末试卷及答案

2019年1月丰台区高三数学理期末试卷及答案

丰台区2018—2019学年度第一学期期末练习 高三数学(理科) 2019.01第一部分 (选择题 共40分)一、 选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合{1,0,1,2,3}A =-,{|22}B x x =-≤≤,那么A B = (A ){1,0,1}- (B ){1,0,1,2}- (C ){1,0,1,2,3}-(D ){|22}x x -≤≤2.若复数(2i)(i)a -+的实部与虚部互为相反数,则实数a = (A )3(B )13(C )13-(D )3-3.执行如图所示的程序框图,输出的S 的值为(A )34 (B )45 (C )56(D )674.已知等差数列{}n a 中,13a =,26a =. 若2n n b a =,则数列{}n b 的前5项和等于 (A )30 (B )45 (C )90(D )1865.某四棱锥的三视图如图所示,则该四棱锥的 棱中,最长的棱的长度为 (A )2 (B(C)(D )俯视图侧(左)视图正(主)视图6.设a ,b 是非零向量,则“=a b ”是“2=a a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7.一种画双曲线的工具如图所示,长杆OB 通过O 处的铰链与固定好的短杆OA 连接,取一条定长的细绳,一端固定在点A ,另一端固定在点B ,套上铅笔(如图所示).作图时,使铅笔紧贴长杆OB ,拉紧绳子,移动笔尖M (长杆OB 绕O 转动),画出的曲线即为双曲线的一部分.若||10OA =,||12OB =,细绳长为8,则所得双曲线的离心率为(A )65(B )54(C )32(D )528.如图,在棱长为2的正方体1111ABCD A B C D -中,,,E F G 分 别是棱1,,AB BC CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 不存在公共点,则三角形1PBB 的面积的最小值为 (A(B )1 (C(D )2第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

