高考数学 经典错题深度剖析及针对训练 专题31 计数原理

合集下载

高考数学一轮专项复习ppt课件-计数原理(通用版)

高考数学一轮专项复习ppt课件-计数原理(通用版)
解析 答案
高考一轮总复习•数学
第11页
4.(2024·河北沧衡八校联盟)将 3 张不同的冬奥会门票分给 10 名同学中的 3 人,每人
1 张,不同的分法种数为( )
A.720
B.240
C.120
D.60
解析:第一步:第 1 张门票有 10 种不同分法. 第二步:第 2 张门票有 9 种不同分法. 第三步:第 3 张门票有 8 种不同分法. 由分步乘法计数原理,共有 10×9×8=720(种)分法,故选 A.
(2)满足条件的一位自然数有 10 个,两位自然数有 9×9=81(个),三位自然数有 4×9×8 =288(个),由分类加法计数原理知,共有 10+81+288=379(个)不同的小于 500 且没有重复 数字的自然数.
高考一轮总复习•数学
维度 2 住店问题 典例 3(1)5 名旅客投宿到一个旅店的 3 个房间
二 分步乘法计数原理
完成一件事,需要分成 n 个步骤,做第 1 步有 m1 种不同的方法,做第 2 步有 m2 种不同 的方法……做第 n 步有 mn 种不同的方法,那么完成这件事共有 N=_m__1×__m__2_×__…__×__m_n_种不 同的方法.
高考一轮总复习•数学
第6页
三 利用两个计数原理解题的一般思路 (1)弄清完成“一件事”是什么事. (2)确定是先分类后分步,还是先分步后分类. (3)弄清分步、分类的标准是什么. (4)利用两个计数原理求解.
解析 答案
高考一轮总复习•数学
第10页
3.如图,5 个完全相同的圆盘用长度相同的线段连接成十字形.将其中两个圆盘染上
红色,三个圆盘染上蓝色.并规定:若一种染色方法经过旋转后与第二种染色方法一致,

高考数学复习热点11 计数原理

高考数学复习热点11 计数原理

热点11 计数原理【命题趋势】计数原理包含排列组合与二项式定理,在高考数学中通常是以选择题的形式呈现.另外在解答题中与统计概率相结合比较普遍.高考中通常难度不是很大,主要考查是排列与组合的先后顺序或者是有条件限制的排列与组合.二项式定理也是高考考查的一个重点,主要考查二项式定理的展开.本专题通过列举排列组合与二项式定理常见的考题类型,总结此些类型题目的解题方法以及易错点,能够让你在高考中遇到计数原理类型的题目能够迎刃而解.【满分技巧】捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如 此继续下去,依次即可完成.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 对于二项式定理的应用,只要会求对应的常数项以及对应的n 项即可,但是应注意是二项式系数还是系数.【考查题型】选择题【限时检测】(建议用时:35分钟)1.(2021·全国高三专题练习)的展开式中各项的()()()()()234511111x x x x x -----指数之和再减去各项系数乘以各项指数之和的值为()A .0B .C .D .5590120【答案】C【分析】()()()()()234511111x x x x x -----,151413109876521x x x x x x x x x x x =--+++---++-所以,的展开式中各项的指数之和为()()()()()234511111x x x x x -----,15141310987652190++++++++++=展开式中各项系数乘以各项指数之和为,1514131098765210--+++---++=因此,所求结果为.90090-=故选:C.2.(2021·山东高三专题练习)已知若()20121nn n px b b x b x b x -=+++⋅⋅⋅+,则( )123,4b b =-=,p =A .1B .C .D .121314【答案】C【分析】展开式的通项为:,()1n px -()()()11n rr rrrr n n T C px C px -+=⋅⋅-=⋅-故,,解得,.()113nb C p pn =⋅-=-=-()2222142n n n b C p p -=⋅==9n =13p =故选:C.3.(2021·山东高三专题练习)2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、A A B 乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( )A .18种B .20种C .22种D .24种【答案】B【分析】根据医院A 的情况分两类:第一类:若医院A 只分配1人,则乙必在医院B ,当医院B 只有1人,则共有种不2232C A 同分配方案,当医院B 有2人,则共有种不同分配方案,所以当医院A 只分配1人1222C A 时,共有种不同分配方案;2232C A +122210C A =第二类:若医院A 分配2人,当乙在医院A 时,共有种不同分配方案,当乙不在A 医33A 院,在B 医院时,共有种不同分配方案,所以当医院A 分配2人时,1222C A 共有种不同分配方案;33A +122210C A =共有20种不同分配方案.故选:B4.(2021·全国高三专题练习)某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形(边长为2个单位)的顶点处,然后通过掷骰子来确定棋子沿正方ABCD A 形的边按逆时针方向行走了几个单位,如果掷出的点数为,则棋子就按逆()1,2,,6i i =⋅⋅⋅时针方向行走个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到起点处的i A所有不同走法共有( )A .21种B .22种C .25种D .27种【答案】D【分析】由题意,正方形的周长为8,抛掷三次骰子的点数之和为8或16,ABCD ①点数之和为8的情况有:;;;;,排列方法共有1,1,61,2,51,3,42,2,42,3,3种;133113333321C A A C C ++++=②点数之和为16的情况有:;,排列方法共有种.4,6,65,5,611336C C +=所以,抛掷三次骰子后棋子恰好又回到起点处的所有不同走法共有种.A 21627+=故选:D.5.(2021·山东高三专题练习)已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有( )A .240种B .360种C .480种D .600种【答案】C【解析】:用分类讨论的方法解决.如图中的6个位置,123456①当领导丙在位置1时,不同的排法有种;55120A =②当领导丙在位置2时,不同的排法有种;143472C A =③当领导丙在位置3时,不同的排法有种;2323233348A A A A +=④当领导丙在位置4时,不同的排法有种;2323233348A A A A +=⑤当领导丙在位置5时,不同的排法有种;143472C A =⑥当领导丙在位置1时,不同的排法有种.55120A =由分类加法计数原理可得不同的排法共有480种.故选C .6.(2021·山东高三专题练习)某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( )A .240种B .288种C .192种D .216种【答案】D【详解】最前排甲,共有种;最前排乙,最后不能排甲,有种,根55A 120=据加法原理可得,共有种,故选D .7.(2020·全国高三专题练习(理))某节目组决定把《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场做节目开场诗词,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有( )A .72种B .48种C .36种D .24种【答案】C【分析】首先可将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列,共有种排法,336A =再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),共有种排法,236A =则后六场开场诗词的排法有种,6636⨯=故选:C.8.(2020·全国高三专题练习(理))为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是()A .B .C .D .12131416【答案】D【分析】记第名民工选择的项目属于基础设施类、民生类、产业建设类i 分别为事件,,,.i A i B i C 1,2,3i =由题意,事件,,,相互独立,i A i B i C 1,2,3i =则,,,,301()602i P A ==201()603i P B ==101()606i P C ==1,2,3i =故这3名民工选择的项目所属类别互异的概率是.331111()62366i i i P A P A B C ==⨯⨯⨯=故选:D.9.(2020·全国高三专题练习(理))在()()()()()2345111111x x x x x ++++++++++的展开式中,含项的系数是( )2xA .B .1015C .D .2025【答案】C【分析】解法一:中含的项为,中含的项为,中()21x +2x 222C x ()31x +2x 223C x ()41x +含的项为,中含的项为,2x 224C x ()51x +2x 225C x 则含项的系数为.2x 2222234520C C C C +++=故选:C .解法二:由等比数列求和公式知:,()()()()()()6234511111111x x x x x x x+-++++++++++=中含的系数为,原式含项的系数为.()31x + 3x 3620C =∴2x 20故选:C .10.(2020·全国高三专题练习(理))若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=()A .284B .356C .364D .378【答案】C【分析】令x =1,则a 0+a 1+a 2+…+a 12=36, ①令x =-1,则a 0-a 1+a 2-…+a 12=1, ②①②两式左右分别相加,得2(a 0+a 2+…+a 12)=36+1=730,所以a 0+a 2+…+a 12=365,再令x =0,则a 0=1,所以a 2+a 4+…+a 12=364.故选:C.11.(2020·山西高三月考(理))如图所示的是古希腊数学家阿基米德的墓碑上刻着的一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为荣的发现.设圆柱的体积与球的体积之比为,圆柱的表面积与球的表面m 积之比为,则的展开式中的常数项是( )n 621m x nx ⎛⎫- ⎪⎝⎭A .15B .-15C .D .13541354-【答案】A【分析】:设球的半径为,则圆柱的底面半径为,高为,所以圆柱的体积R R 2R ,球的体积,所以.又圆柱的表面23122V R R R ππ=⨯=3243V R π=313223423V R m V R ππ===积为,球的表面积为,所以2212226S R R R R πππ=⨯+=224S R π=,,,展开式的通项21226342S R n S R ππ===1m n =662211m x x nx x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,令,解得,其常数项为.()123161rr rr T C x-+=-1230r -=4r =()42426115C x x ⎛⎫-= ⎪⎝⎭故选:A12.(2020·江西吉安市·白鹭洲中学高三期中(理))已知随机变量,且()2~1,X N σ,则的展开式中的系数为( )()()0P X P X a ≤=≥()43221ax x x ⎛⎫+⋅+ ⎪⎝⎭2x A .40B .120C .240D .280【答案】D【分析】根据正态曲线的性质可知,,解得,012a +=⨯2a =的展开式的通项公式为,,()312x +132r r r r T C x +=⋅{}0,1,2,3r ∈的展开式的通项公式为,,422x x ⎛⎫+ ⎪⎝⎭()243814422s s s s s s s s T C x c x -+--++=⋅=⋅{}0,1,2,3,4s ∈令两式展开通项之积的指数为,可得或,x 382r s -+=33r s =⎧⎨=⎩02r s =⎧⎨=⎩∴的展开式中的系数为()432212x x x ⎛+⋅⎫+ ⎪⎝⎭2x ,333300223434222225624280C C C C ⋅⋅⋅+⋅⋅⋅=+=13.(2020·湖南长沙市·高三月考)某单位有6名员工,2020年国庆节期间,决定从6人中留2人值班,另外4人分别去张家界、南岳衡山、凤凰古城、岳阳楼旅游.要求每个景点有1人游览,每个人只游览一个景点,且这6个人中甲、乙不去衡山,则不同的选择方案共有()A .120种B .180种C .240种D .320种【答案】C【分析】以人为对象,分类讨论:甲不值班乙值班:;甲值班乙不值班:;31343372C C A =31343372C C A =甲乙都不值班;;甲乙都值班;.21342372C C A =4424A =故不同的选择方案.72727224240N =+++=故选:C14.(2020·全国高三专题练习(理))中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( )A .种B .种C .种D .种30506090【答案】B【分析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10种任意选,所以共有1121020C C ⋅=若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10种任意选,所以共有1131030C C ⋅=所以共有种203050+=故选B15.(2020·湖北武汉市·华中师大一附中高三其他模拟(理))2020年湖北抗击新冠肺炎期间,全国各地医护人员主动请缨,支援湖北,某地有3名医生、6名护士来到武汉,他们被随机分到3家医院,每家医院1名医生、2名护士,则医生甲和护士乙分到同一家医院的概率为()A .B .C .D .16121813【答案】D【分析】3名医生平均分成3组,有1种分法,6名护士平均分成3组有种分法,226433156156C C A ⨯==3名医生、6名护士分到3家医院,每家医院1名医生、2名护士的分配方法有(种),333315540A A ⨯⨯=医生甲和护士乙分到同一家医院的分配方法有(种),211224532222180C C C A A A ⨯⨯⨯=则医生甲和护士乙分到同一家医院的概率为.18015403=故选:D .16.(2020·全国高三其他模拟(理))公元五世纪,数学家祖冲之估计圆周率的值的范π围是:,为纪念数学家祖冲之在圆周率研究上的成就,3.141592631415927π<< .某教师在讲授概率内容时要求学生从小数点后的6位数字1,4,1,5,9,2中随机选取两个数字做为小数点后的前两位(整数部分3不变),那么得到的数字大于3.14的概率为( )A .B .C .D .15174567【答案】D【分析】由题意从小数点后的6位数字中随机选取两个数字做为小数点后的前两位,可分为以下情况:①选出两个1,共可组成1个数字;②选出一个1,共可组成个不同数字;12428C A ⋅=③没有选出1,共可组成个不同数字;2412A =所以共可组成个不同的数字;181221++=其中小于等于3.14的数字有:3.11、3.12、3.14,共3个,则大于3.14的数字个数为18,故所求概率.186217P ==故选:D.17.(2020·全国高三专题练习(理))某学校实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求理、化必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有( ).A .444种B .1776种C .1440种D .1560种【答案】B【分析】理、化、生、史、地、政六选三,且理、化必选,所以只需在生、史、地、政中四选一,有(种).14C 4=对语文、外语排课进行分类,第1类:语文、外语有一科在下午第一节,则另一科可以安排在上午四节课中的任意一节,剩下的四科可全排列,有(种);114244192C C A =第2类:语文、外语都不在下午第一节,则下午第一节可在除语、数、外三科的另三科中选择,有(种),133C =语文和外语可都安排在上午,即上午第一、三节,上午第一、四节,上午第二、四节3种,也可一科在上午任一节,一科在下午第二节,有(种),14C 4=其他三科可以全排列,有(种).()12332334252C A A +=综上,共有(种).()41922521776⨯+=故选:B18.(2020·全国高三专题练习)函数的导函数为,则的展开261()(=-f x x x ()f x '()f x '式中含项的系数为( )2x A .20B .C .60D .20-60-【答案】D【分析】函数导函数为,()f x 25211()6()(2)f x x x x x '=-+则的展开式的通项公式为,251(x x -251031551()()(1)r r r r r r r T C x C x x --+=-=-令,则,此时含项为,1031r -=3r=x 335(1)10C x x -=-再令,则,此时含项为,1034r -=2r =4x 22445(1)10C x x -=所以含的项为,2x 4221(10210660x x x x x -⨯+⨯⨯=-故含项的系数为,2x 60-故选:.D 19.(2020·湖南郴州市·高三二模(理))中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.A .408B .120C .156D .240【答案】A【分析】解:根据题意,首先不做任何考虑直接全排列则有(种),66720A =当“乐”排在第一节有(种),55120A =当“射”和“御”两门课程相邻时有(种),2525240A A =当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),242448A A =则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),72012024048408--+=故选:.A 20.(2020·全国高三专题练习)展开式中的常数项为()6331x x ⎫⎫-⎪⎪⎭⎭A .B .15C .D .6666-15-【答案】C展开式的通项公式为,而61x ⎫-⎪⎭()363216611rrrr r rr T C C x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,故要想产生常数项,则或3323323x x x ---=-333122r r -=⇒= ,则所求常数为.33302rr -=⇒=()106621315C C ⨯⨯--⨯=-故选:C.。

