2019-2020学年九年级上学期数学第一次月考试卷(I)卷
精品解析:山西省实验中学2019-2020学年九年级上学期10月月考数学试题(解析版)

山西省实验中学2019-2020学年第一学期九年级第一次阶段性测评九年级数学一、选择题(共10小题,满分20分,每小题2分)1.下列方程是一元二次方程的是( )A. x 2+2y =1B. x 3﹣2x =3C. x 2+21x =5D. x 2=0 【答案】D【解析】【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、x 2+2y =1是二元二次方程,故A 错误;B 、x 3﹣2x =3是一元三次方程,故B 错误;C 、x 2+21x =5是分式方程,故C 错误; D 、x 2=0是一元二次方程,故D 正确;故选:D .【点睛】本题考查了一 元二次方程的定义,掌握其定义 是解题的关键.2.把一元二次方程x (x +1)=3x +2化为一般形式,正确的是( )A. x 2+4x +3=0B. x 2﹣2x +2=0C. x 2﹣3x ﹣1=0D. x 2﹣2x ﹣2=0【答案】D【解析】【分析】方程移项变形即可得到结果.【详解】一元二次方程的一般形式为20ax bx c ++=x(x+1)=3x+2x2+x﹣3x﹣2=0,x2﹣2x﹣2=0故选:D.【点睛】本题考查一元二次方程的一般形式,难度较小.3.下列说法中不正确的是()A. 四边相等的四边形是菱形B. 对角线垂直的平行四边形是菱形C. 菱形的对角线互相垂直且相等D. 菱形的邻边相等【答案】C【解析】【分析】根据菱形的判定与性质即可得出结论.【详解】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.【点睛】本题考查了菱形判定与性质以及平行四边形的性质;熟记菱形的性质和判定方法是解题的关键.4.一元二次方程2x2+x﹣3=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法确定【答案】B【解析】试题分析:在方程2x 2+x ﹣3=0中,△=12﹣4×2×(﹣3)=25>0,∴该方程有两个不相等的实数根.故选B .考点:根的判别式5.如图,某农场拟建一间面积为200平方米的长方形种牛饲养室,饲养室一面靠墙(假设墙足够长),另三面用总长58米的建筑材料围成.若设该长方形垂直于墙的一边长为x 米,则下列方程正确的为( )A. ()58200x x -=B. ()29200x x -=C. ()292200x x -=D. ()582200x x -=【答案】D【解析】【分析】 根据题意用含x 的代数式表示出饲养室的宽,由矩形的面积=长×宽列式.【详解】解:∵垂直于墙的边长为xm ,∴平行于墙的一边为(58-2x )m .根据题意得:x (58-2x )=200,故选:D .【点睛】利用矩形的性质,正确理解题意,然后根据题意列出方程即可解决问题.6.下列说法中,正确的有( )个.①对角线互相垂直的四边形是菱形;②一组对边平行,一组对角相等的四边形是平行四边形;③有一个角是直角的四边形是矩形;④对角线相等且垂直的四边形是正方形;⑤每一条对角线平分每一组对角的四边形是菱形。
北师大版2019-2020学年河南省郑州外国语中学九年级(上)第一次月考数学试卷解析版

2019-2020学年河南省郑州外国语中学九年级(上)第一次月考数学试卷一.选择题(每小题3分,共24分)1.(3分)下列条件中,能判断四边形是菱形的是()A.对角线互相垂直且相等的四边形B.对角线互相垂直的四边形C.对角线相等的平行四边形D.对角线互相平分且垂直的四边形2.(3分)把一元二次方程x(x+1)=3x+2化为一般形式,正确的是()A.x2+4x+3=0B.x2﹣2x+2=0C.x2﹣3x﹣1=0D.x2﹣2x﹣2=03.(3分)若a、b是关于x的一元二次方程x2﹣6x+n+1=0的两根,且等腰三角形三边长分别为a、b、4,则n的值为()A.8B.7C.8或7D.9或84.(3分)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.B.C.D.5.(3分)为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=120006.(3分)下列数中,能与6,9,10组成比例的数是()A.1B.74C.5.4D.1.57.(3分)如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,菱形ABCD的面积为24,则OE长为()A.2.5B.3.5C.3D.48.(3分)如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG 的平分线,EF和BC的延长线交于点H.下列结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤若,则.以上命题,正确的有()A.2个B.3个C.4个D.5个二.选择题(每小题3分,共18分)9.(3分)已知=,则=.10.(3分)在长8cm,宽6cm的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么留下的矩形面积是cm2.11.(3分)若(m﹣1)x m(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是.12.(3分)在一个不透明的袋子中装有20个蓝色小球、若干个红色小球和10个黄色小球,这些球除颜色不同外其余均相同,小李通过多次摸取小球试验后发现,摸取到红色小球的频率稳定在0.4左右,若小明在袋子中随机摸取一个小球,则摸到黄色小球的概率为.13.(3分)如图,在菱形OBCD中,OB=1,相邻两内角之比为1:2,将菱形OBCD绕顶点O顺时针旋转90°,得到菱形OB′C′D′视为一次旋转,则菱形旋转45次后点C的坐标为.14.(3分)如图,菱形ABCD的边长为4,∠B=120°.点P是对角线AC上一点(不与端点A重合),则线段AP+PD 的最小值为.15.(3分)矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P 重合,折痕所在直线交矩形两边于点E,F,则EF长为.三.解答题(共55)16.