丰台区高中2018-2019学年上学期高三数学期末模拟试卷含答案

丰台区高中2018-2019学年上学期高三数学期末模拟试卷含答案

丰台区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )A .T 1=T 19B .T 3=T 17C .T 5=T 12D .T 8=T 113. 用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不能被5整除D .a ,b 有1个不能被5整除4. 在中,角,,的对边分别是,,,为边上的高,,若ABC ∆A B C BH AC 5BH =,则到边的距离为( )2015120aBC bCA cAB ++=H AB A .2 B .3C.1 D .45. 已知双曲线的左、右焦点分别为,过的直线交双曲线于两点且)0,0(12222>>=-b a by a x 21F F 、2F Q P ,,若,,则双曲线离心率的取值范围为( ).1PF PQ ⊥||||1PF PQ λ=34125≤≤λe A. B. C. D. ]210,1(]537,1(210,537[),210[+∞第Ⅱ卷(非选择题,共100分)6. 设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .b <a <cD .a <c <b7. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( )A .1个B .2个C .3个D .4个8. 函数f (x )=有且只有一个零点时,a 的取值范围是()A .a ≤0B .0<a <C .<a <1D .a ≤0或a >19. 设P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .1310.为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A .向右平移个单位B .向右平移个单位C .向左平移个单位D .向左平移个单位11.在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( )A .48B .±48C .96D .±9612.设函数f (x )=的最小值为﹣1,则实数a 的取值范围是( )A .a ≥﹣2B .a >﹣2C .a ≥﹣D .a >﹣二、填空题13.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.14.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .15.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 .16.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)17.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”) 18.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .三、解答题19.(本小题满分13分)椭圆:的左、右焦点分别为、,直线经过点与椭圆交于点C 22221(0)x y a b a b+=>>1F 2F :1l x my =-1F C ,点在轴的上方.当时,M M x 0m =1||MF =(Ⅰ)求椭圆的方程;C (Ⅱ)若点是椭圆上位于轴上方的一点, ,且,求直线的方程.N C x 12//MF NF 12123MF F NF F S S ∆∆=l 20.已知函数f (x )=x ﹣1+(a ∈R ,e 为自然对数的底数).(Ⅰ)若曲线y=f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(Ⅱ)求函数f (x )的极值;(Ⅲ)当a=1的值时,若直线l :y=kx ﹣1与曲线y=f (x )没有公共点,求k 的最大值.21.(本小题满分12分)已知函数.21()cos cos 2f x x x x =--(1)求函数在上的最大值和最小值;()y f x =[0,]2π(2)在中,角所对的边分别为,满足,,,求的值.1111]ABC ∆,,A B C ,,a b c 2c =3a =()0f B =sin A 22.如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,EF ∥AD ,平面ADEF ⊥平面ABCD ,且BC=2EF ,AE=AF ,点G 是EF 的中点.(Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE 所成角的正弦值为,求AG 的长.23.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.24.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.丰台区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.2.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C3.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故应选B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.4.【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底OA OB BA -= 2OA OB OD +=D AB 向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几,AB AC何意义等.5. 【答案】C【解析】如图,由双曲线的定义知,,,两式相加得a PF PF 2||||21=-a QF QF 2||||21=- ,又,,, a PQ QF PF 4||||||11=-+||||1PF PQ λ=1PF PQ ⊥||1||121PF QF λ+=∴ ,①, a PF PQ QF PF 4||)11(||||||1211=-++=-+∴λλλλ-++=21114||aPF②,在中,,将①②代入得λλλλ-+++-+=∴22211)11(2||a PF 12PF F ∆2212221||||||F F PF PF =+ ,化简得:+-++22)114(λλa2222411)11(2(c a =-+++-+λλλλ+-++22)11(4λλ,令,易知在上单调递减,故22222)11()11(e =-+++-+λλλλt =-++λλ211λλ-++=211y ]34,125[,,,故答案 选35,34[∈t 22222284)2(4t t t t t t e +-=-+=∴25,2537[21411(82∈+-=t 210,537[∈e C.6. 【答案】A【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1,∴y=sinx 在(0,90°)单调递增,∴sin35°<sin38°<sin90°=1,∴a<b<c故选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题.7.【答案】D【解析】解:①∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0∴当x为有理数时,f(f(x))=f(1)=1;当x为无理数时,f(f(x))=f(0)=1即不管x是有理数还是无理数,均有f(f(x))=1,故①正确;②∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x∈R,都有f(﹣x)=f(x),故②正确;③若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;④取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.故选:D.【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.8.【答案】D【解析】解:∵f(1)=lg1=0,∴当x≤0时,函数f(x)没有零点,故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,即a>2x,或a<2x在(﹣∞,0]上恒成立,故a>1或a≤0;故选D.【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.9.【答案】A【解析】解:∵P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,∴|PF2|=2×13﹣|PF1|=26﹣4=22.故选:A.【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.10.【答案】A【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.11.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a2和a8的等比中项为=±48.故选:B.12.【答案】C【解析】解:当x≥时,f(x)=4x﹣3≥2﹣3=﹣1,当x=时,取得最小值﹣1;当x<时,f(x)=x2﹣2x+a=(x﹣1)2+a﹣1,即有f(x)在(﹣∞,)递减,则f(x)>f()=a﹣,由题意可得a﹣≥﹣1,解得a≥﹣.故选:C.【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.二、填空题13.【答案】1【解析】14.【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义15.【答案】 .【解析】解:∵抛物线C 方程为y 2=4x ,可得它的焦点为F (1,0),∴设直线l 方程为y=k (x ﹣1),由,消去x 得.设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=,y 1y 2=﹣4①.∵|AF|=3|BF|,∴y 1+3y 2=0,可得y 1=﹣3y 2,代入①得﹣2y 2=,且﹣3y 22=﹣4,消去y 2得k 2=3,解之得k=±.故答案为:.【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题. 16.【答案】 , 无.【解析】【知识点】等比数列【试题解析】设该病人第n 次服药后,药在体内的残留量为毫克,所以)=300,=350.由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。