2025届高中数学一轮复习课件《计数原理》ppt

2025届高中数学一轮复习课件《计数原理》ppt

高考一轮总复习•数学
第20页
解析:(1)因为学生只能从东门或西门进入校园, 所以 3 名学生进入校园的方式共 23= 8(种).因为教师只可以从南门或北门进入校园, 所以 2 名教师进入校园的方式共有 22= 4(种).所以 2 名教师和 3 名学生进入校园的方式共有 8×4=32(种).故选 D.
A.12 种 B.24 种 C.72 种 D.216 种
高考一轮总复习•数学
第15页
(2)设 I={1,2,3,4},A 与 B 是 I 的子集,若 A∩B={1,2},则称(A,B)为一个“理想配集”.若
将(A,B)与(B,A)看成不同的“理想配集”,
按其中一个子集中元素个数分类23个个;; 4个.
即十位数字最小. 称该数为“驼峰数”.比如 102,546 为“驼峰数”,由数字 1,2,3,4 构成的无重复数字 的“驼峰数”有________个.
高考一轮总复习•数学
第22页
解析:(1)由分步乘法计数原理知,用 0,1,…,9 十个数字组成三位数(可有重复数字) 的个数为 9×10×10=900,组成没有重复数字的三位数的个数为 9×9×8=648,则组成有 重复数字的三位数的个数为 900-648=252.故选 B.
(2)根据题意知,a,b,c 的取值范围都是区间[7,14]中的 8 个整数,故公差 d 的范围是区 间[-3,3]中的整数.①当公差 d=0 时,有 C18=8(种);②当公差 d=±1 时,b 不取 7 和 14, 有 2×C16=12(种);③当公差 d=±2 时,b 不取 7,8,13,14,有 2×C14=8(种);④当公差 d=±3 时,b 只能取 10 或 11,有 2×C12=4(种).综上,共有 8+12+8+4=32(种)不同的分珠计数 法.

高考数学压轴专题2020-2021备战高考《计数原理与概率统计》难题汇编附答案解析

高考数学压轴专题2020-2021备战高考《计数原理与概率统计》难题汇编附答案解析

【最新】数学《计数原理与概率统计》专题解析(1)一、选择题1.若实数22a =-,则1019228101010222a C a C a -+-+L 等于( )A .32B .-32C .1 024D .512【答案】A 【解析】 由题意可得:()()10192221010101010222222232.a C a C a a -+-+=-=--=L本题选择A 选项.2.已知函数,在区间内任取一点,使的概率为( )A .B .C .D .【答案】C 【解析】 【分析】 先求出的取值范围,再利用几何概型相关公式即可得到答案. 【详解】 由得,故或,由,故或,故使的概率为.【点睛】本题主要考查几何概型的相关计算,难度一般.3.在区间[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆221x y +=相交的概率为( ) A .12B .13C .24D .23【答案】C 【解析】 【分析】根据直线与圆相交,可求出k 的取值范围,根据几何概型可求出相交的概率. 【详解】因为圆心(0,0),半径1r =,直线与圆相交,所以1d =≤,解得44k -≤≤所以相交的概率224P ==,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.4.若1()nx x+的展开式中第3项与第7项的系数相等,则展开式中二项式系数最大的项为( ) A .252 B .70C .256xD .256x -【答案】B 【解析】由题意可得26n n C C =,所以8n =,则展开式中二项式系数最大的项为第五项,即44445881()70T C x C x===,故选B.5.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)X N σ:,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x+≥”的充分不必要条件. A .1 B .2C .3D .4【答案】C 【解析】 【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( ) A .112B .115C .118D .114【答案】D 【解析】 【分析】先得到随机抽取两个不同的数共有28种,再得出选取两个不同的数,其和等于20的共有2中,结合古典概型的概率计算公式,即可求解. 【详解】由题意,在不超过20的素数有:2,3,5,7,11,13,17,19,共有8个数,随机选取两个不同的数,共有2828C =种,其中随机选取的两个不同的数,其和为20的有31720,71320+=+=,共有2种, 所以概率为212814P ==. 故选:D . 【点睛】本题主要考查了古典概型及其概率的计算,其中解答中利用组合数的公式求得基本事件的总数是解答的关键,着重考查了推理与运算能力.7.已知59290129(1)(2)(1)(1)...(1)x x a a x a x a x ++-=+-+-++-,则7a =( )A .9B .36C .84D .243【答案】B 【解析】 【分析】()()59x 1x 2++-等价变形为[()][()()]59x 12x 11-++-+-,然后利用二项式定理将其拆开,求出含有7(1)x -的项,便可得到7a .【详解】解:55(1)[(1)2]x x +=-+展开式中不含7(1)x -;()[()()]99x 2x 11-=-+-展开式中含7(1)x -的系数为()729C 136-=所以,7a 36=,故选B 【点睛】本题考查二项式定理,解题的关键是要将原来因式的形式转化为目标因式的形式,然后再进行解题.8.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为 A .100 B .110 C .120 D .180【答案】B 【解析】试题分析:10人中任选3人的组队方案有310120C =,没有女生的方案有3510C =, 所以符合要求的组队方案数为110种 考点:排列、组合的实际应用9.如图,是民航部门统计的某年春运期间12个城市出售的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是( )A .深圳的变化幅度最小,北京的平均价格最高.B .深圳和厦门的平均价格同去年相比有所下降.C .平均价格从高到低居于前三位的城市为北京、深圳、广州.D .平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门. 【答案】D【解析】 【分析】根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可. 【详解】由图可知,选项A 、B 、C 都正确,对于D ,因为要判断涨幅从高到低,而不是判断变化幅度,所以错误. 故选D . 【点睛】本题考查了条形统计图的应用,从图表中准确获取信息是关键,属于中档题.10.已知a c ≠,随机变量ξ,η的分布列如表所示.命题p :=E E ξη,命题q :D D ξη=,则( ) A .p 真q 真 B .p 真q 假C .p 假q 真D .p 假q 假【答案】C 【解析】 【分析】首先分别求E ξ和E η,然后比较,利用公式()()22D E E ξξξ=-,利用公式1a b c ++=,计算D D ξη-的值.【详解】12323E a b c a b c ξ=⨯+⨯+⨯=++ 12332E c b a a b c η=⨯+⨯+⨯=++ ,()2E E c a ξη-=- a c ≠Q ,E E ξη∴≠,所以命题p 是假命题,()249E a b c ξ=++,()()2223E a b c ξ=++,所以()()24923D a b c a b c ξ=++-++()294E a b c η=++,()()2232E a b c η=++,()()()()2229432D E E a b c a b c ηηη=-=++-++ ,()()()()()2283223D D c a a b c a b c ξη-=-+++-++()()()822444c a a c a b c =-+-++ , 1a b c ++=Q ,所以()()()()880D D c a a c ξη-=-+-=, 即()()D D ξη=,所以命题q 是真命题. 综上可知p 假q 真. 故选:C 【点睛】本题考查离散型分布列的期望方差,属于重点题型,本题使用的关键公式是()()22D E E ξξξ=-,比较大小的关键是利用1a b c ++=.11.某校从6名教师中选派3名教师去完成4项不同的工作,每人至少完成一项,每项工作由1人完成,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案种数是( ) A .252 B .288C .360D .216【答案】A 【解析】 【分析】3名教师去完成4项不同的工作,每人至少完成一项,每项工作由1人完成,所以当3名教师确定时,则其中1人必须完成两项工作,故完成工作的方法有121342C C C ••种,然后再根据甲、乙、丙三人的条件要求,分三种情况讨论,得出结果. 【详解】解:因为3名教师去完成4项不同的工作,每人至少完成一项,每项工作由1人完成,所以当3名教师确定时,则其中1人必须完成两项工作,故安排3名教师完成4项工作,可以先确定完成两项工作的1名人员,其方法有13C , 然后再确定完成的工作,其方法有24C ,然后再将剩下的两项工作分配给剩下的两人,其方法有12C ,故当3名教师确定时,完成工作的方法有121342C C C ••种; 因为甲和乙不同去,甲和丙只能同去或同不去, 故有三种方法选择教师,第一种方法:甲参加,乙不参加,丙参加,再从剩下的3人中选择1人,其方法有13C 种, 第二种方法:甲不参加,乙参加,丙不参加,再从剩下的3人中选择2人,其方法有23C 种,第三种方法:甲不参加,乙不参加,丙不参加,再从剩下的3人中选择3人,其方法有33C 种;故最终选派的方法为()123121333342C C C C C C 252++•••=,故选A.【点睛】本题考查了排列组合的知识、分类分步的计数原理,解题的关键是要辨析清楚何时是分类,何时是分步.12.在区间[2,2]-上任意取一个数x ,使不等式20x x -<成立的概率为( ) A .16B .12C .13D .14【答案】D 【解析】 【分析】先解不等式,再根据几何概型概率公式计算结果. 【详解】由20x x -<得01x <<,所以所求概率为1012(2)4-=--,选D.【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.13.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .112【答案】B 【解析】 【分析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.14.已知()929012913x a a x a x a x -=++++L ,则019a a a +++…等于( ) A .92 B .94 C .93 D .1【答案】B 【解析】 【分析】求出二项式()913x -展开式的通项为()193rrr T C x +=⋅-,可知当r 为奇数时,0r a <,当r 为偶数时,0r a >,然后代入1x =-即可得出019a a a ++⋯+的值.【详解】二项式()913x -展开式的通项()193rr r T C x +=⋅-,当r 为奇数时,0r a <,当r 为偶数时,0r a >,因此,()990191314a a a ⎡⎤++⋯+=-⨯-=⎣⎦. 故选:B. 【点睛】本题考查利用赋值法求各项系数绝对值之和,要结合二项式定理判断各项系数的符号,考查推理能力与计算能力,属于中等题.15.若二项式2nx ⎫⎪⎭的展开式中各项的系数和为243,则该展开式中含x 项的系数为( ) A .1 B .5 C .10 D .20 【答案】C 【解析】 【分析】对2nx ⎫⎪⎭令1x =,结合展开式中各项的系数和为243列方程,由此求得n 的值,再利用二项式展开式的通项公式,求得含x 项的系数. 【详解】对2n x ⎫⎪⎭令1x =得()123243n n +==,解得5n =.二项式52x ⎫⎪⎭展开式的通项公式为()515312225522rr rr rr C x xC x---⎛⎫⋅⋅=⋅⋅ ⎪⎝⎭,令53122r -=,解得1r =,故展开式中含x 项的系数为115210C ⋅=.故选:C. 【点睛】本小题主要考查二项式展开式各项系数之和,考查求二项式展开式指定项的系数,属于基础题.16.高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为123100,,,,x x x x L ,它们的平均数为x ,方差为2s ;其中扫码支付使用的人数分别为132x +,232x +,332x +,L ,10032x +,它们的平均数为x ',方差为2s ',则x ',2s '分别为( )A .32x +,232s +B .3x ,23sC .32x +,29sD .32x +,292s +【答案】C 【解析】 【分析】由样本数据的平均数和方差的公式,化简、运算,即可求解,得到答案. 【详解】由平均数的计算公式,可得数据12100,,,x x x L 的平均数为1231001()100x x x x x =++++L 数据1210032,32,,32x x x +++L 的平均数为:121001210011[(32)(32)(32)][3()2100]32100100x x x x x x x ++++++=++++⨯=+L L , 数据12100,,,x x x L 的方差为2222121001[()()()]100s x x x x x x =-+-++-L , 数据1210032,32,,32x x x +++L 的方差为:222121001{[(32)(32)[(32(32)][(32)(32)]}100x x x x x x +-+++-++++-+L 2222121001[9()9()9()]9100x x x x x x s =-+-++-=L 故选C. 【点睛】本题主要考查了样本数据的平均数和方差的计算与应用,其中解答中熟记样本数据的平均数和方差的计算公式,合理化简与计算是解答的关键,着重考查了推理与运算能力,属于基础题.17.口袋中有相同的黑色小球n 个,红、白、蓝色的小球各一个,从中任取4个小球.ξ表示当n =3时取出黑球的数目,η表示当n =4时取出黑球的数目.则下列结论成立的是( )A .E (ξ)<E (η),D (ξ)<D (η)B .E (ξ)>E (η),D (ξ)<D (η)C .E (ξ)<E (η),D (ξ)>D (η) D .E (ξ)>E (η),D (ξ)>D (η)【答案】A 【解析】 【分析】当3n =时,ξ的可能取值为1,2,3,分别求出相应的概率,由此能求出()2E ξ=,()25D ξ=;当4n =时,η可取1,2,3,4,分别求出相应的概率,由此能求出()167E η=, ()2449D η=,即可得解. 【详解】当3n =时,ξ的可能取值为1,2,3,()134336115C C P C ξ⋅===,()342236325C C P C ξ⋅===,()343136135C C P C ξ⋅===, ∴()131232555E ξ=+⨯+⨯=,()112555D ξ=+=; 当4n =时,η可取1,2,3,4,()1434374135C C P C η⋅===,()22437418235C P C C η==⋅=, ()31437412335C P C C η==⋅=,()4404375143C C P C η⋅===, ∴()41812116234353535357E η=+⨯+⨯+⨯=, ()22224161816121611612343573573575494372D η⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; ∴()()E E ξη<,()()D D ξη<. 故选:A . 【点睛】本题考查了超几何分布概率公式的应用,考查了离散型随机变量期望和方差的求解,属于中档题.18.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为()A.280 B.320 C.400 D.1000【答案】C【解析】【分析】由题意知这是一个分层抽样问题,根据青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,得到要从该单位青年职员中抽取的人数,根据每人被抽取的概率为0.2,得到要求的结果【详解】由题意知这是一个分层抽样问题,Q青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,∴要从该单位青年职员中抽取的人数为:1020080 1087⨯=++Q每人被抽取的概率为0.2,∴该单位青年职员共有80400 0.2=故选C【点睛】本题主要考查了分层抽样问题,运用计算方法求出结果即可,较为简单,属于基础题。

