求极值与最值的方法

求极值与最值的方法
求极值与最值的方法

极值点偏移的典型例题(含答案)

极值点偏移的问题(含答案) 2 1212()ln ,(1()11 21()()3(),,f x x ax a f x x x a a f m f m f x x x x x e =-==?1.已知为常数) ()若函数在处的切线与轴平行,求的值;()当时,试比较与的大小; ()有两个零点证明:> 21212()ln (),,. f x x ax f x x x x x e =-?变式:已知函数,a 为常数。(1)讨论的单调性; (2)若有两个零点,试证明:>

2012120()+sin ,(0,1);2 ()()()()(),2. x f x x ax x f x a a f x f x f x f x x x x π=+∈=+2.已知(1)若在定义域内单调递增,求的取值范围; (2)当=-2时,记取得极小值为若求证> ( )2121212121 ()ln -,() 2 (1=()()()(1)()1 ,,0,2 f x x ax x a R f f x g x f x ax g x a x x f x f x x x x x =+∈-++=+≥ 3.已知(1)若)0,求函数的最大值; (2)令=-,求函数的单调区间; (3)若=-2,正实数满足()证明: 2 12122(1)1 (1)1,,x x x x x e -+>>4.设a>0,函数f(x)=lnx-ax,g(x)=lnx-证明:当时,g(x)>0恒成立; (2)若函数f(x)无零点,求实数a 的取值范围;(3)若函数f(x)有两个相异零点x 求证:x

12123 12()2ln ,1()2(),8f x x a a x a R f x f x x x x x a x x a =--∈

高考数学阶段复习试卷:三角形中的最值问题

高考数学阶段复习试卷:三角形中的最值问题 1. 在ABC ?中,a ,b ,c 分别为角A ,B ,C 所对的边长,已知:3C π= ,a b c λ+=(其中1λ>) (1)当2λ=时,证明:a b c ==; (2)若3AC BC λ?=,求边长c 的最小值. 2. 已知函数()4cos sin()3f x x x π=- (1)求函数()f x 在区间[,]42 ππ上的值域; (2)在ABC ?中,角,,A B C 所对的边分别是,,a b c 若角C 为锐角,()f C =,且2c =,求ABC ?面积的最大值。 3. 已知函数2()22cos f x x x m =+- (Ⅰ)若方程()0f x =在[0,]2x π ∈上有解,求m 的取值范围;(Ⅱ)在ABC ?中,,,a b c 分别是,,A B C 所对 的边,当(Ⅰ)中的m 取最大值,且()1f A =-,2b c +=时,求a 的最小值 4. 在ABC ?中,sin A a =. (1)求角B 的值;(2)如果2b =,求ABC ?面积的最大值. 5. 如图,扇形AOB ,圆心角AOB 等于60o ,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设AOP θ∠=,求POC ?面积的最大值及此时θ的值.

6. 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从匀速步行到C .假设缆车匀速直线运动的速度为130m /min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5 C =. (1) 求索道AB 的长; (2) 问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3) 为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 7. 如图,在等腰直角三角形OPQ ?中,90POQ ? ∠=,22OP =点M 在线段P Q 上. (1)若5OM =求PM 的长; (2)若点N 在线段MQ 上,且30MON ?∠=,问:当POM ∠取何值时,OMN ?的面积最小?并求出面积的最小值.

极值点偏移问题的两种常见解法之比较

极值点偏移问题的两种常见解法之比较 浅谈部分导数压轴题的解法 在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且 12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点12 02 x x x += ,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点12 02 x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、, 1212()()f x f x x x . 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”? 两个正数a 和b 的对数平均数定义:,,(,)ln ln ,, a b a b L a b a b a a b -?≠? =-??=? 对数平均数与算术平均数、 (,)2 a b L a b +≤≤,(此式记为对数平均不等式) 下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ln ln a b a b --, ln ln a b a b -<-, 只须证:ln a b < 1x =>,只须证:1 2ln ,1x x x x ≤-> 设1 ()2ln ,1f x x x x x =-+>,则222 21(1)()10x f x x x x -'=--=- <,所以()f x