2019.1丰台区高三期末练习理科数学试题【含答案】

2019.1丰台区高三期末练习理科数学试题【含答案】

丰台区2018—2019学年度第一学期期末练习 高三数学(理科) 2019.01第一部分 (选择题 共40分)一、 选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合{1,0,1,2,3}A =-,{|22}B x x =-≤≤,那么A B =( ) (A ){1,0,1}- (B ){1,0,1,2}- (C ){1,0,1,2,3}-(D ){|22}x x -≤≤2.若复数(2i)(i)a -+的实部与虚部互为相反数,则实数a =( ) (A )3(B )13(C )13-(D )3-3.执行如图所示的程序框图,输出的S 的值为( )(A )34 (B )45 (C )56(D )674.已知等差数列{}n a 中,13a =,26a =. 若2n n b a =,则数列{}n b 的前5项和等于( ) (A )30 (B )45 (C )90(D )1865.某四棱锥的三视图如图所示,则该四棱锥的 棱中,最长的棱的长度为( ) (A )2 (B(C)(D )俯视图侧(左)视图正(主)视图6.设a ,b 是非零向量,则“=a b ”是“2=a a b ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7.一种画双曲线的工具如图所示,长杆OB 通过O 处的铰链与固定好的短杆OA 连接,取一条定长的细绳,一端固定在点A ,另一端固定在点B ,套上铅笔(如图所示).作图时,使铅笔紧贴长杆OB ,拉紧绳子,移动笔尖M (长杆OB 绕O 转动),画出的曲线即为双曲线的一部分.若||10OA =,||12OB =,细绳长为8,则所得双曲线的离心率为( )(A )65(B )54(C )32(D )528.如图,在棱长为2的正方体1111ABCD A B C D -中,,,E F G 分 别是棱1,,AB BC CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 不存在公共点,则三角形1PBB 的面积的最小值为( )(A(B )1 (C(D )2第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

丰台区高三期末(数学理)有答案.doc

丰台区高三期末(数学理)有答案.doc

正视图俯视图丰台区高三数学第一学期期末试卷(理科)201X.1一、本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.集合2{90}P x x =-<,{13}Q x x =∈-≤≤Z ,则P ∩Q =A .{33}x x -<≤B .{13}x x -≤<C .{10123}-,,,,D .{1012}-,,,2.若一个螺栓的底面是正六边形,它的正视图和俯视图如图所示,则它的体积是A3225+π B.3225π C.3225π D.12825π 3.已知命题p :1x ∃>,210x ->,那么p ⌝是A .1x ∀>,210x -> B .1x ∀>,210x -≤ C .1x ∃>,210x -≤D .1x ∃≤,210x -≤4.如果向量(,1)a k =与(61)b k =+,共线且方向相反,那么k 的值为 A .-3B .2C .17-D .175.有5名同学被安排在周一至周五值日,已知同学甲只能值周一或周二,那么5名同学值日顺序的编排方案共有 A .24种B .48种C .96种D .120种6.设偶函数()f x 在[0)+∞,上为增函数,且(2)(4)0f f ⋅<,那么下列四个命题中一定正确的是A .(3)(5)0f f ⋅≥B .(3)(5)f f ->-C .函数在点(4(4))f --,处的切线斜率10k < D .函数在点(4(4))f ,处的切线斜率20k ≥7.程序框图如图所示,将输出的a 的值依次记为a 1,a 2,…,a n ,其中*n ∈N 且2010n ≤.