高考数学 经典错题深度剖析及针对训练 专题32 算法初步

高考数学 经典错题深度剖析及针对训练 专题32 算法初步

专题32 算法初步【标题01】赋值语句的格式不清楚【习题01】以下赋值语句书写正确的是( )A .2a =B .1a a =+C .2a b *=D .1a a += 【经典错解】C【详细正解】A 不正确,因为不能给常量赋值;B 正确,把变量a 的值与1相加的结果重新赋给变量a ;,C D 均不正确,因为不能为表达式赋值.故选B.【习题01针对训练】下列给出的赋值语句中正确的是( )A.5M =B.x x =-C.3B A ==D.0x y +=【标题02】不理解赋值语句的最近原则【习题02】下列语句中,能实现将两个数9A =、15B =交换使得15A =、9B =的一组是_____.A B C D 【经典错解】A【详细正解】对于选项D ,按照程序运行,9159C B A ===,刚好把,A B 的值交换了.故选D .【深度剖析】(1)经典错解错在不理解赋值语句的最近原则 .(2)由于赋值语句有最近原则,按照A 程序运行,得到的是15,15A B ==,所以没有达到交换,A B 的目的. (3)我们学习不能全凭想象,要利用自己学过的知识来分析解答.【习题02针对训练】阅读流程图(如图1),如输入的,,a b c 分别为21,32,75.则输出的,,a b c 分别是( )A. 75,21,32B. 21,32,75C. 32,21,75D. 75,32,21.【标题03】没有读懂程序【习题03】设置一个计算135791113⨯⨯⨯⨯⨯⨯的算法,如下图给出的程序中,条件处不能填入的数是__. A .13 B .13.5 C .14 D .14.5【经典错解】B【详细正解】对于B 选项,135135713511S i S i S =⨯==⨯⨯==⨯⨯⨯⋅⋅⋅⨯13i = 1351315S i =⨯⨯⋅⋅⋅⨯= 因为15不小于13.5,故输出135791113⨯⨯⨯⨯⨯⨯.同样可以证明选项,C D 都是正确的,故选A .【习题03针对训练】下面为一个求10个数的平均数的程序,则在横线上应填充的语句为________.【习题03针对训练答案】10i >【标题04】忽略了输出的前提【习题04】执行如下图所示的程序框图,若输出的结果是8,则输入的数是________. A .2-或22 B .22或22- C .2或±22-D .2或【经典错解】由程序框图得2232323311xx x x x y xx x xx ⎧⎧≥≤⎪⎪==⎨⎨<>⎪⎪⎩⎩当1x ≤时,28x x =∴=±;当1x > 时,382x x =∴=所以x =±或2x =.故选C .【详细正解】由程序框图得2232323311x x x x x y xx x xx ⎧⎧≥≤⎪⎪==⎨⎨<>⎪⎪⎩⎩当1x ≤时,28x x =∴=±1x ≤x =- ;当1x > 时,382x x =∴=所以x =-或2x =.故选D.【习题04针对训练】若运行如下图程序,最后输出y 的值为20-,那么输入的_______t =. A .10或6- B .10或2- C .6- D .10或2-或6-【标题05】程序运行时累计变量出错【习题05】下图是求222123+++2…+100的值的程序框图,则正整数n = .【经典错解】101n =【详细正解】22011s =+=,2i = 1212s =+,3i = …;22212100s =++⋅⋅⋅+,101i =;∴ 100n =.【习题05针对训练】执行下面的程序框图,若[1,2]t ∈-,则s ∈( )A .[-1,1)B .[0,2]C .[0,1)D .[-l ,2]【标题06】忽略了判断框里的条件21115x +≤【习题06】按图所示的程序框图运算,若输出2k =,则输入x 的取值范围是 .【经典错解】43115x +>,所以28x >.【详细正解】程序在运行过程中各变量的值如下表示:x k 是否继续循环循环前 x 0 第一圈 21x + 1 是 第二圈 43x + 2 否 故2111543115x x +≤⎧⎨+>⎩,解之得(28,57]x ∈故填(28,57].【深度剖析】(1)经典错解错在忽略了判断框里的条件21115x +≤.(2)x 应该满足的条件是2111543115x x +≤⎧⎨+>⎩.主要表现为逻辑错误.求一个变量的取值范围,当然是求整个程序运行过程中所有关于这个变量x 的取值范围的交集,所以一个也不能漏掉.【习题06针对训练】执行下面的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-【标题07】没有关注判断框的等号【习题07】运行如图的程序框图,若输出的结果是1320s =,则判断框中可填入( )A .10?k ≤B .10?k <C .9?k <D .8?k ≤ 【经典错解】A【详细正解】程序的运算功能是121110s =⨯⨯⨯⨯,而132012110=⨯ 121110=⨯⨯,因此10k <.所以选B .【习题07针对训练】阅读下边程序框图,为使输出的数据为30,则判断框中应填人的条件为( )A.4i ≤B. 5i ≤ `C. 6i ≤D. 7i ≤【标题08】循环时输出提前了【习题08】一个算法的程序框图如图,则其输出结果是( )A .011+【经典错解】C【详细正解】由题意可知:23456782014sinsinsin sin sin sin sin sin sin444444444S πππππππππ=+++++++++234562510(sinsinsin sin sin sin )444444ππππππ=⨯++++++=.故选B .【习题08针对训练】执行如图所示的程序框图,则输出的a 的值为( ) (注:“2a =”,即为“2a ←”或为“:2a =”.)A .2B .13C .12- D .3-【标题09】程序逻辑错误【习题09】执行如图所示的程序框图,若输出的结果是5,则判断框内m 的取值范围是________________.【经典错解】20m ≤【详细正解】若输出的结果是5,那么说明循环运行了4次,12022,2226,S S =+==+⨯=3462312,122420S S =+⨯==+⨯=.因此判断框内m 的取值范围是(]12,20.【习题09针对训练】执行如图所示的程序框图,若输出的5k =,则输入的整数p 的最大值为()A .7B .15C .31D .63【标题10】把当型(while 型)循环语句和直到型(until 型)循环语句混淆了 【习题10】下面程序的运行结果为 .【经典错解】1i =【详细正解】开始运行程序后,0,0==i S ,1,0==i S ,2,1==i S ,3,3==i S ,4,6==i S ,5,10==i S ,6,15==i S ,7,21==i S ,此时20>S ,退出循环,输出i 的值为7,结束程序.【习题10针对训练】运行如图所示的程序,其输出的结果为 .【标题11】没有理解输入整数P 的最小值的含义【习题11】执行如下图的程序框图,若输出的5n =,则输入整数P 的最小值是________. A .6 B .7 C .8 D .15【经典错解】B【详细正解】由程序得,1121021112;123213;S n S n --=+==+==+==+=3141327314;7215415;S n S n --=+==+==+==+= 故S p ≥15p∴≥15p ∴≤当7p =时,输出4n =,不满足题意,当8p =时,输出5n =,所以815n ≤≤.故选C .【习题11针对训练】执行如图所示的程序框图,若输出的结果为6k =,则输入的整数p 的最小值为 .A .16B .15C .31D .32【标题12】没有理解程序 【习题12】下图是计算1111124620142016+++++的值的程序框图,其中判断框内应填入的是________.A .2014?i ≤B .2016?i ≤C .2018?i ≤D .2020?i ≤【经典错解】C【详细正解】由程序得,1111114;6;8;224246S i S i S i ===+==++= 111111112016;2018.24620142462016S i S i =++++==++++= 故选B . 【深度剖析】(1)经典错解错在没有理解清程序. (2)如果选2018?i ≤,则程序还要运行一次,所以输出的结果就不是1111124620142016+++++了. 【习题12针对训练】如下图所示的程序框图表示求算式“2481632⨯⨯⨯⨯”的值,则判断框内可以填入________.A .32k <B .32k ≤C .32k >D .32k ≥【标题13】对秦九韶算法理解不够透彻【习题13】已知532()231f x x x x x =++++,应用秦九韶算法计算当3x =时3v 的值为_________.【经典错解】5322()231(((x 2)3)1)1f x x x x x x x x =++++=++++3x =时,2129211v x =+=+= ; 213113336v v x =+=⨯+= ;3213631109v v x =+=⨯+=. 故填109.【详细正解】5325432()2310231f x x x x x x x x x x =++++=+⋅++++((((x 0)2)3)1)1x x x x =+++++3x =时,103v x =+= ; 212329211v v x x =+=+=+= ;323113336v v x =+=⨯+= . 故填36.【习题13针对训练】用秦九韶算法计算多项式34()1232f x x x x =+-+当1x =-时的值时,2v 的结果为______.A .4-B .1-C .5D .6【标题14】对辗转相除法理解不透彻【习题14】如下图是辗转相除法的程序框图,下面说法中是正确命题的个数为________. ①辗转相除法是用来求两个数的最小公倍数的方法; ②这是当型循环结构;③空白的执行框内应该填入“m n =”; ④输出框内应该填入“输出n ”.A .0B .1C .2D .3【经典错解】因为③④是正确的,故选.C【详细正解】辗转相除法是用来求两个数的最大公约数的方法,所以①是错误的;这是直到型循环结构,所以②是错误的;输出框内应该填入“输出m”,所以④是错误的.故正确的只有③.故选B.【习题14针对训练】三个数390, 455, 546的最大公约数是()A.65B.91C.26D.13【标题15】当型循环理解不透彻【习题15】执行如图所示的程序框图,输出的值为4,则p的取值范围是 .【经典错解】由程序框图得11131117 2;3;S22442488 S k S k===+===++=4k=. 故填78p≤.【详细正解】由程序框图得11131117 2;3;S22442488 S k S k===+===++=4k=. 故填78p≤. 又因为要保证前面循环的完成,必须满足132344ppp⎧>⎪⎪∴>⎨⎪>⎪⎩故p的取值范围是3748p<≤.故填3748p<≤.【习题15针对训练】在如图所示的程序框图中,若输出的6n=,则输入的T的取值范围是_______.高中数学经典错题深度剖析及针对训练第32讲:算法初步参考答案【习题01针对训练答案】B【习题01针对训练解析】赋值语句是把一个值赋给一个变量,A 选项是把M 赋给5,这样不行;C 选项连等号不行;D 选项把零赋给x y +不合题意.故选B . 【习题02针对训练答案】A【习题05针对训练答案】D【习题05针对训练解析】由算法流程图可知(11)22(12)tt s t t -≤<⎧=⎨-≤≤⎩,当11t -≤<时,11s -≤<,当12t ≤≤,时,0222t ≤-≤,即02s ≤≤,综上可知12s -≤≤.【习题06针对训练答案】A【习题06针对训练解析】因为[1,3]t ∈-,当[1,1)t ∈-时,3[3,3)s t =∈-;当[1,3]t ∈ 时,2224(4)(2)4[3,4]s t t t t t =-=--=--+∈,所以[3,4]s ∈-.【习题07针对训练答案】A【习题07针对训练解析】根据程序框图可知,当输入1i =进入判断时,需要得到2,2S i ==;当2i =进入判断时,需要得到2226,3S i =+==;当3i =时进入判断得到2322214,4S i =++==.当4i =时,得到234222230,5S i =+++==.由题意可知,当5i =是要退出循环,所以应该填4i ≤.故选A . 【习题08针对训练答案】D【习题08针对训练解析】3212,1,3,2,,3,3,4142a i a i a i a i -====-=====-=--不难发现从2i =开始,周期为2,所以2014i =与2i =时,a 的值是一样的,故选D . 【习题09针对训练答案】B【习题09针对训练解析】由程序框图可知:①0,1S k ==;②1,2S k ==;③3,3S k ==;④7,4S k ==S ;⑤15,5S k ==.第⑤步后k 输出,此时15S p =≥,则p 的最大值为15,故选B .故S p ≥31p∴≥31p ∴≤ 当15p =时,输出5k =,不满足题意,当16p =时,输出6k =,所以1631n ≤≤.故选A .【习题12针对训练答案】B【习题12针对训练解析】由程序得,124;1248;s k s k =⨯==⨯⨯=2481632;248163264.s k s k =⨯⨯⨯==⨯⨯⨯⨯= 故选B .【习题13针对训练答案】C【习题13针对训练解析】34432()123223021f x x x x x x x x =+-+=-+⨯++(((23)0)2)1x x x x =-+++1x =-时,1235v x =-=- ;2105(1)+0=5v v x =+=-⨯- .故选C .【习题14针对训练答案】D【习题14针对训练解析】455390165=⨯+ 390656=⨯ ∴390, 455的最大公约数是65546455191=⨯+ 455915=⨯故455, 546的最大公约数为91 又65,91的最大公约数为13所以三个数390, 455, 546的最大公约数是13. 故选D. 【习题15针对训练答案】(61,108]。