(8分)用适当的方法解下列方程:(1)x(x﹣2)=x﹣2;(2)3x2﹣1=2x+5;17.某商场在促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两个抽奖方案:方案一:转动转盘A一次,转出红色可领取一份奖品;方案二:转动转盘B两次,两次都转出红色可领取一份奖品.(两个转盘都被平均分成3份)如果你获得一次抽奖机会,你会选择哪个方案?请用相关的数学知识说明理由.18.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.19.在一元二次方程中,有著名的韦达定理:对于一元二次方程ax2+bx+c=0(a≠0),如果方程有两个实数根x1,x2,那么x1+x2=﹣,x1•x2=(说明:定理成立的条件△≥0).比如方程2x2﹣3x﹣1=0中,△=17,所以该方程有两个不等的实数解.记方程的两根为x1,x2,那么x1+x2=,x1•x2=﹣,请根据阅读材料解答下列各题:(1)已知方程x2﹣3x﹣2=0的两根为x1、x2,且x1>x2,求下列各式的值:①x12+x22;②;(2)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.①是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,请说明理由.②求使+﹣2的值为整数的实数k的整数值.20.如图(1),△ABC为等腰三角形,AB=AC=a,P点是底边BC上的一个动点,PD∥AC,PE∥AB.(1)用a表示四边形ADPE的周长为;(2)点P运动到什么位置时,四边形ADPE是菱形,请说明理由;(3)如果△ABC不是等腰三角形(图2),其他条件不变,点P运动到什么位置时,四边形ADPE是菱形(不必说明理由).21.随着生活水平的不断提高,越来越多的人选择到电影院观看电影,体验视觉盛宴,并且更多的人通过网上平台购票,既快捷又能享受更多优惠.某电影城2019年从网上购买3张电影票的费用比现场购买2张电影票的费用少10元;从网上购买5张电影票的费用和现场购买1张电影票的费用共200元.(1)求该电影城2019年在网上购票和现场购票每张电影票的价格为多少元?(2)2019年五一当天,该电影城按照2019年网上购票和现场购票的价格销售电影票,当天售出的总票数为500张.五一假期过后,观影人数出现下降,于是电影城决定从5月5日开始调整票价:现场购票价格下调,网上购票价格不变.结果发现,现场购票每张电影票的价格每降低2元,售出总票数就比五一当天增加4张.经统计,5月5日售出的总票数中有60%的电影票通过网上售出,其余通过现场售出,且当天票房总收入为17680元,试求出5月5日当天现场购票每张电影票的价格为多少元?22.如图1,平面直角坐标系中,B、C两点的坐标分别为B(0,3)和C(0,﹣),点A在x轴正半轴上,且满足∠BAO=30°.(1)过点C作CE⊥AB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将△OFG沿FG翻折使点O落在平面内的点O′处,连接O′C,求线段OF的长以及线段O′C的最小值;(2)如图2,点D的坐标为D(﹣1,0),将△BDC绕点B顺时针旋转,使得BC⊥AB于点B,将旋转后的△BDC沿直线AB平移,平移中的△BDC记为△B′D′C′,设直线B′C′与x轴交于点M,N为平面内任意一点,当以B′、D′、M、N为顶点的四边形是菱形时,求点M的坐标.2019-2020学年河南省郑州外国语中学九年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(每小题3分,共24分)1.【解答】解:A、对角线互相垂直相等的四边形不一定是菱形,此选项错误;B、对角线互相垂直的四边形不一定是菱形,此选项错误;C、对角线相等的平行四边形也可能是矩形,此选项错误;D、对角线互相平分且垂直的四边形是菱形,此选项正确;故选:D.2.【解答】解:x(x+1)=3x+2x2+x﹣3x﹣2=0,x2﹣2x﹣2=0故选:D.3.【解答】解:∵等腰三角形三边长分别为a、b、4,∴a=b,或a、b中有一个数为4.当a=b时,有b2﹣4ac=(﹣6)2﹣4(n+1)=0,解得:n=8;当a、b中有一个数为4时,有42﹣6×4+n+1=0,解得:n=7,故选:C.4.【解答】解:画树状图如图所示:∵共有20种等可能的结果,两次摸出的小球的标号之和大于5的有12种结果,∴两次摸出的小球的标号之和大于5的概率为=;故选:C.5.【解答】解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选:D.6.【解答】解:A、10×1≠6×9,1不能与6,9,10组成比例,故错误;B、6×74≠9×10,74不能与6,9,10组成比例,故错误;C、5.4×10=6×9,5.4能与6,9,10组成比例;故正确;D、1.5×10≠6×9,1.5不能与6,9,10组成比例,故错误.故选:C.7.【解答】解:∵四边形ABCD是菱形,AC=6,菱形ABCD的面积为24,∴S菱形ABCD=AC•BD=×6DB=24,解得:BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中线,在Rt△AOD中,AB==5,则OE=AD=2.5.故选:A.8.【解答】解:①由折叠的性质可知∠DEF=∠GEF,∵EB为∠AEG的平分线,∴∠AEB=∠GEB,∵∠AED=180°,∴∠BEF=90°,故正确;②可证△EDF∽△HCF,DF>CF,故DE≠CH,故错误;③只可证△EDF∽△BAE,无法证明BE=EF,故错误;④可证△GEB,△GEH是等腰三角形,则G是BH边的中线,∴△BEG和△HEG的面积相等,故正确;⑤过E点作EK⊥BC,垂足为K.设BK=x,AB=y,则有y2+(2y﹣2x)2=(2y﹣x)2,解得x1=y(不合题意舍去),x2=y.则,故正确.故正确的有3个.故选:B.二.选择题(每小题3分,共18分)9.【解答】解:∵=,∴可设a=2k,b=3k(k≠0),∴==.故答案为.10.【解答】解:设宽为x,∵留下的矩形与原矩形相似,∴=,解得x=.∴截去的矩形的面积为×6=21cm2,∴留下的矩形的面积为48﹣21=27cm2,故答案为:27.11.【解答】解:由题意,得m(m+2)﹣1=2且m﹣1≠0,解得m=﹣3,故答案为:﹣3.12.