高中数学最值问题

最值问题 一、点击高考 最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面。以最值为载体,可以考查中学数学的所有知识点,考查分类讨论、数形结合、转化与化归等诸多数学思想和方法,还可以考查学生的思维能力、实践和创新能力。因此,它在高考中占有比较重要的地位。 回顾近几年高考,从题型分布来看,大多数一道填空或选择题,一道解答题;从分值来看,约占总分的10%左右。特别是2003年北京卷,选择、填空题各一道,解答题有两道,总分值有36分之多;2003年上海卷,填空题各一道,解答题有两道,总分值有36分之多;2003年上海卷,填空题一道,解答题也是两道,总分值有近30分,两份试卷中均有一道实际应用问题。 由此看来,最值问题虽然是老问题,但一直十分活跃,尤其导数的引入,更是为最值问题的研究注入了新的活力。 可以预见:2005年的高考命题中,有关最值问题,题型、题量、分值将保持稳定,题目的背景会更贴近学生的实际生活,更关注社会热点问题,难度不会太难。 二、考点回顾: 分析已有考法,最值问题的呈现方式一般有以下几种: 1、函数的最值; 2、学科内的其它最值,如三角形的面积最值问题、几何体的体积最值问题、数列的最大项等等; 3、字母的取值范围; 4、不等式恒成立问题,常常转化为求函数的最值,例如: f(x)≥0对x∈R恒成立?f(x)的最小值≥0成立, f(x)≤0对x∈R恒成立?f(x)的最大值≤0成立; 5、实际应用问题: 实际应用问题中,最优化问题占的比例较大,通过建模可化为最值问题。这类题已成为这几年高考的热点。可以肯定,这个热度会继续保持。

三、知识概要 1、求函数最值的方法: “数”和“形”,数形结合: 配方法 直接法 均值不等式法 单调性 代数方法 导数法 判别式法 间接法 有界性 函数的图像 平面几何知识 几何方法 线性规划 解析几何 斜率 两点间距离 2、求几类重要函数的最值方法; (1)二次函数:配方法和函数图像相结合; (2)),0()(R a a x a x x f ∈≠+=:均值不等式法和单调性加以选择; (3)多元函数:数形结合成或转化为一元函数。 3、实际应用问题中的最值问题一般有下列三种模型: 能直接判断 线性规划 建立目标函数 曲函数的最值 四、典型例题分析 例1(2002·全国卷·理·21) 设a 为实数,)(1)(2R x a x x x f ∈+-+=, (1)讨论)(x f 的奇偶性;

高考数学极值点问题

1. 已知函数2 ()(1)x f x x e ax =-+ 有两个零点. (1)当a =1时,求()f x 的最小值; (2)求a 的取值范围; (3)设12,x x 是()f x 的两个零点,证明12+0x x <. 【(1)(,0)-∞ 减(0,)+∞ 增(2)0a > ;说明零点存在,用不等式放缩,半a 与-1的较量;极值点偏移】

2. 【★★】已知函数2 ()ln 2()f x x x x ax a R =+-+∈ 有两个不同的零点12,x x . (1)求实数a 的取值范围. (2)求证:12+2x x >. (3)求证:121x x ?>. 【(1)3a > 】

3. 已知函数2()ln f x x x ax =- ,a R ∈ . (1)当12 a = 时,求函数()f x 的单调区间; (2)若函数()f x 有两个极值点12,x x ,且12x x < ,求1()f x 的取值范围.

4. (2016全国一:21)已知函数2)1(2)(-+-=x a e x x f x )(有两个零点. (I)求a 的取值范围; (II)设12x x ,是的两个零点,证明:12 2.x x +<

5. 已知函数ln ()=x f x x . (1)求函数()f x 的极值; (2)当0x e << 时,求证:()()f e x f e x +>- ; (3)设函数()f x 图像与直线y m = 的两交点分别为11(,())A x f x ,11(,())B x f x ,AB 中点横坐标为0x ,证明:0'()0f x < .

高考数学最值问题复习

第9课时最值问题 要点·疑点·考点 课前热身 能力·思维·方法 延伸·拓展 误解分析

要点·疑点·考点 1.能够根据条件恰当地选择自变量建立目标函数,然后利用求函数最值的方法(如配方法、基本不等式法、三角函数的值域、函数的单调性、判别式法等)求出最大、最小值 2.能够结合曲线的定义和几何性质,运用“数形结合”或者用“几何法”求出某些最大、最小值. 返回