高考数学压轴专题2020-2021备战高考《计数原理与概率统计》单元汇编附答案

高考数学压轴专题2020-2021备战高考《计数原理与概率统计》单元汇编附答案

【高中数学】数学复习题《计数原理与概率统计》知识点练习一、选择题1.如果一个三位数,各位数字之和等于10,但各位上数字允许重复,则称此三位数为“十全九美三位数”(如235,505等),则这种“十全九美三位数”的个数是( ) A .54 B .50 C .60 D .58【答案】A 【解析】 【分析】利用分类计数原理,分成有重复数字和无重复数字的情况,即可得答案. 【详解】利用分类计数原理,分成有重复数字和无重复数字的情况:(1)无重复数字:109,190,901,910,127,172,271,217,721,712,136,163,316,361,613,631,145,154,451,415,514,541,208,280,802,820,235,253,352,325,523,532,307,370,703,730,406,460,604,640,共40个, (2)有重复数字:118,181,811,226,262,622,334,343,433,442,424,244,550,505,共14个. 故选:A. 【点睛】本题考查分类计数原理的应用,考查逻辑推理能力和运算求解能力,求解时注意不重不漏.2.在区间[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆221x y +=相交的概率为( )A .12B .13C D 【答案】C 【解析】 【分析】根据直线与圆相交,可求出k 的取值范围,根据几何概型可求出相交的概率. 【详解】因为圆心(0,0),半径1r =,直线与圆相交,所以1d =≤,解得k ≤≤所以相交的概率224P ==,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.3.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是( )A .甲类水果的平均质量10.4kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数2 1.99δ= 【答案】D 【解析】由图象可知,甲类水果的平均质量μ1=0.4kg ,乙类水果的平均质量μ2=0.8kg ,故A ,B ,C ,正确;乙类水果的质量服从的正态分布的参数σ2 1.99,故D 不正确.故选D .4.若1()nx x+的展开式中第3项与第7项的系数相等,则展开式中二项式系数最大的项为( ) A .252 B .70C .256xD .256x -【答案】B 【解析】由题意可得26n n C C =,所以8n =,则展开式中二项式系数最大的项为第五项,即44445881()70T C x C x===,故选B.5.现有10名学生排成一排,其中4名男生,6名女生,若有且只有3名男生相邻排在一起,则不同的排法共有( )种. A .2267A A B .3247A AC .322367A A AD .362467A A A【答案】D 【解析】 【分析】采用捆绑法和插空法,将3个男生看成一个整体方法数是34A 种,再排列6个女生,最后让所有男生插孔即可. 【详解】采用捆绑法和插空法;从4名男生中选择3名,进而将3个相邻的男生捆在一起,看成1个男生,方法数是34A 种,这样与第4个男生看成是2个男生;然后6个女生任意排的方法数是66A 种;最后在6个女生形成的7个空隙中,插入2个男生,方法数是27A 种.综上所述,不同的排法共有362467A A A 种. 故选D. 【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.6.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)X N σ:,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1x ≥”是“12x x+≥”的充分不必要条件. A .1 B .2C .3D .4【答案】C 【解析】 【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110B.35C.310D.25【答案】D【解析】【分析】【详解】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=102. 255=故答案为D.8.已知点P,Q为圆C:x2+y2=25上的任意两点,且|PQ|<6,若PQ中点组成的区域为M,在圆C 内任取一点,则该点落在区域M上的概率为()A.35B.925C.1625D.25【答案】B【解析】PQ中点组成的区域M如图阴影部分所示,那么在C内部任取一点落在M内的概率为25π-16π925π25=,故选B.9.已知函数,在区间内任取一点,使的概率为()A .B .C .D .【答案】C 【解析】 【分析】 先求出的取值范围,再利用几何概型相关公式即可得到答案.【详解】 由得,故或,由,故或,故使的概率为.【点睛】本题主要考查几何概型的相关计算,难度一般.10.设*N n ∈,n a 为()()41nnx x +-+的展开式的各项系数之和,7c t =-,R t ∈,1222555n n n na a a b ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L ([]x 表示不超过实数x 的最大整数).则()()22n n t b c -++的最小值为( ) A .12B .22C .22D .32【答案】A 【解析】 【分析】令1x =可得,52n n n a =-,求出n b ,则22()()n n t b c -++的几何意义为点(n ,2)(*)2n nn N -∈到点(,7)t t -的距离的平方,最小值即(3,3)到7y t =-的距离d 的平方,然后由点到直线的距离公式求解即可得答案. 【详解】令1x =可得,52nnn a =-,2[][]55nn n n na n n =-g ,设25n n n n c =g ,所以1+11(1)22223()()055555n n n n n n n n n c c n +++-=-=-<g g , 所以数列{}n c 单调递减,所以数列2{}5nn n n -g 是单调递增数列,(增函数+增函数=增函数)当n →+∞时,20,5n n n →g 且20,5nn n >g 所以2[][]155n n n n na n n n =-=-g .21222[][][]12(1)5552n n n na a a n nb n -=++⋯+=++⋯+-=,则22()()n n t b c -++的几何意义为点(n ,2)(*)2n nn N -∈到点(,7)t t -的距离的平方,即求点(n,2)(*)2n nn N-∈到7y t=-的距离d的最小值,所以222|7|157|14||()|4424n nnd n n n-+-==+-=+-,当1n=时,957||44d=-;当2n=时,2557|44d=-当3n=时,4957||44d=-;当4n=时,8157||=6=44442d=-;由函数的图象可知当5,6,7,n=L时,d>所以点(n,2)(*)2n nn N-∈为(3,3)时,它到7y t=-的距离d最小,d==Q,∴2.∴()()22nn t b c-++的最小值为12.故选:A.【点睛】本题考查了二项式定理的应用,考查了点到直线的距离公式,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【答案】D【解析】4项工作分成3组,可得:24C=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:36363A⨯=种.故选D.12.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表2表3表4总计 16 36 52A .成绩B .视力C .智商D .阅读量【答案】D 【解析】 【分析】根据公式()()()()()22n ad bc K a b c d a c b d -=++++分别计算得观察值,比较大小即可得结果.【详解】根据公式()()()()()22n ad bc K a b c d a c b d -=++++分别计算得:A.2252(6221014):0.00916363220A K ⨯-⨯=≈⨯⨯⨯;2252(4201216): 1.76916363220B K ⨯-⨯=≈⨯⨯⨯;2252(824812): 1.316363220C K ⨯-⨯=≈⨯⨯⨯;2252(143062):23.4816363220D K ⨯-⨯=≈⨯⨯⨯选项D 的值最大,所以与性别有关联的可能性最大,故选D. 【点睛】本题主要考查独立性检验的应用,意在考查灵活应用所学知识解决实际问题的能力,属于中档题.13.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元【答案】B【分析】 【详解】试题分析:4235492639543.5,4244x y ++++++====Q , ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a ,∴ˆa=9.1, ∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程14.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 约等于9,据此模型预报广告费用为6 万元时,销售额为( ) A .54万元 B .55万元C .56万元D .57万元【答案】D 【解析】试题分析:由表格可算出1(1245)34x =+++=,1(10263549)304y =+++=,根据点(),x y 在回归直线ˆˆˆy bx a =+上,ˆ9b=,代入算出ˆ3a =,所以ˆ93y x =+,当6x =时,ˆ57y =,故选D.考点:回归直线恒过样本点的中心(),x y .15.从1,2,3,4,…,9这9个整数中同时取出4个不同的数,其和为奇数,则不同取法种数有( ) A .60 B .66C .72D .126【答案】A 【解析】要使四个数的和为奇数,则取数时奇数的个数必须是奇数个,再根据排列组合及计数原理知识,即可求解. 【详解】从1,2,3,4,…,9这9个整数中同时取出4个不同的数,其和要为奇数,则取数时奇数的个数必须是奇数个:所以共有1331545460C C C C +=种取法.故选:A 【点睛】本题考查了排列组合及简单的计数问题,属于简单题.16.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则( ) A .12E E ξξ<,12D D ξξ< B .12E E ξξ=,12D D ξξ> C .12E E ξξ=,12D D ξξ< D .12E E ξξ>,12D D ξξ>【答案】B 【解析】 【分析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系. 【详解】1ξ可能的取值为0,1,2;2ξ可能的取值为0,1,()1409P ξ==,()1129P ξ==,()141411999P ξ==--=, 故123E ξ=,22214144402199999D ξ=⨯+⨯+⨯-=. ()22110323P ξ⨯===⨯,()221221323P ξ⨯⨯===⨯, 故223E ξ=,2221242013399D ξ=⨯+⨯-=, 故12E E ξξ=,12D D ξξ>.故选B. 【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.17.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为( )A .280B .320C .400D .1000【答案】C【解析】【分析】由题意知这是一个分层抽样问题,根据青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,得到要从该单位青年职员中抽取的人数,根据每人被抽取的概率为0.2,得到要求的结果【详解】由题意知这是一个分层抽样问题, Q 青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本, ∴要从该单位青年职员中抽取的人数为:10200801087⨯=++ Q 每人被抽取的概率为0.2, ∴该单位青年职员共有804000.2= 故选C【点睛】 本题主要考查了分层抽样问题,运用计算方法求出结果即可,较为简单,属于基础题。