【解答】解:设袋子中红色小球有x个,根据题意,得:=0.4,解得x=20,经检验x=20是分式方程的解,则在袋子中随机摸取一个小球,摸到黄色小球的概率=,故答案为:.13.【解答】解:∵四边形OBCD是菱形,相邻两内角之比为1:2,∴∠C=∠BOD=60°,∠D=∠OBC=120°.根据旋转性质可得∠OB′C′=120°,∴∠C′B′H=60°.过C′作C′H⊥y轴于点H,如图所示:在Rt△C′B′H中,B′C′=1,∴B′H=B'C=,C′H=B'H=.∴OH=1+=.∴C′坐标为(,﹣),∵360°÷90°=4,∴菱形4次旋转一周,4次一个循环,∵45÷4=11……1,∴菱形旋转45次后点C与点C'重合,坐标为(,﹣);故答案为:(,﹣).14.【解答】解:如图,作PE⊥AB于点E,DF⊥AB于点F,∵四边形ABCD是菱形∴∠DAC=∠CAB,AB=BC,且∠B=120°∴∠CAB=30°∴PE=AP,∠DAF=60°∴∠FDA=30°,且DF⊥AB∴AF=AD=2,DF=AF=2∵AP+PD=PE+DP∴当点D,点P,点E三点共线且垂直AB时,PE+DP的值最小,最小值为DF,∴线段AP+PD的最小值为2故答案为:215.【解答】解:如图1,当点P在CD上时,∵PD=3,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四边形PFBE是正方形,EF过点C,∴EF=6,如图2,当点P在AD上时,过E作EQ⊥AB于Q,∵PD=3,AD=6,∴AP=3,∴PB===3,∵EF垂直平分PB,∴∠1=∠2,∵∠A=∠EQF,∴△ABP∽△EFQ,∴,∴,∴EF=2,综上所述:EF长为6或2.故答案为:6或2.三.解答题(共55)16.【解答】解:(1)∵x(x﹣2)﹣(x﹣2)=0,∴(x﹣2)(x﹣1)=0,则x﹣2=0或x﹣1=0,解得:x1=2,x2=1.(2)整理,得:3x2﹣2x﹣6=0,∵x=3,b=﹣2,c=﹣6,∴△=(﹣2)2﹣4×3×(﹣6)=76>0,则x ==, 即x 1=,x 2=.17.【解答】解:方案一:∵转盘A 被平均分成3份,其中红色区域占1份, ∴转出红色可领取一份奖品的概率为:方案二:∵转盘B 被平均分成3份,分别为红1,红2,蓝,可列表:由表格可知,一共有9种结果,每种结果出现的可能性相同,其中两次都转出红色的结果有4种,分别是(红1,红1 ),(红1,红2),(红2,红1),(红2,红2).∴P (获得奖品).<∴选择方案二18.【解答】(1)证明:∵AO =CO ,BO =DO ,∴四边形ABCD 是平行四边形,∴∠ABC =∠ADC ,∵∠ABC +∠ADC =180°,∴∠ABC =∠ADC =90°,∴四边形ABCD 是矩形;(2)解:∵∠ADC =90°,∠ADF :∠FDC =3:2,∴∠FDC =36°,∵DF ⊥AC ,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.19.【解答】解:(1)∵x2﹣3x﹣2=0,△=(﹣3)2﹣4×(﹣2)=17>0∴x1+x2=3,x1•x2=﹣2①x+x=(x1+x2)2﹣2x1•x2=32﹣2×(﹣2)=9+4=13②=(2)∵方程有两个实数根,∴△=(﹣4k)2﹣4•4k(k+1)>0∴k<0,x1+x2=1,x1•x2=①∵(2x1﹣x2)(x1﹣2x2)=2x12﹣5x1x2+2x22=2(x12+2x1x2+x22)﹣9x1x2=2(x1+x2)2﹣9x1x2∴2﹣9=解得:k=,与k<0矛盾∴不存在k的值,使(2x1﹣x2)(x1﹣2x2)=﹣成立.②+﹣2===∵+﹣2=的值为整数∴k+1=±1或±2或±4又∵k<0∴k=﹣2或﹣3或﹣520.【解答】解:(1)∵PD∥AC,PE∥AB∴四边形ADPE为平行四边形∴AD=PE,DP=AE,∵AB=AC∴∠B=∠C,∵DP∥AC∴∠B=∠DPB∴DB=DP∴四边形ADPE的周长=2(AD+DP)=2(AD+BD)=2AB=2a 故答案为:2a(2)当P为BC中点时,四边形ADPE是菱形.理由如下:连结AP∵PD∥AC,PE∥AB∴四边形ADPE为平行四边形∵AB=AC,P为BC中点∴∠P AD=∠P AE∵PE∥AB∴∠P AD=∠APE∴∠P AE=∠APE∴EA=EP∴四边形ADPE是菱形(3)P运动到∠A的平分线上时,四边形ADPE是菱形,∵PD∥AC,PE∥AB,∴四边形ADPE是平行四边形,∵AP平分∠BAC,∴∠1=∠2,∵AB∥EP,∴∠1=∠3,∴∠2=∠3,∴AE=EP,∴四边形ADPE是菱形.21.【解答】解:(1)设该电影城2019年在网上购票每张电影票的价格为x元,现场购票每张电影票的价格为y元,依题意,得:,解得:.答:该电影城2019年在网上购票每张电影票的价格为30元,现场购票每张电影票的价格为50元.(2)设5月5日当天现场购票每张电影票的价格为m元,则当天售出的总票数为[500+×(50﹣m)]张,依题意,得:(1﹣60%)m[500+×(50﹣m)]+30×60%×[500+×(50﹣m)]=17680,整理,得:m2﹣255m+8600=0,解得:m1=40,m2=215(舍去).答:5月5日当天现场购票每张电影票的价格为40元.22.【解答】解:(1)如图1中,∵∠AOB=90°,∠OAB=30°,∴∠CBE=60°,∵CE⊥AB,∴∠CEB=90°,∠BCE=30°,∵C(0,﹣),∴OC=,OF=OC•tan30°=,CF=2OF=3,由翻折可知:FO′=FO=,∴CO′≥CF﹣O′F,∴CO′≥,∴线段O′C的最小值为.(2)①如图2中,当B′D′=B′M=BD==时,可得菱形MND′B′.在Rt△AMB′中,AM=2B′M=2,∴OM=AM﹣OA=2﹣3,∴M(3﹣2,0).②如图3中,当B′M是菱形的对角线时,由题意B′M=2OB=6,此时AM=12,OM=12﹣3,可得M(3﹣12,0).③如图4中,当B′D′是菱形的对角线时,可得B′M=,AM=,OM=3﹣,所以M(3﹣,0).④如图5中,当MD′是菱形的对角线时,MB′=B′D′=,可得AM=2,OM=OA+AM=3+2,所以M(3+2,0).综上所述,满足条件的点M的坐标为(3﹣2,0)或(3﹣12,0)或(3﹣,0)或(3+2,0).。
2019-2020学年上海市杨浦区鞍山实验学校九年级(上)第一次月考数学试卷 (含解析)