那么数列{}n a 的通项公式为A .123n n a -=⋅B .31nn a =-C .31n a n =-D .21(3)2n a n n =+8.用m a x {}a b ,表示a ,b 两个数中的最大数,设2()max{f x x =1()4x ≥,那么由函数()y f x =的图象、x 轴、直线14x =和直线2x =所围成的封闭图形的面积是A .3512B .5924 C .578D .9112二、填空题:本大题共6小题,每小题5分,共30分 9.复数21ii+= . 10.在△ABC 中,如果::3:2:4a b c =,那么cos C = .11.某年级举行校园歌曲演唱比赛,七位评委为学生甲打出的演唱分数茎叶图如右图所示,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为 , .12.过点(34)-,且与圆22(1)(1)25x y -+-=相切的直线方程为 .13.已知x ,y 满足约束条件1260y y x x y ≥⎧⎪≤⎨⎪+-≥⎩,,, 那么3z x y =+的最小值为 .14.定义方程()()f x f x '=的实数根x 0叫做函数()f x 的“新驻点”,如果函数()g x x=,()ln(1)h x x =+,()cos x x ϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是 .三、解答题:本大题共6小题,共80分 15.(本小题共13分)已知函数2()2sin cos 2cos f x x x x ωωω=-(0x ω∈>R ,),相邻两条对称轴之间的距离等于2π. (Ⅰ)求()4f π的值;(Ⅱ)当02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值.16.(本小题共14分)直三棱柱ABC -A 1B 1C 1中,AB =5,AC =4,BC =3,AA 1=4,点D 在AB 上. (Ⅰ)求证:AC ⊥B 1C ;(Ⅱ)若D 是AB 中点,求证:AC 1∥平面B 1CD ;(Ⅲ)当13BD AB =时,求二面角1B CD B --的余弦值.17.(本小题共13分)某校组织“上海世博会”知识竞赛.已知学生答对第一题的概率是0.6,答对第二AA 1BC DB 1C 1题的概率是0.5,并且他们回答问题相互之间没有影响. (I ) 求一名学生至少答对第一、二两题中一题的概率;(Ⅱ)记ξ为三名学生中至少答对第一、二两题中一题的人数,求ξ的分布列及数学期望E ξ.18.(本小题共13分)已知O 为平面直角坐标系的原点,过点(20)M -,的直线l 与圆221x y +=交于P ,Q 两点.(I )若12OP OQ ⋅=-,求直线l 的方程; (Ⅱ)若OMP ∆与OPQ ∆的面积相等,求直线l 的斜率.19.(本小题共14分)设函数2()(1)2ln(1)f x x x =+-+. (I )求()f x 的单调区间;(II )当0<a <2时,求函数2()()1g x f x x ax =---在区间[03],上的最小值.20.(本小题共13分)已知函数2()1f x x=+,数列{}n a 中,1a a =,1()n n a f a +=*()n ∈N .当a 取不同的值时,得到不同的数列{}n a ,如当1a =时,得到无穷数列1,3,53,115,…;当2a =时,得到常数列2,2,2,…;当2a =-时,得到有穷数列2-,0.(Ⅰ)若30a =,求a 的值;(Ⅱ)设数列{}n b 满足12b =-,1()n n b f b +=*()n ∈N .求证:不论a 取{}n b 中的任何数,都可以得到一个有穷数列{}n a ; (Ⅲ)若当2n ≥时,都有533n a <<,求a 的取值范围.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区高三数学第一学期期末理科参考答案及评分标准201X.1一、选择题:本大题共8小题,每小题5分,共40分。