高考数学压轴专题2020-2021备战高考《计数原理与概率统计》易错题汇编

新高考数学《计数原理与概率统计》专题解析一、选择题1.如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为()A.240 B.360 C.420 D.960【答案】C【解析】【分析】可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.【详解】⨯⨯=种由题设,四棱锥S-ABCD的顶点S、A、B所染的颜色互不相同,它们共有54360染色方法.设5种颜色为1,2,3,4,5,当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法.⨯=可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有607420(种).故选:C【点睛】本题考查分类加法原理、分步乘法原理的综合应用,考查学生的分类讨论的思想、逻辑推理能力,是一道中档题.2.已知函数,在区间内任取一点,使的概率为()A.B.C.D.【答案】C【解析】【分析】先求出的取值范围,再利用几何概型相关公式即可得到答案.【详解】由得,故或,由,故或,故使的概率为.【点睛】本题主要考查几何概型的相关计算,难度一般.3.若不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域为Ω,不等式222210x y x y +--+≤表示的区域为T ,则在区域Ω内任取一点,则此点落在区域T 中的概率为( ) A .4πB .8π C .5π D .10π 【答案】D 【解析】 【分析】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩对应的平面区域,求出对应的面积,利用几何概型的概率公式即可得到结论. 【详解】作出不等式组2302400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域Ω,不等式222210x y x y +--+≤化为()()22111x y -+-≤它表示的区域为T ,如图所示;则区域Ω表示ABC V ,由240230x y x y -+=⎧⎨--=⎩,解得点()12B -,; 又()20A -,,30B (,),∴()132252ABC S =⨯+⨯=V ,又区域T 表示圆,且圆心()11M ,在直线230x y +-=上,在ABC V 内的面积为21122ππ⨯=;∴所求的概率为2510P ππ==,故选D .【点睛】本题主要考查了几何概型的概率计算问题,利用数形结合求出对应的面积是解题的关键,属于中档题.4.若1()nx x+的展开式中第3项与第7项的系数相等,则展开式中二项式系数最大的项为( ) A .252 B .70C .256xD .256x -【答案】B 【解析】由题意可得26n n C C =,所以8n =,则展开式中二项式系数最大的项为第五项,即44445881()70T C x C x===,故选B.5.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种 C .42种 D .25种【答案】C 【解析】 【分析】给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数. 【详解】甲可有3种安排方法, 若甲先安排第1社区,则第2社区可安排1个、第3社区安排3个,共1343C C ⋅;第2社区2个、第3社区安排2个,共2242C C ⋅;第2社区3个,第3社区安排1个,共1141C C ⋅;故所有安排总数为1322114342413()42C C C C C C ⨯⋅+⋅+⋅=.故选:C. 【点睛】本题考查分类与分步计数原理、组合数的计算,考查分类讨论思想,考查逻辑推理能力和运算求解能力.6.现有10名学生排成一排,其中4名男生,6名女生,若有且只有3名男生相邻排在一起,则不同的排法共有( )种. A .2267A A B .3247A AC .322367A A AD .362467A A A【答案】D 【解析】 【分析】采用捆绑法和插空法,将3个男生看成一个整体方法数是34A 种,再排列6个女生,最后让所有男生插孔即可. 【详解】采用捆绑法和插空法;从4名男生中选择3名,进而将3个相邻的男生捆在一起,看成1个男生,方法数是34A 种,这样与第4个男生看成是2个男生;然后6个女生任意排的方法数是66A 种;最后在6个女生形成的7个空隙中,插入2个男生,方法数是27A 种.综上所述,不同的排法共有362467A A A 种. 故选D. 【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.7.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v共线的概率为( )A .13B .14C .16D .112【答案】D 【解析】 【分析】由将一枚骰子抛掷两次共有36种结果,再列举出向量p u r 与q r共线的基本事件的个数,利用古典概型及其概率的计算公式,即可求解。

2024年高考数学复习: 计数原理

2024年高考数学复习:计数原理真题卷题号考点考向2023新课标1卷13计数原理分类加法计数原理2023新课标2卷3组合数组合数公式2022新高考1卷13二项式定理求二项展开式指定项的系数2022新高考2卷5排列问题捆绑法与插空法求排列数2021新高考1卷———2021新高考2卷———2020新高考1卷3计数原理分步乘法计数原理计数2020新高考2卷6排列组合分组分配问题【2023年真题】1.(2023·新课标I 卷第13题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有_______种(用数字作答).【答案】64本题主要考查至少至多的组合问题,属于基础题.解:当从这8门课中选修2门课时,共有1144.16C C =;当从这8门课中选修3门课时,共有12214444..48C C C C +=;综上,共有64种.2.(2023·新课标II 卷第3题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有A.4515400200C C ⋅种 B.2040400200C C ⋅种C.3030400200C C ⋅种D.4020400200C C ⋅种【答案】D本题考查比例分配的分层随机抽样方法的应用,考查组合数公式的应用,为基础题.解:结合题意初中部和高中部所占的比例为2:1,抽取初中部40人,高中部20人,故不同的抽样结果为4020400200C C ⋅种,故选.D【2022年真题】3.(2022·新高考I 卷第13题)8(1)y x y x-+的展开式中26x y 的系数为__________(用数字作答).【答案】28-本题考查二项展开式的特定项与特定项的系数,属于基础题.结合8()x y +展开式的通项公式求解即可.解:因为8()x y +展开式的通项818r r r r T C x y -+=,令5r =,则35x y 的系数为5856C =;令6r =,则26x y 的系数为6828C =,所以26x y 的系数为562828.-+=-4.(2022·新高考II 卷第5题)甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有()A.12种 B.24种C.36种D.48种【答案】B本题考查排列、组合的运用,属于基础题.解:先利用捆绑法排乙丙丁成四人,再用插空法选甲的位置,则有23123224A A C =种.【2020年真题】5.(2020·新高考I 卷第3题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种 B.90种 C.60种 D.30种【答案】C本题考查组合的应用,属于基础题.根据分步乘法计数原理,结合组合的定义,即可解答.解:可以按照先选1名志愿者去甲场馆,再选择2名志愿者去乙场馆,剩下3名安排到丙场馆,安排方法有123653C C C 60.=故选:.C 6.(2020·新高考II 卷第6题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种【答案】C【分析】成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期本题考查不同的安排方法种数的求法,考查排列组合等基础知识,考查运算求解能力,是基础题.先把三名学生分成2组,再把2组学生分到两个村,利用排列组合知识直接求解.解:要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有:2123126.C C A 故选:.C。

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 计数原理(精解精析)

2012-2021十年全国高考数学真题分类汇编 计数原理(精解精析)一,选择题1.(2021年高考全国乙卷理科)将5名北京冬奥会志愿者分配到花样滑冰,短道速滑,冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同地分配方案共有( )A .60种B .120种C .240种D .480种【结果】C思路:依据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法。

然后连同其余三人,看成四个圆素,四个项目看成四个不同地位置,四个不同地圆素在四个不同地位置地排列方式数有4!种,依据乘法原理,完成这件事,共有254!240C ⨯=种不同地分配方案,故选:C .【点睛】本题考查排列组合地应用问题,属基础题,关键是首先确定人数地分配情况,然后利用先选后排思想求解.2.(2020年高考数学课标Ⅰ卷理科)25()()x x y xy ++地展开式中x 3y 3地系数为( )A .5B .10C .15D .20【结果】C【思路】5()x y +展开式地通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭地各项与5()x y +展开式地通项地乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 地系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 地系数为5所以33x y 地系数为10515+=故选:C【点睛】本题主要考查了二项式定理及其展开式地通项公式,还考查了赋值法,转化能力及思路能力,属于中档题.3.(2019年高考数学课标Ⅲ卷理科)24121x x ++()()地展开式中3x 地系数为( )A .12B .16C .20D .24【结果】A【思路】因为2442412112=1x x x x x +++++()()()(),所以3x 地系数为314424812C C +=+=,故选A .【点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项地系数,是常规考法。

高考数学-计数原理(含22年真题讲解)