2019-2020学年上海市杨浦区鞍山实验学校九年级(上)第一次月考数学试卷一、选择题(本大题共6小题,共18.0分)1.如果两个相似三角形的面积比是1∶2,那么它们的周长比是()A. 1:2B. 1:4C. 1:√2D. 2:12.如图,在△ABC中,D,E分别是AB和AC上的点,且DE//BC,若AB=5,AD=3,AC=4,则EC的长是().A. 85B. 125C. 32D. 523.如果向量a⃗、b⃗ 、x⃗ 满足x⃗ +a⃗=32(a⃗−23b⃗ ),那么x⃗ 用a⃗、b⃗ 表示正确的是()A. a⃗−2b⃗B. 52a⃗−b⃗ C. a⃗−23b⃗ D. 12a⃗−b⃗4.已知点P是线段AB的一个黄金分割点,且AB=10,PA>BP,则PA的长是()A. 5√5−5B. 6.18C. 3.82D. √5−15.如图,已知点P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,那么D点的位置最多有()A. 2处B. 3处C. 4处D. 5处6.如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且BC∶AC=2∶3,则BD∶AD=()A. 2∶3B. 4∶9C. 2∶5D. √2∶√3二、填空题(本大题共12小题,共36.0分)7.若xy =12,则xx+y=.8.在比例尺为1:500000的地图上,某两地图距为2厘米,那么这两地的实际距离是______千米.9.已知线段EF是线段AB,CD的比例中项,EF=6cm,CD=9cm,则AB=________cm.10.计算:3(a⃗−2b⃗ )−2(a⃗−3b⃗ )=______.11.在△ABC中,如果AB=AC=5cm,BC=8cm,那么这个三角形的重心G到BC的距离是___12.如图,△ABC中,点D,E分别在边AB,BC上,DE//AC.若DB=4,DA=2,BE=3,则EC=_______.13.如图,已知平行四边形ABCD,AE平分∠BAD交边BC于点E,若BE=5cm,EC=6cm,则平行四边形ABCD的周长是______cm.14.如图,AB//CD//EF,AD=4cm,BC=DF=3cm,则CE的长______ .15.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是______(填一个即可)16. 如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,且DE//BC ,若AD :AB =4:9,则S △ADE :S △ABC =______.17. 在梯形ABCD 中,AD//BC ,AC 、BD 相交于O ,如果△BOC 、△ACD 的面积分别是9和4,那么梯形ABCD 的面积是______ .18. 如图,点A 为△PBC 的三边垂直平分线的交点,且∠P =72°,则∠BAC =______.三、解答题(本大题共7小题,共56.0分)19. 已知:如图,在平行四边形ABCD 中,E 、F 分别是对角线BD 上的两点,且BE =DF ,AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,AF ⃗⃗⃗⃗⃗ =c ⃗ . (1)用向量a ⃗ 、b ⃗ 、c⃗ 表示下列向量:向量CE ⃗⃗⃗⃗⃗ =______,向量BD ⃗⃗⃗⃗⃗⃗ =______,向量DE ⃗⃗⃗⃗⃗⃗ =______; (2)求作:b ⃗ +c ⃗ .20. 如图,l 1//l 2//l 3,AB =3,AD =2,DE =4,EF =7.5,求BC 、BF 的长.21.如图,在△ABC中,DE//BC中,AD=1,BD=2,DE=2,求BC的长.22.如图,实验中学某班学生在学习完《利用相似三角形测高》后,利用标杆BE测量学校体育馆的高度.若标杆BE的高为1.5米,测得AB=2米,BC=14米,求学校体育馆CD的高度.23.如图,在矩形ABCD中,点E、F分别在边AD、DC上,BE⊥EF,AB=6,AE=9,DE=2,求DF的长.24.如图,在△ABC中,AD是∠BAC的平分线,点E,F分别在AB和AC上,∠AED+∠AFD=180°.求证:DE=DF.25.如图,在Rt△ABC中,∠C=90∘,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.-------- 答案与解析 --------1.答案:C解析:解:∵两个相似三角形的面积比是1:2,∴这两个相似三角形的相似比是1:√2,∴它们的周长比是1:√2.故选:C .由两个相似三角形的面积比是1:2,根据相似三角形的面积比等于相似比的平方,即可求得它们的相似比,又由相似三角形周长的比等于相似比,即可求得它们的周长比.此题考查了相似三角形的性质.此题比较简单,解题的关键是掌握相似三角形的面积比等于相似比的平方与相似三角形周长的比等于相似比性质的应用.2.答案:A解析:【分析】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.根据平行线分线段成比例定理得到35=AE 4,则利用比例性质可计算出AE 的长,然后计算AC −AE 即可解决. 【解答】解:∵DE//BC ,∴AD AB =AE AC ,即35=AE 4, ∴AE =125,∴CE =AC −AE =4−125=85,故B 、C 、D 错误,A 正确. 故选A . 3.答案:D解析:解:∵x ⃗ +a ⃗ =32(a ⃗ −23b ⃗ ), ∴2(x ⃗ +a ⃗ )=3(a ⃗ −23b ⃗ ),∴2x →+2a →=3a →−2b →,∴2x →=a ⃗ −2b →,解得:x ⃗ =12a ⃗ −b ⃗ . 故选D .利用一元一次方程的求解方法,求解此题即可求得答案.此题考查了平面向量的知识.此题难度不大,注意掌握一元一次方程的求解方法是解此题的关键. 4.答案:A解析:【分析】本题考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(√5−12)叫做黄金比. 熟记黄金分割的公式:较短的线段=原线段的3−√52,较长的线段=原线段的√5−12是解题的关键. 【解答】解:由于P 为线段AB =10的黄金分割点,且AP 是较长线段;则AP =10×√5−12=5√5−5.B 选项中6.18只是个近似值,相比A 而言,A 是准确答案故选A .5.