北京丰台区2018-2019年高三数学上学期期末试卷(理)及答案

北京丰台区2018-2019年高三数学上学期期末试卷(理)及答案

北京丰台区2018-2019年高三数学上学期期末试卷(理)及答案2019北京丰台初三(上)期末数学 2019.01下列各题均有四个选项,其中只有一个是符合题意的1. 如果∠A 是锐角,且sinA=,那么∠A 的读数时A. 90°B. 60°C. 45°D. 30° 2. 如图,A ,B ,C 是⊙O 上的点,如果∠BOC=120°那么∠BAC 的度数是A. 90°B. 60°C. 45°D. 30°3. 将二次函数y=x 2-4x+1化成y=a(x-h)2+k 的形式为 A. y= (x-4)2+1 B. y= (x-4)2-3 C. y= (x-2)2-3 D. y= (x+2)2-34.中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是A. 1:2B. 1:3C. 2:1D. 3:15. 如图,在平面直角坐标系xOy 中,点A ,B 在反比例函数y=(x>0)的图像上,如果将矩形OCAD 的面积记为S 1,矩形OEBF 的面积为S 2,那么S 1,S 2的关系是A. S 1>S 2B. S 1=S 2C. S1<s2< p="">D. 不能确定6. 如图,将一把折扇打开后,小东测量出∠AOC=160°,OA=25m,OB=10cm,那么由,及线段AB,线段CD所围成的扇面的面积约是A. 157cm2B. 314cm2C. 628cm2D. 733cm27. 二次函数y=ax2+bx+c(a≠0)的图像如图所示,那么下列说法正确的是A. a>0,b>0,c>0B. a<0,b>0,c>0C. a<0,b>0,c<0D. a<0,b<0,c>08. 对于不为零的两个实数a,b,如果规定:a★b那么函数y=2★x 的图像大致是二、填空题()9. 如图,在Rt△ABC中,∠C=90°,BC=5,AB=6,那么cosB= .10. 如果2m=3n,那么m:n= .11. 如果反比例函数y=,当x>0时,y随x的增大而减小,那么m的值可能是(写出一个即可)12. 永定塔是北京园博园的标志性建筑,其外观为辽金风格的八角九层塔,游客可登至塔顶,俯瞰园博园全貌,如图,在A处测得∠CAD=30°没在B处测得∠CBD=45°,并测得AB=52米,那么永定塔的高CD约是米。