高考数学-计数原理(含22年真题讲解)1.【2022年新高考2卷】有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A.12种B.24种C.36种D.48种【答案】B【解析】【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!×2×2=24种不同的排列方式,故选:B2.【2022年北京】若(2x−1)4=a4x4+a3x3+a2x2+a1x+a0,则a0+a2+a4=()A.40B.41C.−40D.−41【答案】B【解析】【分析】利用赋值法可求a0+a2+a4的值.【详解】令x=1,则a4+a3+a2+a1+a0=1,令x=−1,则a4−a3+a2−a1+a0=(−3)4=81,=41,故a4+a2+a0=1+812故选:B.)(x+y)8的展开式中x2y6的系数为________________(用3.【2022年新高考1卷】(1−yx数字作答).【解析】【分析】(1−yx )(x+y)8可化为(x+y)8−yx(x+y)8,结合二项式展开式的通项公式求解.【详解】因为(1−yx )(x+y)8=(x+y)8−yx(x+y)8,所以(1−yx )(x+y)8的展开式中含x2y6的项为C86x2y6−yxC85x3y5=−28x2y6,(1−yx)(x+y)8的展开式中x2y6的系数为-28故答案为:-284.【2022年浙江】已知多项式(x+2)(x−1)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a2=__________,a1+a2+a3+a4+a5=___________.【答案】8−2【解析】【分析】第一空利用二项式定理直接求解即可,第二空赋值去求,令x=0求出a0,再令x=1即可得出答案.【详解】含x2的项为:x⋅C43⋅x⋅(−1)3+2⋅C42⋅x2⋅(−1)2=−4x2+12x2=8x2,故a2=8;令x=0,即2=a0,令x=1,即0=a0+a1+a2+a3+a4+a5,∴a1+a2+a3+a4+a5=−2,故答案为:8;−2.1.(2022·湖南·长沙县第一中学模拟预测)62x⎫⎪⎭展开式中的常数项为()A.60B.64C.-160D.240【答案】A【解析】先得到二项式的通项公式,再令x 的指数为0得到项数,从而得到常数项大小. 【详解】解:62x ⎫⎪⎭的二项展开式的通项公式为()()62213666C 22C r r r rr r r rT x x x---+=⋅⋅-⋅=-⋅⋅.令630r -=,解得2r =,所以展开式的常数项为()2262C 60-⋅=. 故选:A .2.(2022·江苏无锡·模拟预测)二项式()()()237121212x x x ++++++的展开式中,含2x 项的二项式系数为( ) A .84 B .56 C .35 D .21【答案】B 【解析】 【分析】易知展开式中,含2x 项的二项式系数为222222234567C C C C C C +++++,再利用组合数的性质求解. 【详解】解:因为二项式为()()()237121212x x x ++++++,所以其展开式中,含2x 项的二项式系数为:222222234567C C C C C C +++++,3222244567=C C C C C ++++,32225567=C C C C +++,322667=C C C ++,3277=C C +,38=C 56=.故选:B3.(2022·湖南·邵阳市第二中学模拟预测)将5名志愿者分配到4个不同的社区进行抗疫,每名志愿者只分配到1个社区,每个社区至少分配1名志愿者,则不同的分配方案共有( ) A .120种 B .240种 C .360种 D .480种【答案】B 【解析】 【分析】将5名志愿者分为4组,每组的人数分别为2、1、1、1,再将这4组志愿者分配到4个不同的社区,利用分步乘法计数原理可得结果. 【详解】将5名志愿者分为4组,每组的人数分别为2、1、1、1,再将这4组志愿者分配到4个不同的社区,由分步乘法计数原理可知,不同的分配方案种数为2454C A 240=.故选:B.4.(2022·吉林·三模(理))对于91x ⎛- ⎝的展开式,下列说法不正确的是( )A .有理项共5项B .二项式系数和为512C .二项式系数最大的项是第4项和第5项D .各项系数和为1- 【答案】C 【解析】 【分析】由二项式展开式的通项公式与二项式系数的性质求解判断. 【详解】91x ⎛- ⎝的展开式的通项公式为 (939219912rr rr rr r T C C xx --+⎛⎫== ⎪⎝⎭,当0,2,4,6,8r =时,展开式的项为有理项, 所以有理项有5项,A 正确;所有项的二项式系数和为92512=,B 正确;因为二项式的展开式共有10项,所以二项式系数最大的项为第5项和第6项,C 错误; 令1x =,所有项的系数和为()9121-=-,D 正确. 故选:C5.(2022·全国·模拟预测(理))为帮助用人单位培养和招聘更多实用型、复合型和紧缺型人才,促进高校毕业生更高质量就业,教育部于2021年首次实施供需对接就业育人项目.某市今年计划安排甲、乙、丙3所高校与5家用人单位开展供需对接,每家用人单位只能对接1所高校,且必有高校与用人单位对接.若甲高校对接1家用人单位,乙、丙两所高校分别至少对接1家用人单位,则不同的对接方案共有( ) A .50种 B .60种 C .70种 D .80种【答案】C 【解析】 【分析】将方案分为乙、丙高校各对接2家用人单位和乙、丙高校其中一所对接1家用人单位,另一所对接3家用人单位两种情况,根据分组分配的方法可计算得到每种情况对应的方案数,加和即可求得结果. 【详解】若乙、丙高校各对接2家用人单位,则对接方案有125430C C ⋅=种;若乙、丙高校其中一所对接1家用人单位,另一所对接3家用人单位,则对接方案有131252C C C 40=种;综上所述:不同的对接方案共有304070+=种. 故选:C.6.(2022·黑龙江·大庆实验中学模拟预测(理))已知()()()()727012723111x a a x a x a x -=+-+-++-,则3a =( )A .280B .35C .35-D .280-【答案】A 【解析】 【分析】将()()()()727012723111x a a x a x a x -=+-+-++-化为()727012721t a a t a t a t -=++++,利用展开式的通项求解即可.【详解】()()()()727012723111x a a x a x a x -=+-+-++-,令1=x t -,则=1x t + ∴()727012721t a a t a t a t -=++++,()721t -展开式的通项为:()717C (2)1rrr r T t -+=-, 令4r =,可得()3437C 2280t t =,所以3280a =.故选:A.7.(2022·江苏·常州高级中学模拟预测)()251(1)x x x -+-的展开式中4x 的系数为( )A .25-B .25C .5-D .5【答案】A 【解析】 【分析】根据题意()2525551(1)(1)(1)(1)x x x x x x x x -+-----=+,借助二项展开式通项得5(1)x -的展开式为()5151C ,0,1,2, (5)k kk T x k -+=-=,分析求解. 【详解】∵()2525551(1)(1)(1)(1)x x x x x x x x -+-----=+5(1)x -的展开式为()()55155C 11C ,0,1,2,...,5k kk k k kk T x x k --+=-=-=,令3k =,得()332251C 10x x -=-,则224(10)10x x x -=-,令2k =,得()223351C 10x x -=,则34(10)10x x x -=-, 令1k =,得()14451C 5x x -=-,∵()251(1)x x x -+-的展开式中4x 的系数为()()()1010525-+-+-=-.故选:A .8.(2022·全国·模拟预测)数论领域的四平方和定理最早由欧拉提出,后被拉格朗日等数学家证明.四平方和定理的内容是:任意正整数都可以表示为不超过四个自然数的平方和,例如正整数222222321231112220=+++=+++.设222225a b c d =+++,其中a ,b ,c ,d 均为自然数,则满足条件的有序数组(),,,a b c d 的个数是( ) A .28 B .24 C .20 D .16【答案】A 【解析】 【分析】分类讨论四个数的组成后,由计数原理求解 【详解】显然a ,b ,c ,d 均为不超过5的自然数,下面进行讨论. 最大数为5的情况:①2222255000=+++,此时共有144A =种情况;最大数为4的情况:②2222254300=+++,此时共有2412A =种情况;③2222254221=+++,此时共有2412A =种情况.当最大数为3时,222222223322253321+++>>+++,故没有满足题意的情况. 综上,满足条件的有序数组(),,,a b c d 的个数是4121228++=. 故选:A9.(2022·福建省福州格致中学模拟预测)已知21nn a =+,则关于()()()()()()123456x a x a x a x a x a x a ------的展开式,以下命题错误的是( )A .展开式中系数为负数的项共有3项B .展开式中系数为正数的项共有4项C .含5x 的项的系数是126-D .各项的系数之和为212 【答案】C 【解析】 【分析】写出展开式各项的系数判断其正负即判断选项ABC 的真假;求出各项的系数之和即可判断选项D 的真假. 【详解】解:原式=()()()()()()359173365x x x x x x ------,所以6x 的系数为1,是正数;5x 的系数为3591733651320------=-<,4x 的系数为35+39+317+333+365+59++33650⨯⨯⨯⨯⨯⨯⨯>,3x 的系数为(3)(5)(9)(3)(5)(17)(17)(33)(65)0---+---++---<,2x 的系数为3591791733650⨯⨯⨯++⨯⨯⨯>,x 的系数为(3)(5)(9)(17)(33)+(5)(9)(17)(33)(65)0-----+-----<,常数项为3591733650⨯⨯⨯⨯⨯>,所以展开式中系数为负数的项共有3项,展开式中系数为负数的项共有4项,所以选项AB 正确,选项C 错误.设()()()()()()()359173365f x x x x x x x =------,所以2345621(1)2222222f =⋅⋅⋅⋅⋅=.所以各项的系数之和为212,所以选项D 正确. 故选:C10.(2022·辽宁·鞍山一中模拟预测)数列{}n a 中,11a =,121n n a a +=+,012345515253545556C C C C C C a a a a a a +++++的值为( )A .761B .697C .518D .454【答案】D 【解析】 【分析】由()1121n n a a ++=+,结合等比数列的定义和通项公式可求出21nn a =-,结合二项式定理可求出012345515253545556C C C C C C a a a a a a +++++的值. 【详解】解:因为()112221n n n a a a ++=+=+,又11a =,所以{}1n a +以2为首项,2为公比的等比数列,所以11222n n n a -+=⨯=,所以21n n a =-,则012345515253545556C C C C C C a a a a a a +++++()01223344556012345555555555555C 2C 2C 2C 2C 2C 2C C C C C C =⨯+⨯+⨯+⨯+⨯+⨯-+++++又01223344556555555C 2C 2C 2C 2C 2C 2⨯+⨯+⨯+⨯+⨯+⨯()0011223344555555552C 2C 2C 2C 2C 2C 2=⨯⨯+⨯+⨯+⨯+⨯+⨯()5212486=⨯+=,0123455555555C C C C C C 232+++++==,所以012345515253545556C C C C C C a a a a a a +++++48632454=-=, 故选:D11.(2022·湖北·华中师大一附中模拟预测)某地区安排A ,B ,C ,D ,E ,F 六名党员志愿者同志到三个基层社区开展防诈骗宣传活动,每个地区至少安排一人,至多安排三人,且A ,B 两人安排在同一个社区,C ,D 两人不安排在同一个社区,则不同的分配方法总数为( ) A .72 B .84 C .90 D .96【答案】B 【解析】 【分析】分为每个社区各两人和一个社区1人,一个社区2人,一个社区3人两种分配方式,第二种分配方式再分AB 两人一组去一个社区,AB 加上另一人三人去一个社区,进行求解,最后相加即为结果. 【详解】第一种分配方式为每个社区各两人,则CE 一组,DF 一组,或CF 一组,DE 一组,由2种分组方式,再三组人,三个社区进行排列,则分配方式共有332A 12=种;第二种分配方式为一个社区1人,一个社区2人,一个社区3人,当AB 两人一组去一个社区,则剩下的4人,1人为一组,3人为一组,则必有C 或D 为一组,有1323C C 种分配方法,再三个社区,三组人,进行排列,有133233C C A 12=种分配方法;当AB 加上另一人三人去一个社区,若选择的是C 或D ,则有12C 种选择,再将剩余3人分为两组,有1232C C 种分配方法,将将三个社区,三组人,进行排列,有11232323C C C A 36=种分配方法;若选择的不是C 或D ,即从E 或F 中选择1人和AB 一起,有12C 种分配方法,再将CD 和剩余的1人共3人分为两组,有2种分配方法,将三个社区,三组人,进行排列,有13232C A 24=种分配方法,综上共有12+12+36+24=84种不同的分配方式 故选:B12.