1322=-y x 1.定长为12的线段AB 的端点在双曲线的右支上,则AB 中点M 的横坐标的最小值为_____.2.已知点,F 是椭圆的左焦点,一动点M 在椭圆上移动,则|AM|+2|MF|的最小值为_____.3.若动点P 在直线2x+y+10=0上运动,直线PA 、PB 与圆x 2+y 2=4分别切于点A 、B ,则四边形PAOB 面积的最小值为_______.112 1622=+y x () 32,A 课前热身 2 7 108

返回 4.椭圆且满足,若离心率为e ,则的最小值为()(A)2(B)(C)(D)()0122 22>>=+b a b y a x b a 3≤221e e +6133132 35.设点P 是椭圆上的动点,F 1、F 2是椭圆的两个焦点,则sin ∠F 1PF 2的最大值为_________________12222=+b y a x 783B

能力·思维·方法 1.过椭圆2x2+y2=2的一个焦点作直线交椭圆于P,Q两点,求△POQ面积S的最大值. 【解题回顾】本题若选择PQ为底表示△POQ的面积则运算量较大

【解题回顾】本题是通过建立二次函数求最值,基本手法是配方,要注意顶点横坐标是否在此区间内的讨论.2.已知定点A (a ,0),其中0<a <3,它到椭圆上的点的距离的最小值为1,求a 的值.149 2 2=+y x

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

极值点偏移的问题(含答案)

极值点偏移的问题(含答案) 2 1212()ln ,(1()11 21()()3(),,f x x ax a f x x x a a f m f m f x x x x x e =-==?1.已知为常数) ()若函数在处的切线与轴平行,求的值;()当时,试比较与的大小; ()有两个零点证明:> 21212()ln (),,. f x x ax f x x x x x e =-?变式:已知函数,a 为常数。(1)讨论的单调性; (2)若有两个零点,试证明:> 2012120()+sin ,(0,1); 2 ()()()()(),2. x f x x ax x f x a a f x f x f x f x x x x π=+∈=+2.已知(1)若在定义域内单调递增,求的取值范围; (2)当=-2时,记取得极小值为若求证>

( )2121212121 ()ln -,() 2 (1=()()()(1)(),,0,f x x ax x a R f f x g x f x ax g x a x x f x f x x x x x =+∈-++=+≥ 3.已知(1)若)0,求函数的最大值; (2)令=-,求函数的单调区间; (3)若=-2,正实数满足()证明: 2 12122(1)1 (1)1,,x x x x x e -+>>4.设a>0,函数f(x)=lnx-ax,g(x)=lnx-证明:当时,g(x)>0恒成立; (2)若函数f(x)无零点,求实数a 的取值范围;(3)若函数f(x)有两个相异零点x 求证:x 12123 12()2ln ,1()2(),8f x x a a x a R f x f x x x x x a x x a =--∈

高考数学不等式中最值问题全梳理

高考数学不等式中最值问题全梳理 模块一、题型梳理 题型一 基本不等式与函数相结合的最值问题 例题1 若方程ln x m =有两个不等的实根1x 和2x ,则22 12x x +的取值范围是( ) A .()1,+∞ B . ) +∞ C . ()2,+∞ D .()0,1 【分析】由方程可得两个实数根的关系,再利用不等式求解范围. 【解析】因为 ln x m =两个不等的实根是1x 和2x ,不妨令()()120,1,1,x x ∈∈+∞, 12,Inx m Inx m =-= 故可得()120In x x =,解得211x x = ,则22 12x x + =212112x x +>=,故选:C. 【小结】本题考查对数函数的性质,涉及均值不等式的使用,属基础题. 例题2 22 91 sin cos αα +的最小值为( ) A .2 B .16 C .8 D .12 【分析】利用22sin cos 1αα+=将22 91sin cos αα +变为积为定值的形式后,根据基本不等式可求得最小值. 【解析】∵22sin cos 1αα+=,∵ ()22 2222 9191sin cos sin cos sin cos αααααα?? +=++ ??? 2222 sin 9cos 1010616cos sin αααα=+++=,当且仅当23sin 4α=,2 1cos 4α=时“=”成立,故2291 sin cos αα +的最小值为16. 【小结】本题考查了利用基本不等式求和的最小值,解题关键是变形为积为定值,才能用基本不等式求最值,属于基础题.