答案:B解析:【分析】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.过点P 作直线PD 与边AB 或AC 或BC 相交于点D ,截得的三角形与原三角形有一个公共角,只需作一个直角即可.【解答】解:∵截得的小三角形与△ABC 相似,∴如图,过点P 作AC 的垂线,作AB 的垂线,作BC 的垂线,所截得的三角形满足题意, 则D 点的位置最多有3处,故选B .6.答案:B解析:【分析】本题主要考查了相似三角形的判定、性质及同高的两个三角形的面积比等于底之比,属于中档题.首先证明△BCD∽△CAD,然后根据相似三角形的面积比等于相似比的平方,可知△BCD与△CAD的面积比为BC2:AC2=4:9,又△BCD与△CAD可看作同高(高为CD)的两个三角形,则它们的面积比等于底边之比,从而得出结果.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BDC=∠CDA=90°,∠B=∠ACD=90°−∠BCD,∴△BCD∽△CAD,∴△BCD的面积:△CAD的面积=BC2:AC2=4:9.又∵△BCD的面积:△CAD的面积=(12×BD×CD):(12×AD×CD)=BD:AD,∴BD:AD=4:9.故选B.7.答案:13解析:【分析】本题考查比例的性质,以及代数式求值,表示出x和y之间的关系是解题关键.先根据给出的比例得出y=2x,然后代入化简即可.【解答】解:∵x y=12,∴y=2x,∴xx+y =xx+2x=x3x=13.故答案为13.8.答案:10解析:【分析】本题考查了比例线段,比例尺的定义.要求能够根据比例尺由图上距离正确计算实际距离,注意单位的换算.根据比例尺=图上距离:实际距离,依题意列出比例式,即可求得实际距离.【解答】解:设这两地的实际距离是x厘米,则:1:500000=2:x,解得x=1000000厘米.1000000厘米=10千米.故答案为10.9.答案:4解析:【分析】本题考查的是比例的性质有关知识,根据题意列出EF2=AB·CD代入计算即可.【解答】解:由题意可得:EF2=AB·CD,∵EF=6cm,CD=9cm,∴62=9·AB,∴AB=4cm.故答案为4.10.答案:a⃗解析:【分析】实数的运算法则同样适用于该题.考查了平面向量,熟练掌握平面向量的加法结合律即可解题,属于基础计算题.【解答】解:3(a⃗−2b⃗ )−2(a⃗−3b⃗ )=3a⃗−3b⃗ −2a⃗+3b⃗=(3−2)a⃗+(−3+3)b⃗=a⃗.故答案是:a⃗.11.答案: 1解析:【分析】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.根据等腰三角形的性质得到三角形的重心G在BC边的高,根据勾股定理求出高,根据重心的性质计算即可.【解答】解:∵AB=AC=5,∴△ABC是等腰三角形,∴三角形的重心G在BC边的高上,设该高为a,根据勾股定理,a2+42=52则a=3,根据三角形的重心性质得,G到BC的距离是:3×13=1.故答案为:1.12.答案:32解析:【分析】本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE//AC,∴BDAD =BEEC,即42=3EC,解得:EC=32.故答案为32.13.答案:32解析:解:∵在▱ABCD中,BE=5cm,EC=6cm,∴BC=11cm,∵AE平分∠BAD,AD//BC,∴∠BAE=∠DAE=∠BEA,∴AB=BE=5cm,∴▱ABCD的周长为2(AB+BC)=2×16=32(cm).故答案为:32.先根据平行四边形的性质得到BC的长,再根据∠BAE=∠DAE=∠BEA,即可得到AB=BE=5cm,进而得出平行四边形的周长.本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.14.答案:94cm解析:解:∵AB//CD//EF,∴ADDF =BCCE,即43=3CE,∴CE=94cm.故答案为94cm.根据平行线分线段成比例定理,由AB//CD//EF得到43=3CE,然后根据比例性质计算即可.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.15.答案:∠C=∠BAD解析:解:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.根据相似三角形的判定:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似,进行添加即可.本题考查了相似三角形的判定,注意掌握相似三角形判定的三种方法,本题答案不唯一.16.答案:16:81解析:【分析】本题考查了相似三角形的判定与性质,根据相似三角形面积的比等于相似比的平方解决问题.由DE//BC,证出△ADE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵DE//BC,∴△ADE∽△ABC,∵AD:AB=4:9,∴S△ADE:S△ABC=42:92=16:81.故答案为16:81.17.答案:16解析:解:如图,设△AOD 的面积为x ,则△ODC 的面积为4−x .∵AD//BC ,∴△AOD∽△COB ,∴S △AOD S △BOC=(AO OC )2, ∵S △AOD S △ODC=OA OC , ∴x 9=(x 4−x )2,解得x =1或16(舍弃),∵S △ABD =S △ADC =1,∴S △AOB =S △DOC =3,∴梯形ABCD 的面积=1+3+3+9=16, 故答案为16.如图,设△AOD 的面积为x ,则△ODC 的面积为4−x.由AD//BC ,推出△AOD∽△COB ,可得S △AOD S△BOC =(AO OC )2,因为S △AOD S △ODC =OA OC ,得到x 9=(x4−x )2,解方程即可. 本题考查相似三角形的判定和性质、梯形的性质等知识,解题的关键是熟练掌握相似三角形的性质,学会用方程的思想思考问题,属于中考常考题型.18.答案:144°解析:【分析】本题考查的是线段垂直平分线的性质有关知识,根据三角形的外心的概念得到点A 是△PBC 的外心,根据圆周角定理计算即可.