(2022·内蒙古·海拉尔第二中学模拟预测(理))《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著.该书记述了我国古代14种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某中学研究性学习小组有甲、乙、丙、丁四人,该小组拟全部收集九宫算、运筹算、了知算、成数算和把头算等5种算法的相关资料,要求每人至少收集其中一种,且每种算法只由一个人收集,但甲不收集九宫算和了知算的资料,则不同的分工收集方案共有( )种. A .108 B .136 C .126 D .240【答案】C 【解析】 【分析】对甲收集的方案种数进行分类讨论,结合分组分配原理以及分类加法计数原理可求得结果. 【详解】分以下两种情况讨论:①若甲只收集一种算法,则甲有3种选择,将其余4种算法分为3组,再分配给乙、丙、丁三人,此时,不同的收集方案种数为23433C A 108=种;②若甲收集两种算法,则甲可在运筹算、成数算和把头算3种算法中选择2种,其余3种算法分配给乙、丙、丁三人,此时,不同的收集方案种数为2333C A 18=种.综上所述,不同的收集方案种数为10818126+=种. 故选:C.13.(2022·广东佛山·模拟预测)“五经”是儒家典籍《周易》、《尚书》、《诗经》、《礼记》、《春秋》的合称.为弘扬中国传统文化,某校在周末兴趣活动中开展了“五经”知识讲座,每经排1节,连排5节,则《诗经》、《春秋》分开排的情况有________种. 【答案】72 【解析】 【分析】由于《诗经》、《春秋》分开排,先将《周易》、《尚书》、《礼记》进行排列,然后再把《诗经》、《春秋》插入到4个空位中即可得到答案 【详解】先将《周易》、《尚书》、《礼记》进行排列,共有33A 种排法再从产生的4个空位中选2个安排《诗经》、《春秋》,共有24A 种排法所以满足条件的情形共有3234A A 72=种.故答案为:7214.(2022·上海市光明中学模拟预测)已知二项式623x x ⎛⎫- ⎪⎝⎭,则其展开式中3x 的系数为____________. 【答案】540- 【解析】 【分析】利用二项展开式的通项公式即可求解. 【详解】由题意可知,623x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()()621231663C C 3r r rr r rr T x x x --+⎛⎫=⨯⨯-⨯ =-⨯⎪⎝⎭,令1233r -=,解得3r =.所以二项式623x x ⎛⎫- ⎪⎝⎭展开式中3x 的系数为()()363C 27205034=-=-⨯⨯-.故答案为:540-.15.(2022·吉林·三模(理))为了保障疫情期间广大市民基本生活需求,市政府准备了茄子、辣椒、白菜、角瓜、菜花、萝卜、黄瓜、土豆八种蔬菜,并从中任选五种,以“蔬菜包”的形式发给市民.若一个“蔬菜包”中不同时含有土豆和萝卜,且角瓜、黄瓜、辣椒最多只含有两种,则可以组成___________种不同的“蔬菜包”. 【答案】27 【解析】 【分析】运用加法分类计数原理,结合组合的定义进行求解即可. 【详解】当土豆和萝卜都不含有时,蔬菜包的种数为2333C C 3⋅=;当土豆和萝卜中只含有一种时,蔬菜包的种数为1221323333C (C C C C )2(3331)24⋅+⋅=⨯+⨯=, 所以可以组成种不同“蔬菜包”种数为32427+=, 故答案为:2716.(2022·湖南·模拟预测)()()5321x x -+的展开式的中4x 的系数是______.【答案】5 【解析】 【分析】 由()()()()5553321211xx x x x -+=+-+,则分别求出()51x +中的4x 与x 的系数即可求解.【详解】()()()()5553321211x x x x x -+=+-+,所以展开式中4x 的系数是14552C 1C 5⋅-⋅=.故答案为:517.(2022·江苏无锡·模拟预测)甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次,已知甲和乙都没有得到冠军,并且乙不是第5名,则这5个人的名次排列情况共有________种. 【答案】54 【解析】 【分析】根据甲和乙都没有得到冠军,并且乙不是第5名,分甲是第5名和甲不是第5名分类求解. 【详解】解:因为甲和乙都没有得到冠军,并且乙不是第5名,当甲是第5名时,则乙可以为第2,3,4名,有3种情况,剩下的3人全排列有33A 6=种,此时,由分步计数原理得共有1863=⨯种情况;当甲不是第5名时,则甲乙排在第2,3,4名,有23A 6=种情况, 剩下的3人全排列有33A 6=种,此时,由分步计数原理得共有6636⨯=种情况;综上:甲和乙都没有得到冠军,并且乙不是第5名,则这5个人的名次排列情况共有18+36=54种情况, 故答案为:5418.(2022·山东泰安·模拟预测)古希腊哲学家毕达哥拉斯曾说过:“美的线型和其他一切美的形体都必须有对称形式.”在中华传统文化里,建筑、器物、书法、诗歌、对联、绘画几乎无不讲究对称之美.如图所示的是清代诗人黄柏权的《茶壶回文诗》,其以连环诗的形式展现,20个字绕着茶壶成一圆环,无论顺着读还是逆着读,皆成佳作.数学与生活也有许多奇妙的联系,如2020年02月02日(20200202)被称为世界完全对称日(公历纪年日期中数字左右完全对称的日期).数学上把20200202这样的对称数叫回文数,若两位数的回文数共有9个(11,22,…,99).则所有四位数的回文数中能被3整除的个数是___________.【答案】30 【解析】 【分析】所有四位数的回文数中要能被3整除,这四个数的和是3的偶数倍数,分类讨论即可. 【详解】要能被3整除,则四个数的和是3的偶数倍数.满足条件的回文数分为以下几类: 和为6的回文数:1221+++,3003+++,此时有1213⨯+=个.和为12的回文数:3333+++,2442+++,1551+++,6006+++,此时有2226⨯+=个.和为18的回文数:1881+++,2772+++,3663+++,4554+++,9009+++,此时有4219⨯+=个.和为24的回文数:3993+++,4884+++,5775+++,6666+++,此时有3217⨯+=个.和为30的回文数:7887+++,6996+++,此时有224⨯=个. 和为36的回文数:9999+++,此时有1个. 故共有36974130+++++=个. 故答案为:30.19.(2022·辽宁沈阳·三模)若()2345501234512a a x a x a x a x a x x =+++-++,则012345a a a a a a +++++=_______.【答案】243##53【解析】 【分析】根据二项展开式可得012345012345a a a a a a a a a a a a +++++=-+-+-,令1x =-,即可得解. 【详解】解:()512x -的展开式得通项为()()155C 22C r rr r rr T x x +=-=-, 则012345012345a a a a a a a a a a a a +++++=-+-+-,令1x =-,则50123453243a a a a a a -+-+-==,即012345243a a a a a a +++++=. 故答案为:243.20.(2022·浙江·绍兴一中模拟预测)某科室有4名人员,两男两女,参加会议时一排有5个位置,从左到右排,则两女员工不相邻(中间隔空位也叫不相邻),且左侧的男员工前面一定有女员工的排法有_______种(结果用数字表示). 【答案】44【解析】 【分析】应用分类分步计数,结合排列组合数及插空法求左侧的男员工前面一定有女员工的排法数. 【详解】先排两男和空位,再把两女插空,分两种情形:第一种,先排两男和空位,最左边是空位时,排两男和空位共22A 2=种,将女生插空时又分两种情形:先排两男和空位时,空位两侧排两名女生时计22A 2=种;空位两侧共排一名女生时计111222C C C 8=种,共计()2211122222A A +C C C 20=种;第二种,先排两男和空位,最左边是男生时,排两男和空位共41222C A =种,将女生插空共1123C C 6=种,共计12112223C A C C 24=种,综上,共计()221111211222222223A A C C C C A C C 44++=种.故答案为:44。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题31 计数原理【标题01】没有弄清事件的主体【习题01】5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A .53B .35C .35AD .35C【经典错解】由于每个同学额可以从3个冠军中选一个,所以获得冠军的可能总数为5333333=种,所以选择A .【详细正解】由于每个项目只有一个冠军,每一名学生都可能获得其中的一项获军,因此每个项目获冠军的可能性有5种.∴35555n =⨯⨯=种,所以选择B ,【习题01针对训练】4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同报法的种数是( )A.43B.34C.24D.12【标题02】逆用二项式定理时没有认真审题【习题02】式子123248(2)n nn n n n C C C C -+-++-等于( )A. (1)n -B. (1)1n-- C. 3n D. 31n -【经典错解】123248(2)(12)(1)n nn n n n n n C C C C -+-++-=-=-,故选A . 【详细正解】123248(2)(12)1(1)1n n n n n n n n C C C C -+-++-=--=--,故选B .【深度剖析】(1)经典错解错在逆用二项式定理时没有认真审题,(2)逆用二项式定理解题时,一定要注意展开式是不是二项式定理展开式的全部,有没有遗漏的情况,如果有遗漏,就要补上这一项,再减去这一项,保持恒等,一般情况下,注意观察组合数,组合数从0n C 开始,到nn C 结束. (3)有时也要注意观察哪个是a , 哪个是b .【习题02针对训练】已知在n-的展开式中,第5项的系数与第3项的系数之比是56:3.(1)求展开式中的所有有理项;(2)求展开式中系数绝对值最大的项;(3)求231981...9n n n n nn c c c -++++的值.【标题03】排列时出现了重复计数【习题03】将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )A.30种B.90种C.180种D.360种【经典错解】由题得1121213542211512180n C C C C C C ===,所以选择C .【详细正解】由题得1121213542212215121809022C C C C C C n A ====,所以选择B.【习题03针对训练】现在有5名男生3名女生,要从中选出4名学生组成社会实践小组,其中至少要有1名女生参加,问一共有多少种安排的方法?【标题04】求解系数最大项时,省略掉11,k k k k t t t t +-≥⎧⎨≥⎩中的“=”,从而导致系数最大项求解不出【习题04】已知nx ⎛+ ⎝的展开式中前三项的系数成等差数列.(1)求n 的值;(2)展开式中系数有没有最大的项,如果有,请求出来,如果没有,请说明理由,【经典错解】(1)由题设,得02111242n n nC C C +⨯=⨯⨯, 即2980n n -+=, 解得8n =或1n =(舍去).(2)设第1r +解之得不等式组无解,所以展开式系数没有最大项.【详细正解】1)由题设,得02111242n n nC C C +⨯=⨯⨯, 即2980n n -+=, 解得8n =或1n =(舍去). (2)设第1r +的系数最大,则1881188111221122rr r r r r r r C C C C ++--⎧≥⎪⎪⎨⎪≥⎪⎩即()118211129r r r r⎧≥⎪-+⎪⎨⎪≥⎪-⎩ 解得2r =或3r =. 所以系数最大的项为537T x =,9247T x =.【习题04针对训练】已知22)nx 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)n x x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项.【标题05】有理项的定义没有理解清楚 【习题05】12+展开式中含的有理项共有( )A. 1 项B. 2项C.3 项D. 4 项 【经典错解】由二项式定理可得展开式:126123621121212k k k kkkk k k T C C xx C x---+==⋅=,其中的有理项必,故k 可取0,6,即有2项,故选B .【详细正解】由二项式定理可得展开式:126123621121212k k k k kkkk k T C C xx C x---+==⋅=,其中的有理项必须满足z k∈-66,故k 可取0,6,12,即有3项,故选C . 【深度剖析】(1)经典错解错在有理项的定义没有理解清楚. (2)有理项指的是展开式中未知数的指数是整数的项,这个整数可以是正整数,也可以是负整数,也可以是零,如221x x-=也是有理项,经典错解理解成了指数必须是非负整数,导致漏解,【习题05针对训练】已知n的展开式中,前三项系数的绝对值依次成等差数列.(1)证明:展开式中没有常数项;(2)求展开式中所有的有理项.