例题3 已知函数y =log a x +1(a >0且a ≠1)图象恒过定点A ,若点A 在直线x m +y n -4=0(m >0,n >0)上,则 m +n 的最小值为________. 【解析】由题意可知函数y =log a x +1的图象恒过定点A (1,1),∵点A 在直线x m +y n -4=0上,∵1m +1 n =4,∵m >0,n >0,∵m +n =14(m +n )????1m +1n =14????2+n m +m n ≥14? ?? ?? 2+2 n m ·m n =1,当且仅当m =n =12时等号成立,∵m +n 的最小值为1. 题型二 基本不等式与线性规划相结合的最值问题 例题4 已知,x y 满足约束条件230 23400x y x y y -+≥?? -+≤??≥? ,若目标函数2z mx ny =+-的最大值为1(其中 0,0m n >>),则 11 2m n +的最小值为( ) A .3 B .1 C .2 D . 32 【分析】画出可行域,根据目标函数z 最大值求,m n 关系式23m n +=,再利用不等式求得112m n +最小值. 【解析】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=. ()11111151519322323232322n m m n m n m n m n ?????+=?+?+=?++≥?+=?= ? ? ?????,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32 .故选:D

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

2020年高考数学冲刺复习知识点精讲:与圆有关的最值问题含解析

与圆有关的最值问题 一、考情分析 通过对近几年的高考试题的分析比较发现,高考对直线与圆的考查,呈现逐年加重的趋势,与圆有关的最值问题,更是高考的热点问题.由于圆既能与平面几何相联系,又能与圆锥曲线相结合,命题方式比较灵活,故与圆相关的最值问题备受命题者的青睐. 二、经验分享 1. 与圆有关的最值问题的常见类型及解题策略 (1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解. (2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -b x -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值 问题;③形如(x -a )2 +(y -b )2 型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题. 2.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化 三、知识拓展 1.圆外一点P 到圆C 上点的距离距离的最大值等于,最小值等于PC r -. 2.圆C 上的动点P 到直线l 距离的最大值等于点C 到直线l 距离的最大值加上半径,最小值等于点C 到直线l 距离的最小值减去半径. 3.设点M 是圆C 内一点,过点M 作圆C 的弦,则弦长的最大值为直径,最小的弦长为. 四、题型分析 (一) 与圆相关的最值问题的联系点 1.1 与直线的倾斜角或斜率的最值问题 利用公式k =tan α(α≠90°)将直线的斜率与倾斜角紧密联系到一起,通过正切函数的图象可以解决已知斜率的范围探求倾斜角的最值,或者已经倾斜角的范围探求斜率的最值.

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

高考数学最值问题

专题十六最值问题 【考点聚焦】 考点1向量的概念、向量的加法和减法、向量的坐标运算、平面向量的数量积 考点2:解斜三角形. 考点3:线段的定比分点、平移. 考点4:向量在平面解析几何、三角、复数中的运用 考点5:向量在物理学中的运用. 【自我检测】 1求函数最值的方法:配方法,单调性法,均值不等式法,导数法,判别式法,三角函数有界性,图象法, 2、求几类重要函数的最值方法; (1)二次函数:配方法和函数图像相结合; a (2) f (x) =x (a = 0, a ? R):均值不等式法和单调性加以选择; x (3)多元函数:数形结合成或转化为一元函数?3、实际应用问题中的最值问题一般有下列两种模型:直接法,目标函数法(线性规划,曲函数的最值) 【重点?难点?热点】 问题1:函数的最值问题 函数的最值问题是其他最值问题的基础之一,许多最值问题最后总是转化为函数(特别是二次函数)的最值问题?求函数最值的方法有:配方法、均值不等式法、单调性、导数法、 判别式法、有界性、图象法等? 例1: (02 年全国理1)设a 为实数,f (x) =x2+ x —a +1(x^ R), (1)讨论f (x)的奇偶性;(2)求f (x)的最小值. 思路分析:(1)考察f(x)与f (-x)是否具有相等或相反的关系;或从特殊情形去估计,再加以验证.(2)二次函数的最值解,一般借助于二次函数的图像,当对称轴与所给区间的相对位置关系不确定,则需分类讨论. (1)解法一:(利用定义)f (一x) =x2+ x + a +1, - f (x) = -x2- x -a T. 若f(x)为奇函数,贝V f(-x) = -f(x),即2x2+ x + a +|x-a +2 = 0.此等式对R 都不成立,故f(x)不是奇函数;

高中数知识讲解_函数的极值与最值提高

导数的应用二------函数的极值与最值 【学习目标】 1. 理解极值的概念和极值点的意义。 2. 会用导数求函数的极大值、极小值。 3. 会求闭区间上函数的最大值、最小值。 4. 掌握函数极值与最值的简单应用。 【要点梳理】 要点一、函数的极值 (一)函数的极值的定义: 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 由函数的极值定义可知: (1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值. (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. (二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';