北京市丰台区2019届高三上学期期末考试数学(理)---精校解析Word版

北京市丰台区2019届高三上学期期末考试数学(理)---精校解析Word版

北京市丰台区2018-2019学年度第一学期期末练习高三数学第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合,,那么()A. B. C. D.【答案】B【解析】【分析】直接利用交集的定义求解即可.【详解】因为集合,,所以,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.若复数的实部与虚部互为相反数,则实数A. 3B.C.D.【答案】D【解析】【分析】利用复数乘法的运算法则化简复数,然后利用复数的实部与虚部的和为零,列方程求解即可.【详解】因为,且复数的实部与虚部互为相反数,所以,,解得,故选D.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查乘法/除法运算,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.执行如图所示的程序框图,输出的的值为A. B. C. D.【答案】B【解析】【分析】执行程序框图,可知该框图表示数列的前4项和,利用裂项相消法可得结果.【详解】模拟程序的运营,可知该程序的功能是求的前4项和,并输出,故选B【点睛】算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮点,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.4.已知等差数列中,,,若,则数列的前5项和等于()A. 30B. 45C. 90D. 186【答案】C【解析】由,,,所以。

【此处有视频,请去附件查看】5.某四棱锥的三视图如图所示,则该四棱锥的棱中,最长的棱的长度为A. 2B.C.D.【答案】D【解析】【分析】由三视图可知,该三棱锥的底面是直角梯形,一条侧棱与底面垂直,根据三视图中数据,求出各棱的长,从而可得结果.【详解】由三视图可知,该三棱锥的底面是直角梯形,一条侧棱与底面垂直,直观图如图,图中,与底面垂直,且,由勾股定理可得,所以最长的棱为,故选D.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.6.设是非零向量,则是的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】利用平面向量数量积的运算法则以及充分条件与必要条件的定义判断即可.【详解】因为是非零向量,所以若,则,即;若,则,可得或,所以是的充分不必要条件,故选A.【点睛】判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.7.一种画双曲线的工具如图所示,长杆通过处的铰链与固定好的短杆连接,取一条定长的细绳,一端固定在点,另一端固定在点,套上铅笔(如图所示).作图时,使铅笔紧贴长杆,拉紧绳子,移动笔尖(长杆绕转动),画出的曲线即为双曲线的一部分.若,,细绳长为8,则所得双曲线的离心率为A. B. C. D.【答案】D【解析】【分析】设,可得,则,由双曲线的定义可得,从而可得结果.【详解】设,因为,,所以,可得,由双曲线的定义可得的轨迹是双曲线的一支,且,,离心率,故选D.【点睛】本题主要考查双曲线的定义及离心率,属于中档题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.8.如图,在棱长为2的正方体中,分别是棱的中点,是底面内一动点,若直线与平面不存在公共点,则三角形的面积的最小值为A. B. 1 C. D.【答案】C【解析】【分析】延展平面,可得截面,其中分别是所在棱的中点,可得平面,再证明平面平面,可知在上时,符合题意,从而得到与重合时三角形的面积最小,进而可得结果.【详解】延展平面,可得截面,其中分别是所在棱的中点,直线与平面不存在公共点,所以平面,由中位线定理可得,在平面内,在平面外,所以平面,因为与在平面内相交,所以平面平面,所以在上时,直线与平面不存在公共点,因为与垂直,所以与重合时最小,此时,三角形的面积最小,最小值为,故选C.【点睛】本题主要考查线面平行的判定定理、面面平行的判定定理,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丰台区2018—2019学年度第一学期期末练习 高三数学(理科) 2019.01第一部分 (选择题 共40分)一、 选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合{1,0,1,2,3}A =-,{|22}B x x =-≤≤,那么A B =I (A ){1,0,1}- (B ){1,0,1,2}- (C ){1,0,1,2,3}-(D ){|22}x x -≤≤2.若复数(2i)(i)a -+的实部与虚部互为相反数,则实数a = (A )3(B )13(C )13-(D )3-3.执行如图所示的程序框图,输出的S 的值为(A )34 (B )45 (C )56(D )674.已知等差数列{}n a 中,13a =,26a =. 若2n n b a =,则数列{}n b 的前5项和等于 (A )30 (B )45 (C )90(D )1865.某四棱锥的三视图如图所示,则该四棱锥的 棱中,最长的棱的长度为 (A )2 (B(C)(D )俯视图侧(左)视图正(主)视图6.设a ,b 是非零向量,则“=a b ”是“2=ga ab ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7.一种画双曲线的工具如图所示,长杆OB 通过O 处的铰链与固定好的短杆OA 连接,取一条定长的细绳,一端固定在点A ,另一端固定在点B ,套上铅笔(如图所示).作图时,使铅笔紧贴长杆OB ,拉紧绳子,移动笔尖M (长杆OB 绕O 转动),画出的曲线即为双曲线的一部分.若||10OA =,||12OB =,细绳长为8,则所得双曲线的离心率为(A )65(B )54(C )32(D )528.如图,在棱长为2的正方体1111ABCD A B C D -中,,,E F G 分 别是棱1,,AB BC CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 不存在公共点,则三角形1PBB 的面积的最小值为 (A(B )1 (C(D )2第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