【解答】解:∵A 为△PBC 三边垂直平分线的交点,∴点A 是△PBC 的外心,由圆周角定理得,∠BAC =2∠BPC =144°,故答案为144°.19.答案:(1)−c ⃗ a ⃗ −b ⃗ a⃗ −c ⃗ (2)延长EC 到K ,使得CK =EC ,连接BK ,则向量BK⃗⃗⃗⃗⃗⃗ 即为所求;解析:解:(1)∵四边形ABCD 是平行四边形,∴AD//BC ,AD =BC ,∴∠ADF =∠CBE ,∵DF =BE ,∴△ADF≌△CBE ,∴∠AFD =∠CEB ,AF =CE ,∴∠AFB =∠CED ,∴AF//CE ,∴CE ⃗⃗⃗⃗⃗ =−EC ⃗⃗⃗⃗⃗ =−AF ⃗⃗⃗⃗⃗ =−c ⃗ ,BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =a ⃗ −b ⃗ ,DE ⃗⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =a ⃗ −c ⃗ ,故答案为−c ⃗ ,a ⃗ −b⃗ ,a ⃗ −c ⃗ .(2)见答案.【分析】(1)根据平面向量的加法法则计算即可;(2)延长EC 到K ,使得CK =EC ,连接BK ,则向量BK⃗⃗⃗⃗⃗⃗ 即为所求; 本题考查平行四边形的性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.答案:解:∵l 1//l 2//l 3,∴ABBC =ADDE ,∵AB =3,AD =2,DE =4,∴24=3BC ,解得BC =6,∵l 1//l 2//l 3,∴BFEF =ABAC,∴BF7.5=33+6,解得BF=2.5.解析:本题主要考查平行线分线段成比例的性质,解题的关键是由平行得到线段AB与已知条件中的线段之间的关系.由平行线分线段成比例解答即可.21.答案:解:∵AD=1,BD=2,∴AB=AD+BD=3,∵DE//BC,∴△ADE∽△ABC,∴DEBC =ADAB=13,∴BC=3DE=3×2=6.解析:本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.求出AB=3,证明△ADE∽△ABC,得出比例式,即可得出结果.22.答案:解:依题意得BE//CD,∴△AEB∽△ADC,∴ABAC =BECD,即22+14=1.5CD,则CD=12.答:所以楼高CD是12米.解析:本题考查了相似三角形的应用,解题的关键是从实际问题中整理出直角三角形,难度不大.根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.23.答案:解:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠ABE+∠AEB=90°,∵BE⊥EF,∴∠AEB+∠DEF=90°,∴∠ABE=∠DEF,∴△ABE∽△DEF,∴ABDE =AEDF,∴62=9DF,解得:DF=3.解析:此题考查了矩形的性质以及相似三角形的判定与性质.注意证得△ABE∽△DEF是关键.由在矩形ABCD中,BE⊥EF,易证得△ABE∽△DEF,然后由相似三角形的对应边成比例,求得答案.24.答案:证明:过D作DM⊥AB于M,DN⊥AC于N,即∠EMD=∠FND=90°,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN(角平分线性质),∵∠AED+∠AFD=180°,∠AFD+∠NFD=180°,∴∠MED=∠NFD,在△EMD和△FND中{∠MED=∠DFN ∠DME=∠DNFDM=DN,∴△EMD≌△FND(AAS),∴DE=DF.解析:本题考查了全等三角形的判定及性质和角平分线性质的应用,关键是正确作辅助线,进一步推出△EMD和△FND全等,通过做此题培养了学生运用定理进行推理的能力.过D作DM⊥AB于M,DN⊥AC于N,根据角平分线性质求出DN=DM,由已知条件和平角定义证出∠MED=∠NFD,最后运用全等三角形的判定AAS推出△EMD≌△FND即可.25.答案:1.2解析:【分析】本题主要考查翻折变换,勾股定理,相似三角形的性质与判定,先延长FP交AB于点M,判定当FP⊥AB时,点P到AB的距离最小,根据跟的可求解AB的长,通过证明△AFM∽△ABC列比例式,代入计算即可求解最小值.【解答】解:如图,延长FP交AB于点M,当FP⊥AB时,点P到AB的距离最小.∵∠A=∠A,∠AMF=∠C=90∘,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2.∴点P到边AB距离的最小值是1.2.。
2019-2020学年黑龙江省哈尔滨九年级上第一次月考数学试卷及答案解析

【解答】解:下列实数0, , ,π,其中,无理数有 ,π,
故选:B.
【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样无限不循环小数.
2.下列各个式子运算的结果是8a5的是( )
A.2a2+6a3B.(2a2)3C.8a7﹣8a2D.2a•4a4
10.AD是△ABC的中线,E是AD上一点,AE:ED=1:3,BE的延长线交AC于F,AF:FC=( )
A.1:3B.1:4C.1:5D.1:6
二.填空题(共10小题,满分30分,每小题3分)
11.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.
12.函数y= 中,自变量x的取值范围为.
17.如图,在半径为5的⊙O中,弦AB=6,点C是优弧 上一点(不与A,B重合),则tanC的值为.
18.扇形的圆心角为80°,弧长为4πcm,则此扇形的面积等于cm2.
19.⊙O的直径为2,弦AB的长为1,弦BC的长为 ,则∠ABC的度数为.
20.如图,在△ABC中,AB=4,D是边AB中点,∠ACD=∠B,∠BAC的角平分线AE与线段CD交于点F,那么 的值是.
三.解答题(共7小题)
21.先化简,再求代数式(1﹣ )÷ 的值,其中x=2sin60°﹣tan45°.
22.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形,如图,已知整点A(2,2),B(4,1),请在所给网格区域(含边界)上按要求画整点三角形.
(1)在图1中画一个等腰△PAB,使点P的横坐标大于点A的横坐标.