【标题06】对映射的定义理解不够透彻【习题06】已知集合{1,2,3,4,5,6,7}A B ==, 映射:f A B →满足(1)(2)(3)(4)f f f f <<<,则这样的映射f 的个数为( )A. 4373C A B. 47C C. 77 D. 4377C ×【经典错解】因为(1)(2)(3)(4)f f f f <<<,所以(1),(2),(3),(4)f f f f 分别取{1,2,3,4,5,6,7}的某四个,选出之后,它们对应是固定的,所以这样的映射的个数为47C ,所以选择B .【详细正解】因为(1)(2)(3)(4)f f f f <<<,所以(1),(2),(3),(4)f f f f 分别取{1,2,3,4,5,6,7}的某四个,选出之后,它们对应是固定的,所以这样的映射的个数为47C ,但是集合A 中的5,6,7,还没有确定它们对应的像,它们每一个的像都有7种可能,所以共有4377C 种,所以选择D .【习题06针对训练】设集合{1,2,3,4}A =,{5,6,7}B =,则从A 到B 的不同映射的个数为( )A.34AB.34C C.34 D.43【标题07】二项式展开式某一项的系数和二项式系数没有区分开【习题07】在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( )【经典错解】5(1)x -,6(1)x -,7(1)x -,8(1)x -的展开式中,每个3x 的系数分别是10,20,35,56,所以含3x 的项的系数是10203556121+++=,所以选择B .【详细正解】5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数33333335678(1)(1)(1)(1)10(20)(35)(56)121C C C C -+-+-+-=-+-+-+-=-,故选D .【习题07针对训练】在64(1)(1)x x +-的展开式中,3x 的系数是_____(结果用数值表示).【标题08】事情处理的程序有问题导致重复【习题08】选派5名学生参加四项环保志愿活动,要求每项活动至少有一人参加,则不同的选派方法共有_____种 .【经典错解】由题得4154480n A C ==,所以不同的选派方法共有480种方法,【详细正解】先将5人分成4组每组至少一人,即一组2人另三组个1人,共有2554102C ⨯==种不同分法,然后再将这四组分到四项活动中去共44123424A =⨯⨯⨯=种分法,根据分步计数原理可得此项活动的不同的选派方法共有1024240⨯=种,【深度剖析】(1)经典错解错在由于事情处理的程序有问题导致重复,(2)经典错解是先从5名学生里选4名学生排列,保证每项活动都有一个人,共有45A 种方法,最后把剩下的一名学生给4项活动的任意一项,有14C 种方法,这样安排出现重复情况,如第一步4项活动分配的学生是,,,a b c d ,第二步,假设把最后一名学生e 给了第一项活动,即最后的安排是(,e),b,c,d a ,如果第一步4项活动分配的学生是,,,e b c d .第二步,假设把最后一名学生a 给了第一项活动,即最后的安排是(,e),b,c,d a .显然这两种是一种情况,是重复情况,(3)对于这种含有“至少”的排列组合题,一般用分类讨论的方法和间接法,【习题08针对训练】将5名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种.【标题09】审题错误【习题09】从6名短跑运动员中选出4人参加4100m ⨯接力赛.试求满足下列条件的参赛方案各有多少种? (1)甲不能跑第一棒和第四棒; (2)甲不能跑第一棒,乙不能跑第四棒【经典错解】(1)优先考虑特殊元素甲,让其选位置,此时务必注意甲是否参赛,因此需分两类:第1类,甲不参赛有45A 种排法;第2类,甲参赛,因只有两个位置可供选择,故有12A 种排法;其余5人占3个位置有35A 种排法,故有A 12A 35种方案.所以有45A +12A 35A =240种参赛方案.(2)先从4个运动员里选2个人和甲,乙组成一队,有24C 种方法,如果甲跑最后一棒,共有33A 种方法,如果甲不跑最后一棒,则有112222A A A 种方法,所以一共有2311243222()84C A A A A +=种方法,【详细正解】(1)优先考虑特殊元素甲,让其选位置,此时务必注意甲是否参赛,因此需分两类:第1类,甲不参赛有45A 种排法;第2类,甲参赛,因只有两个位置可供选择,故有12A 种排法;其余5人占3个位置有35A 种排法,故有1325A A ⋅种方案.所以有45A +12A 35A =240种参赛方案.(2)优先考虑特殊位置.第1类,乙跑第一棒有11A 35A =60种排法;第2类,乙不跑第一棒有14A 14A 24A =192种排法.故共有60192252+=种参赛方案.【习题09针对训练】某研究性学习小组有6名同学.(1)这6名同学排成一排照相,则同学甲与同学乙相邻的排法有多少种?(2)从6名同学中选4人参加班级4100⨯接力比赛,则同学丙不跑第一棒.....的安排方法有多少种?【标题10】二项式展开式的二项式系数概念理解错误【习题10】()102x -的展开式中第5项的二项式系数是( )A.510C B.41016C C.41032C - D.410C【经典错解】由二项展开式的通项公式得,第5项的二项式系数为4441010(2)16C C -=,所以选择B .【详细正解】由二项展开式的通项公式得,第5项的二项式系数为410C.【习题10针对训练】220(1)x -的展开式中,若第4r 项和第2r +项的二项式系数相等,则r = .【标题11】对均匀分组没有理解透彻导致出现重复情况【习题11】6个同学分成三组参加不同的社会实践,每组两人,共有多少种不同的安排方法?【经典错解】由题得22236423540n C C C A ==,所以共有540种不同的安排方法,【详细正解】由题得222364233390C C C n A A ==,所以共有90种不同的安排方法. 【深度剖析】(1)经典错解错在对均匀分组没有理解透彻导致出现重复情况.(2)经典错解的解题思路是先分组,再分工,从6个同学里选出两个人作为一组,有26C 种方法,再从剩下的4个同学里选2个人组成一组,有24C 种方法,再从最后两个同学里选2个人作为一组,有22C 种方法,最后把这三组进行排列,相当于安排这三组参加社会实践,有33A 种方法,所以共有22236423540n C C C A ==种不同的安排方法,假设第一组是(,)a b ,第二组是(,)c d ,第三组是(,)e f .但是第一组也可能是(,)c d ,第二组也可能是(,)e f ,第三组也可能是(,)a b ,这三组实际上是一种情况,所以是重复的,这样的情况有33A 种,但是只能作为一种情况,所以分组时重复了33A种,所以真正分组的方法有22264233C C C n A =种,(3)对于这种均匀分组的问题,也可以直接定向分配,减少思维量,减少运算,先从6个同学里选出两个人分配给社会实践A ,有26C 种方法;再从剩下的4个同学里选2个人分配给社会实践B ,有24C 种方法;最后从最后两个同学里选2个人分配给社会实践C ,有22C 种方法,所以共有22264290n C C C ==种方法,(4)对于解答这种题目,大家要提高警惕,只要是分配的对象的个数是一样时,要注意均匀分组,正确处理,【习题11针对训练】教育部直属师范大学免费师范毕业生一般回生源所在省份中小学校任教. 今年春节后,我校迎来了陕西师范大学数学系5名实习教师,若将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有()A.60种B.90种C.120种D.180种【标题12】审题不清误认为不能重复【习题12】从5种不同的书中买3本送给3名同学,每人各1本,则不同的送法有种(用数字作答).【经典错解】由题得3554360n A===,所以不同的送法有60种.【详细正解】由题得555125n==,所以不同的送法有125种.【习题12针对训练】将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种 B.18种 C.36种 D.54种【标题13】审题粗心没有看到“无重复数字”这个条件【习题13】用0,1,2,3,4,5,6,7,8,9十个数字,组成无重复数字的三位数的个数为 .【经典错解】先排百位有9种方法,再排十位有10种方法,再排个位有10种方法,由乘法分步原理得共有91010900⨯⨯=种方法,所以这样的三位数共有900个.【详细正解】先求所有的三位数:先排百位有9种方法,再排十位有10种方法,再排个位有10种方法,由乘法分步原理得共有91010900⨯⨯=种方法,所以这样的三位数共有900个.再求没有重复的三位数:先排百位有9种方法,再排十位有9种方法,再排个位有8种方法,所以没有重复的三位数共有998648⨯⨯=个,所以所求的三位数共有900648252-=个.所以填252.【深度剖析】(1)经典错解错在审题粗心没有看到“无重复数字”这个条件.(2)经典错解理解为了可以重复,也可以不重复,但是实际上,题目求的是可能有重复数字的个数,所以导致列式出现错误.(3)排列组合的应用题第一步是认真读题审题,这一步相当关键,题目出现了审题错误,一般列式是错误的.所以我们在解排列组合应用题时务必要认真审题,不能凭直觉和经验.【习题13针对训练】某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为( ) A.360 B.520 C.600 D.720【标题14】平均分组解题策略不当出现重复情况【习题14】某门选修课共有9名学生参加,其中男生3人,教师上课时想把9人平均分成三个小组进行讨论,若要求每个小组中既有男生也有女生,则符合要求的分组方案共有 种.【经典错解】121212362412540C C C C C C ,所以符合要求的方案共有540种.【详细正解】分配给男生甲两个女生有26C 种方法,分配给男生乙两个女生有24C ,分配给男生丙两个女生有22C 种方法,所以共有222642C C C =90种方法.【习题14针对训练】将5名实习教师分配到高二年级的3个班实习,每班至少一名,则不同的分配方案有 种.高中数学经典错题深度剖析及针对训练第31讲:计数原理参考答案【习题01针对训练答案】A所以系数绝对值最大的项为56815360T x -=-(3)231011010101010981 (9)C C C -++++12233101010101010999 (99)C C C C ++++=01223310101010101010999 (919)C C C C C +++++-=1010(19)110199+--== 【习题03针对训练答案】65【习题03针对训练解析】可以利用间接法解答,由题得448565n C C =-=,所以一共有65种安排的方法,也可以分类讨论1322313535353030565n C C C C C C =++=++=,所以一共有65种安排的方法.【习题04针对训练答案】(1)第6项; (2)第4项. 【习题04针对训练解析】由题意知,222992n n -=,即(232)231)0n n-+=(. ∴232n =,解得5n =. (1)由二项式系数的性质知,101(2)x x-的展开式中第6项的二项式系数最大.即555661(2)()8064T C x x=-=-.【习题05针对训练解析】依题意,前三项系数的绝对值是1,1112n C (),2212n C (),且1122112=1+()22n n C C ⋅(),即2980n n -+=,∴8n =(1n =舍去). (1) 若1r T +为常数项,当且仅当1634r -0=,即316r =.8821881(()2rr rrr r r T C C x --+∴==-⋅163844(1)2r rr rr C xx --=-⋅⋅ ∵r Z ∈,∴这不可能.∴展开式中没有常数项.(2)若1r T +为有理项,当且仅当1634r -为整数,∵08r ≤≤ 0,r Z ∈,∴0,4,8r =,即展开式中的有理项共有三项,它们是41T x =,5358T x =,291256T x -=. 【习题06针对训练答案】D【习题06针对训练解析】因为集合{1,2,3,4}A =,{5,6,7}B =,则从A 到B 的不同映射的个数4381=,选D .【习题07针对训练答案】8-【习题07针对训练解析】原式=244224(1)(1)(1)(1)(1)x x x x x ++-=+-224(21)(1)x x x =++-含3x 的项为12342()8x C x x ⋅⋅-=-,故3x 的系数为8-.【习题08针对训练答案】150【习题08针对训练解析】先将5 名大学生分成三组:有两组各1人,另一组有3人有3510C =种分法;有两组各2人,另一组1人有22532215C C A =分法,然后将这三组大学生分别分配到3个乡镇去当村官有336A =种;综上可知不同的分配方案有2233535322()(1015)6150C C C A A +⨯=+⨯=种. 【习题09针对训练答案】(1)5252240A A ⋅=;(2)1355300C A =.【习题10针对训练答案】4【习题10针对训练解析】由题意得:4112020r r C C -+=,所以411r r -=+或41120r r -++=,因为r Z ∈,所以4r =.【习题11针对训练答案】B【习题11针对训练解析】先将5名实习教师分成3组有22112325A C C C 种,再将这3个组分配到三个班级有33A 种,由分步计数原理得,其不同的分配方案有903322112325=⋅A A C C C 种. 【习题12针对训练答案】B【习题12针对训练解析】由题意知,完成这一件事可分为两步:先将标号1,2的卡片放入同一封信有13C 种方法;再将其他四封信放入两个信封,每个信封两个有222224A A C ⋅种方法,共有1822222413=⋅⋅A A C C 种,故选B .【习题13针对训练答案】C。

相关文档
最新文档