9.在极坐标系中,圆C :2sin =ρθ的圆心到点(1,0)的距离为____. 10.5(21)x -展开式中2x 的系数为____. 11.能够说明“设,a b 是任意非零实数.若1>ba,则>b a ”是假命题的一组整数..,a b 的值依次为____.12.若,x y 满足1,1,210,x y x y x y +⎧⎪-⎨⎪-+⎩≥≤≥ 则2z x y =-的最大值为____.13.动点(,)A x y 在圆221x y +=上沿逆时针方向匀速旋转,12秒旋转一周.已知时间0t =时,C 1A 1点A的坐标是1)22,则当06t ≤≤时,动点A 的纵坐标y 关于t (单位:秒)的函数的值域为____.14.已知函数33,,()2,.x x x a f x x x a ⎧-+=⎨<⎩≥① 若0a =,则函数()f x 的零点有____个;② 若存在实数m ,使得函数()y f x m =+总有三个不同的零点,则实数a 的取值范围是____.三、解答题共6小题,共80分。

解答应写出文字说明、演算步骤或证明过程。

15.(本小题13分)在ABC △中,角,,A B C 的对边分别为,,a b c ,3a =,b =,1cos 3B =. (Ⅰ)求c 的值; (Ⅱ)求ABC △的面积.16.(本小题14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,侧棱PA ⊥底面ABCD ,Q 为棱PD 的中点,PA AB =.(Ⅰ)求证:AQ CD ⊥;(Ⅱ)求直线PC 与平面ACQ 所成角的正弦值;(Ⅲ)求二面角C AQ D --的余弦值.17.(本小题13分)2018年11月5日上午,首届中国国际进口博览会拉开大幕,这是中国也是世界上首次以进口为主题的国家级博览会.本次博览会包括企业产品展、国家贸易投资展.其中企业产品展分为7个展区,每个展区统计了备受关注百分比,如下表:备受关注百分比指:一个展区中受到所有相关人士关注(简称备受关注)的企业数与该展区的企业数的比值.(Ⅰ)从企业产品展7个展区的企业中随机选取1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;(Ⅱ)从“消费电子及家电”展区备受关注的企业和“医疗器械及医药保健”展区备受关注的企业中,任选2家接受记者采访.(i )记X 为这2家企业中来自于“消费电子及家电”展区的企业数,求随机变量X 的分布列;(ii )假设表格中7个展区的备受关注百分比均提升10%.记Y 为这2家企业中来自于“消费电子及家电”展区的企业数.试比较随机变量,X Y 的均值()E X 和()E Y 的大小.(只需写出结论)18.(本小题14分)已知椭圆C :22221(0)x y a b a b +=>>的右焦点为(1,0)F ,离心率为12,直线:(4)l y k x =-(0)k ≠与椭圆C 交于不同两点,M N ,直线,FM FN 分别交y 轴于,A B 两点.(Ⅰ)求椭圆C 的方程; (Ⅱ)求证:||||FA FB =.19.(本小题13分)设函数()sin cos ,[0,]2f x a x x x x π=-∈. (Ⅰ)当1a =时,求证:()0f x ≥;(Ⅱ)如果()0f x ≥恒成立,求实数a 的最小值.20.(本小题13分)将m n ⨯阶数阵111212122212,,,,,,,,,n n m m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L M M M M L 记作{}i j m n a ⨯(其中,当且仅当,i s j t ==时,i j st a a =).如果对于任意的1,2,3,,i m =L ,当12j j <时,都有12i j i j a a <,那么称数阵{}i j m n a ⨯具有性质A .(Ⅰ)写出一个具有性质A 的数阵34{}i j a ⨯,满足以下三个条件:①114a =,②数列1{}n a 是公差为2的等差数列,③数列1{}m a 是公比为12的等比数列; (Ⅱ)将一个具有性质A 的数阵{}i j m n a ⨯的每一列原有的各数按照从上到下递增的顺序排列,形成一个新的m n ⨯阶数阵,记作数阵{}i j m n b ⨯.试判断数阵{}i j m n b ⨯是否具有性质A ,并说明理由.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区2018~2019学年度第一学期期末练习高三数学(理科)参考答案及评分参考2019.01二、填空题(共6小题,每小题5分,共30分。