2019-2020学年福建省厦门市思明区双十中学九年级(上)第一次月考数学试卷试题及答案(Word解析版)

2019-2020学年福建省厦门市思明区双十中学九年级(上)第一次月考数学试卷一、选择题(每题4分,共40分)1.(4分)下列各点在函数21y x =-+图象上的是( ) A .(0,0)B .(1,1)C .(0,1)-D .(1,0)2.(4分)一元二次方程230x x -=的解是( ) A .123x x ==B .123x x ==-C .10x =,23x =D .10x =,23x =-3.(4分)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1B .1-C .2D .2-4.(4分)用配方法解方程2240x x --=,配方正确的是( ) A .2(1)3x -=B .2(1)4x -=C .2(1)5x -=D .2(1)3x +=5.抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .2(1)3y x =++B .2(1)3y x =+-C .2(1)3y x =--D .2(1)3y x =-+6.(4分)下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++=7.(4分)x =( )A .23510x x ++=B .23510x x -+=C .23510x x --=D .23510x x +-=8.(4分)汽车刹车后行驶的距离s (单位:)m 关于行驶的时间t (单位:)s 的函数解析式是2156s t t =-,汽车刹车后到停下来前进的距离是( ) A .54B .52C .7516D .7589.(4分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别由这些数据,科学家推测出植物每天高度的增长量y 是温度x 的二次函数,那么下列结论: ①该植物在0C ︒时,每天高度的增长量最大;②该植物在6C ︒-时,每天高度的增长量能保持在25mm 左右; ③该植物与大多数植物不同,6C ︒以上的环境下高度几乎不增长. 上述结论中,所有正确结论的序号是( ) A .①②③B .①③C .①②D .②③10.(4分)已知一个二次函数图象经过11(3,)P y -,22(1,)P y -,33(1,)P y ,44(3,)P y 四点,若324y y y <<,则1y ,2y ,3y ,4y 的最值情况是( )A .3y 最小,1y 最大B .3y 最小,4y 最大C .1y 最小,4y 最大D .无法确定二、填空题(每题4分,共24分) 11.(4分)方程290x -=的解是 .12.(4分)抛物线2(1)1y x =--的顶点坐标为 .13.(4分)某种植基地2016年蔬菜产量为80吨,2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为 .14.(4分)在一幢高125m 的大楼上掉下一个苹果,苹果离地面的高度()h m 与时间()t s 大致有如下关系:21255h t =-. 秒钟后苹果落到地面.15.若二次函数22y ax ax c =-+的图象经过点(1,0)-,则方程220ax ax c -+=的解为 . 16.(4分)如图,在平面直角坐标系中,菱形ABCD 的顶点A 在x 轴负半轴上,顶点B 在x 轴正半轴上.若抛物线2108(0)p ax ax a =-+>经过点C 、D ,则点B 的坐标为 .三、解答题(9小题,共86分) 17.(12分)解方程: (1)230x x +-=;(2)2616x x -=;(3)2(3)3(3)x x x -=-.18.(8分)已知二次函数2(1)y x n =-+,当2x =时,2y =.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.19.(8分)关于x 的一元二次方程2(3)220x k x k -+++=. (1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k 的取值范围.20.(8分)“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?21.(8分)如图:在ABC ∆中,90ABC ∠=︒,8AB BC cm ==,动点P 从点A 出发,以2/cm s 的速度沿射线AB 运动,同时动点Q 从点C 出发,以2/cm s 的速度沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t 秒,PCQ ∆的面积为2Scm .(1)直接写出AC 的长:AC = cm ;(2)求出S 关于t 的函数关系式,并求出当点P 运动几秒时,PCQ ABC S S ∆∆=.22.(8分)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示. (1)求演员弹跳离地面的最大高度;(2)已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.23.(10分)我市有一种可食用的野生菌,上市时,某经销公司按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格y (元)与存放天数x (天)之间的部分对应值如下表所示: 存放天数x (天) 2 4 6 8 10 市场价格(元)3234363840但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存110天,同时,平均每天有3千克的野生菌损坏不能出售.(1)请你从所学过的一次函数和二次函数中确定哪种函数能表示y 与x 的变化规律,并直接写出y 与x 之间的函数关系式;若存放x 天后将这批野生茵一次性出售,设这批野生菌的销售总额为P 元,试求出P 与x 之间的函数关系式;(2)该公司将这批野生菌存放多少天后出售可获得最大利润w 元并求出最大利润.24.(10分)已知关于x 的一元二次方程21(2)(2)04a b x a b +-++=有实数根.(1)若2a =,1b =,求方程的根.(2)若225m a b a =++,若0b <,求m 的取值范围.25.(14分)在平面直角坐标系xOy 中,对于点(,)P x y ,若点Q 的坐标为(,||)x x y -,则称点Q 为点P 的“关联点”.(1)请直接写出点(2,2)的“关联点”的坐标;(2)如果点P 在函数1y x =-的图象上,其“关联点” Q 与点P 重合,求点P 的坐标; (3)如果点(,)M m n 的“关联点” N 在函数2y x =的图象上,当02m 时,求线段MN 的最大值.2019-2020学年福建省厦门市思明区双十中学九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)下列各点在函数21y x =-+图象上的是( ) A .(0,0) B .(1,1)C .(0,1)-D .(1,0)【解答】解:21y x =-+,∴当0x =时,10y =≠,故点(0,0)不在函数图象上,当1x =时,21101y =-+=≠,故点(1,1)不在函数图象上,点(1,0)在函数图象上, 当0x =时,11y =≠-,故点(0,1)-不在函数图象上, 故选:D .2.(4分)一元二次方程230x x -=的解是( ) A .123x x == B .123x x ==-C .10x =,23x =D .10x =,23x =-【解答】解:(3)0x x -=,0x ∴=或30x -=,解得:10x =,23x =, 故选:C .3.(4分)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1B .1-C .2D .2-【解答】解:因为3x =是原方程的根,所以将3x =代入原方程,即23360k --=成立,解得1k =. 故选:A .4.(4分)用配方法解方程2240x x --=,配方正确的是( ) A .2(1)3x -= B .2(1)4x -= C .2(1)5x -= D .2(1)3x +=【解答】解:2240x x --=224x x ∴-= 22141x x ∴-+=+2(1)5x ∴-=故选:C .5.