高中数学极值点偏移问题

极值点偏移问题 沈阳市第十一中学数学组:赵拥权 一:极值点偏移(俗称峰谷偏)问题的定义 对于可导函数在区间(a,b )上只有一个极大(小)值点,方程(f(x)=m)的解 分别为 且 <

2) 若函数f(x)满足 有下列之一成立: ①f(x)在 递增,在(a,2a)递减,且f(a-x)<(>)f(a+x)(f(x)<(>)f(2a-x)) ②f(x)在(0,a)递减,在(a,2a)递增,且f(a-x)>(<)f(x+a)(f(x)>(<)f(2a-x)) 则函数f(x)在(0,2a)的图象关于直线x=a 偏移(偏对称)(俗称峰谷偏函数)其中① 极大值左偏(或右偏)也称峰偏左(或右)②极小值偏左(或偏右)也称谷偏左(或右); 性质: 1) )(x f 的图象关于直线a x 对称若 则 <=> ,( =0, ); 2)已知函数是满足条件的极大值左偏(峰偏左)若 则则 ,及 极值点偏移解题步骤: ①求函数f(x)的极值点; ②构造函数F(x)=f(x+)-f( (F(x)=f()-f(, F(x)=f(x+)-f( , F(x)=f(x)-f( )确定F(x)单调性 ③结合F(0)=0(F(-)=0,F(判断F(x)符号从而确定f(x+),f(( f(x+)与f( f(x)与f(的大小关系; 答题模式: 已知函数y=f(x)满足 ,为函数y=f(x)的极值点,求证: ①求函数f(x)的极值点; ②构造函数F(x)=f(x+)-f( 确定F(x)单调性

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

高中数学最值问题

最 值 问题的解法 一、配方法 例1:当01≤≤-x 时,求函数x x y 4322 ?-=+的最大值和最小值. 解析:34)3 22(32 + --=x y ,当01≤≤-x 时,122 1≤≤x .显然由二次函数的性质可得1min =y ,3 4max = y . 二、判别式法 对于所求的最值问题,如果能将已知函数式经适当的代数变形转化为一元二次方程有无实根的问题,则常可利用判别式求得函数的最值. 例2:已知012442 2 =-++-x x xy y ,求y 的最值. 解析:由已知,变形得0)1()12(242 2 =-+--y x y x ,R x ∈,则0≥?,即有 0)1(16)12(422≥---y y 故 4 5≤ y . 因此 4 5 max = y ,无最小值. 例3:若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则m ax x = min y = 解析:由已知,变形得:0)()12(2 2 =++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(22≥+--x x x ,于是018≥+-x ,即 8 1 ≤ x .即 81max =x . 同理,0)()12(2 2 =-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(22≥--+y y y ,于是018≥+y ,即 81-≥y .即 8 1 min -=y . 注意:关于x 、y 的有交叉项的二元二次方程,通常用此法 例4:已知函数1 1 34522+++=x x x y ,求y 的最值. 解析:函数式变形为:0)1(34)5(2 =-+--y y x y ,R x ∈,由已知得05≠-y , 0)1)(5(4)34(2≥----=?∴y y ,即:0762≤--y y ,即:71≤≤-y . 因此 7max =y ,1min -=y . 例5:已知函数)(1 2 R x x b ax y ∈++= 的值域为]4,1[-,求常数b a ,

(完整版)导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题 极值点偏移问题常见的处理方法有⑴构造一元差函数()()()x x f x f F --=02x 或者 ()()()x x f x x f x F --+=00。其中0x 为函数()x f y =的极值点。⑵利用对数平均不等式。 2 ln ln ab b a b a b a +< --< 。⑶变换主元等方法。 任务一、完成下面问题,总结极值点偏移问题的解决方法。 1.设函数2 2 ()ln ()f x a x x ax a R =-+-∈ (1)试讨论函数()f x 的单调性; (2)()f x m =有两解12,x x (12x x <),求证:122x x a +>. 解析:(1)由2 2 ()ln f x a x x ax =-+-可知 2222(2)()()2a x ax a x a x a f x x a x x x --+-'=-+-== 因为函数()f x 的定义域为(0,)+∞,所以 ① 若0a >时,当(0,)x a ∈时,()0f x '<,函数()f x 单调递减, 当(,)x a ∈+∞时,()0f x '>,函数()f x 单调递增; ② 若0a =时,当()20f x x '=>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③ 若0a <时,当(0,)2 a x ∈-时,()0f x '<,函数()f x 单调递减, 当(,)2 a x ∈- +∞时,()0f x '>,函数()f x 单调递增; (2)要证122x x a +>,只需证12 2 x x a +>, (x)g =22 2(x)2,g (x)20(x)(x)a a f x a g f x x '''=-+-=+>∴=则为增函数。 只需证:12 x x ( )()02 f f a +''>=,即证()2121221212221+0+0a x x a x x a x x x x a -+->?-+->++(*) 又2222 111222ln ,ln ,a x x ax m a x x ax m -+-=-+-=两式相减整理得:

高考数学总复习之【最值问题】专题

专题 最值问题 【考点聚焦】 考点1:向量的概念、向量的加法和减法、向量的坐标运算、平面向量的数量积. 考点2:解斜三角形. 考点3:线段的定比分点、平移. 考点4:向量在平面解析几何、三角、复数中的运用. 考点5:向量在物理学中的运用. 【自我检测】 1、求函数最值的方法:配方法,单调性法,均值不等式法,导数法,判别式法,三角函数有界性,图象法, 2、求几类重要函数的最值方法; (1)二次函数:配方法和函数图像相结合; (2)),0()(R a a x a x x f ∈≠+ =:均值不等式法和单调性加以选择; (3)多元函数:数形结合成或转化为一元函数. 3、实际应用问题中的最值问题一般有下列两种模型:直接法,目标函数法(线性规划,曲函数的最值) 【重点?难点?热点】 问题1:函数的最值问题 函数的最值问题是其他最值问题的基础之一,许多最值问题最后总是转化为函数(特别是二次函数)的最值问题.求函数最值的方法有:配方法、均值不等式法、单调性、导数法、判别式法、有界性、图象法等. 例1:(02年全国理1) 设a 为实数,)(1)(2 R x a x x x f ∈+-+=, (1)讨论)(x f 的奇偶性;(2)求)(x f 的最小值. 思路分析:(1)考察)(x f 与)(x f -是否具有相等或相反的关系;或从特殊情形去估计,再加以验证.(2)二次函数的最值解,一般借助于二次函数的图像,当对称轴与所给区间的相对位置关系不确定,则需分类讨论. (1)解法一:(利用定义)2 )(x x f =-+1++a x ,2 )(x x f -=-. 1---a x

若2 2),()()(x x f x f x f 即为奇函数,则-=-R x a x a x ∈=+-++此等式对+.02 都不成立,故)(x f 不是奇函数; 若)(x f 为偶函数,则)()(x f x f =-,即2 x +21x a x =++,1+-+a x 此等式对 R x ∈恒成立,只能是0=a . 故0=a 时,)(x f 为偶数; ≠a 时,)(x f 既不是奇函数也不是偶函数. 解法二:(从特殊考虑),1)0(+=a f 又R x ∈,故)(x f 不可能是奇函数. 若0=a ,则=)(x f 1)(2 ++=-x x x f ,)(x f 为偶函数; 若 ≠a ,则12)(,1)(2 2++=-+=a a a f a a f ,知)()(a f a f ≠-,故)(x f 在 ≠a 时,既不是奇函数又不是偶函数. (2)当a x ≤时,4 3 )2 1(1)(2 2 ++-=++-=a x a x x x f ,由二次函数图象及其性质知:若2 1 ≤ a ,函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2 +=a a f ;若21>a ,函数)(x f 在],(a -∞上的最小值为4 3)21(=f ,且 )()2 1 (a f f ≤. 当a x ≥时,函数4 3)21(1)(22 +-+=+-+=a x a x x x f . 若21-≤a ,函数)(x f 在),[+∞a 上的最小值为a f -=-43)21(,且)()21 (a f f ≤-; 若2 1 ->a ,函数)(x f 在),[+∞a 上单调递增,从而函数函数)(x f 在),[+∞a 上的最 小值为1)(2 +=a a f . 综上所述,当21- ≤a 时,函数)(x f 的最小值是a -43;当2121≤<-a 时,函数)(x f 的最小值为12 +a ;当21>a 时,函数)(x f 的最小值是4 3+a .

相关文档
最新文档