有两空的小题,第一空3分,第二空2分) 9. 10.40- 11. 满足0b a <<且,a b ∈Z 即可12.1 13.1[,1]2- 14.2;0a <且1a ≠- 三、解答题(共6小题,共80分) 15.(共13分)解:(Ⅰ)在△ABC 中,因为3a =,b =,1cos 3B =, 由余弦定理2222cos b a c ac B =+-,...................2分 可得2230c c --=, . (4)分所以3c =,或1c =-(舍).……………….6分(Ⅱ)因为1cos ,(0,)3B B =∈π, 所以sin B ==. 所以ABC △的面积11sin 33223S ac B ==⨯⨯⨯=. …………….13分16.(共14分)解:(Ⅰ)因为底面,底面,所以,正方形中, 又因为,所以平面, 因为平面,⊥PA ABCD ⊂CD ABCD CD PA ⊥ABCD CD AD ⊥A AD PA =I ⊥CD PAD ⊂AQ PAD所以. (4)分(Ⅱ)正方形中,侧棱底面.如图建立空间直角坐标系O xyz -,不妨设. 依题意,则(0,0,0),(2,2,0),(0,0,2),(0,1,1)A C P Q ,所以. 设平面的法向量,因为00AC AQ ⎧=⎪⎨=⎪⎩u u u rg u u u rg n n , 所以.令,得,即,所以1cos ,3||||CP CP CP <>==⋅u u u r u u u rg u u u r n n n , 所以直线与平面所成角的正弦值为; ………………11分 (Ⅲ)由(Ⅰ)知平面,所以为平面的法向量,因为cos ,||||DC DC DC <>==⋅u u u r u u u rg u u u rn n n , 且二面角为锐角, 所以二面角的余弦值为. …………………14分17.(共13分)解:(Ⅰ)7个展区企业数共400+60+70+650+1670+300+450=3600家,其中备受关注的智能及高端装备企业共家,CD AQ ⊥ABCD AD AB ⊥⊥PA ABCD 2=AB ()()()110022222,,,,,,,,==--=ACQ =n ()z ,y ,x ⎩⎨⎧=+=+022z y y x 1=x ⎪⎩⎪⎨⎧=-==111z y x =n ()111,,-PCACQ 31⊥CD PAD ()0,0,2=DC PAD D AQ C --DAQ C --3340025%100⨯=设从各展区随机选1家企业,这家企业是备受关注的智能及高端装备为事件A , 所以. ………………4分 (Ⅱ)消费电子及家电备受关注的企业有家,医疗器械及医药保健备受关注的企业有家,共36家. 的可能取值为0,1,2.; ; ;………………11分(Ⅲ)………………13分18.(共14分)解:(Ⅰ)由题意得222112.c c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩,,解得2a b =⎧⎪⎨=⎪⎩,所以椭圆C的方程为22143x y += ………………5分 (Ⅱ)设()()112212,,,(11)M x y N x y x x ≠≠且.由()224,1.43y k x x y =-⎧⎪⎨+=⎪⎩ 得()2222433264120k x k x k +-+-=依题意()()()2222=3244364120kk k ∆--⋅+⋅->,即2104k <<. 1001()360036P A ==6020%12⨯=3008%24⨯=X 22423646(0)105C P X C ===11122423616(1)35C C P X C ===21223611(2)105C P X C ===()()E X E Y >则2122212232,436412.43k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩………………8分 因为121211MF NF y yk k x x +=+-- ()()12124411k x k x x x --=+-- ()()()12121225811k x x x x x x -++⎡⎤⎣⎦=--()()222212641232258434311k k k k k x x ⎡⎤⎛⎫⎛⎫-⋅-⋅+⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎣⎦=--0=.所以直线MF 的倾斜角与直线NF 的倾斜角互补,即OFA OFB ∠=∠. 因为OF AB⊥,所以||||FA FB =. …………………14分19.(共13分)解:(Ⅰ)因为1a =,所以()sin cos ,f x x x x =-()sin f x x x '= .当[0,]2x π∈时,()0f x '≥恒成立,所以 ()f x 在区间[0,]2π上单调递增,所以()(0)0f x f =≥. . .. …… …….5分(Ⅱ)因为()sin cos ,[0,]2f x a x x x x π=-∈,所以()(1)cos sin f x a x x x '=-+.①当1a =时,由(Ⅰ)知,()0f x ≥对[0,]2x π∈恒成立; ②当1a >时,因为[0,]2x π∈,所以()0f x '>. 因此()f x 在区间[0,]2π上单调递增,所以()(0)0f x f =≥对[0,]2x π∈恒成立;③当1a <时,令()()g x f x '=,则()(2)sin cos g x a x x x '=-+, 因为[0,]2x π∈,所以()0g x '≥恒成立, 因此()g x 在区间[0,]2π上单调递增, 且(0)10()022g a g ππ=-<=>,, 所以存在唯一0[0,]2x π∈使得0()0g x =,即0()0f x '=.所以任意0(0,)x x ∈时,()0f x '<,所以()f x 在0(0,)x 上单调递减. 所以()(0)0f x f <=,不合题意. . .. …… …….12分综上可知,a的最小值为1. . .. …… …….13分20.(共13分)解:(Ⅰ)4,6,8,102,3,5,71,9,11,12⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(答案不唯一). . .. …… …….4分 (Ⅱ)数阵{}i j m n b ⨯具有性质A .只需证明,对于任意的1,2,3,,i n =L ,都有(1)i j i j b b +<,其中1,2,3,,1j n =-L . 下面用反证明法证明:假设存在(1)pq p q b b +>,则(1)(2),,,p q p q mq b b b ++L 都大于(1)p q b +,即在第q 列中,至少有1m p -+个数大于(1)p q b +,且(1)(1)(1)2(1)1(1)p q p q q q b b b b +-+++>>>>L . 根据题意,对于每一个(1)(1,2,,)t q b t p +=L ,都至少存在一个t i qa {}(1,2,3,,)t i m ∈L ,使得(1)ti q t q a b +<,即在第q 列中,至少有p 个数小于(1)p q b +.所以,第q 列中至少有11m p p m -++=+个数,这与第q 列中只有m 个数矛盾.第 11 页 共 11 页 所以假设不成立.所以数阵{}i j m n b 具有性质A . . .. …… …….13分(若用其他方法解题,请酌情给分)。

相关文档
最新文档