(4分)抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .2(1)3y x =++B .2(1)3y x =+-C .2(1)3y x =--D .2(1)3y x =-+【解答】解:由“左加右减”的原则可知,抛物线2y x =向右平移1个单位所得抛物线的解析式为:2(1)y x =-;由“上加下减”的原则可知,抛物线2(1)y x =-向上平移3个单位所得抛物线的解析式为:2(1)3y x =-+.故选:D .6.(4分)下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++=【解答】解:A 、(2)(2)0x x -+=中2x =或2x =-,错误; B 、220x -=中0x =,错误; C 、2(1)0x -=中0x =,错误;D 、2(1)20x ++=即2(1)2x +=-,方程无实数根,正确;故选:D .7.(4分)x =( )A .23510x x ++=B .23510x x -+=C .23510x x --=D .23510x x +-=【解答】解:2.3510A x x ++=中,x =2.3510B x x -+=中,x =,不合题意;2.3510C x x --=中,x =,不合题意; 2.3510D x x +-=中,x =,符合题意; 故选:D .8.(4分)汽车刹车后行驶的距离s (单位:)m 关于行驶的时间t (单位:)s 的函数解析式是2156s t t =-,汽车刹车后到停下来前进的距离是( ) A .54B .52C .7516D .758【解答】解:225751566()48s t t t =-=--+,∴当54t =时,S 取得最大值758, 即汽车刹车后到停下来前进的距离是758m , 故选:D .9.(4分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一段时间后,记录下这种植物高度的增长情况(如下表):由这些数据,科学家推测出植物每天高度的增长量y 是温度x 的二次函数,那么下列结论: ①该植物在0C ︒时,每天高度的增长量最大;②该植物在6C ︒-时,每天高度的增长量能保持在25mm 左右; ③该植物与大多数植物不同,6C ︒以上的环境下高度几乎不增长. 上述结论中,所有正确结论的序号是( ) A .①②③B .①③C .①②D .②③【解答】解:从表格可得出以下信息:抛物线开口向下,且对称轴为1x =-, ①函数最大值在1x =-时取得,故①错误; ②由函数对称性知:6x =-时,25y =,故②正确; ③6x =,1y =,故③正确; 故选:D .10.(4分)已知一个二次函数图象经过11(3,)P y -,22(1,)P y -,33(1,)P y ,44(3,)P y 四点,若324y y y <<,则1y ,2y ,3y ,4y 的最值情况是( )A .3y 最小,1y 最大B .3y 最小,4y 最大C .1y 最小,4y 最大D .无法确定【解答】解:二次函数图象经过11(3,)P y -,22(1,)P y -,33(1,)P y ,44(3,)P y 四点,且324y y y <<, ∴抛物线开口向上,对称轴在0和1之间,11(3,)P y ∴-离对称轴的距离最大,33(1,)P y 离对称轴距离最小,3y ∴最小,1y 最大,故选:A .二、填空题(每题4分,共24分)11.(4分)方程290x -=的解是 3x =± .【解答】解:290x -=即(3)(3)0x x +-=,所以3x =或3x =-. 故答案为:3x =±.12.(4分)抛物线2(1)1y x =--的顶点坐标为 (1,1)- . 【解答】解:2(1)1y x =--,∴顶点坐标为(1,1)-.故答案为(1,1)-.13.(4分)某种植基地2016年蔬菜产量为80吨,2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为 280(1)100x += . 【解答】解:由题意知,蔬菜产量的年平均增长率为x , 根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1)x +吨 2018年蔬菜产量为80(1)(1)x x ++吨,预计2018年蔬菜产量达到100吨, 即:80(1)(1)100x x ++=或280(1)100x +=. 故答案为:280(1)100x +=.14.(4分)在一幢高125m 的大楼上掉下一个苹果,苹果离地面的高度()h m 与时间()t s 大致有如下关系:21255h t =-. 5 秒钟后苹果落到地面. 【解答】解:把0h =代入函数解析式21255h t =-得, 212550t -=,解得15t =,25t =-(不合题意,舍去); 答:5秒钟后苹果落到地面. 故答案为:5.15.(4分)若二次函数22y ax ax c =-+的图象经过点(1,0)-,则方程220ax ax c -+=的解为 11x =-,23x = .【解答】解:二次函数22y ax ax c =-+的图象经过点(1,0)-, ∴当1x =-时,220ax ax c -+=成立, ∴方程220ax ax c -+=的一个解是11x =-.20a a c ∴++=, 3c a ∴=-,∴原方程可化为2(23)0a x x --=,0a ≠.2230x x ∴--=, 11x ∴=-,23x =.故答案是:11x =-,23x =.16.(4分)如图,在平面直角坐标系中,菱形ABCD 的顶点A 在x 轴负半轴上,顶点B 在x 轴正半轴上.若抛物线2108(0)p ax ax a =-+>经过点C 、D ,则点B 的坐标为 (4,0) .【解答】解:抛物线22108(5)258p ax ax a x a =-+=--+,∴该抛物线的顶点的横坐标是5x =,当0x =时,8y =,∴点D 的坐标为:(0,8),8OD ∴=,抛物线2108(0)p ax ax a =-+>经过点C 、D ,////CD AB x 轴,5210CD ∴=⨯=,10AD ∴=,90AOD ∠=︒,8OD =,10AD =,6AO ∴=====,10AB =,101064OB AO ∴=-=-=,∴点B 的坐标为(4,0),故答案为:(4,0)三、解答题(9小题,共86分)17.(12分)解方程:(1)230x x +-=;(2)2616x x -=;(3)2(3)3(3)x x x -=-.【解答】解:(1)230x x +-=,1a ∴=,1b =,3c =-,∴△11213=+=,x ∴=; (2)2616x x -=,26925x x ∴-+=,2(3)25x ∴-=,8x ∴=或2x =-;(3)2(3)3(3)x x x -=-,(23)(3)0x x ∴--=,23x ∴=或3x =;18.(8分)已知二次函数2(1)y x n =-+,当2x =时,2y =.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.【解答】解:二次函数2(1)y x n =-+,当2x =时,2y =,22(21)n ∴=-+,解得1n =,∴该二次函数的解析式为2(1)1y x =-+.列表得:如图:19.(8分)关于x 的一元二次方程2(3)220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k 的取值范围.【解答】(1)证明:在方程2(3)220x k x k -+++=中,△222[(3)]41(22)21(1)0k k k k k =-+-⨯⨯+=-+=-,∴方程总有两个实数根.(2)解:2(3)22(2)(1)0x k x k x x k -+++=---=,12x ∴=,21x k =+.方程有一根小于1,11k ∴+<,解得:0k <,k ∴的取值范围为0k <.20.(8分)“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?【解答】解:(1)设每轮传染中平均每人传染了x 人,1(1)121x x x +++=,10x =或12x =-(舍去). 答:每轮传染中平均一个人传染了10个人;(2)121121101331+⨯=(人).答:第三轮后将有1331人被传染.21.(8分)如图:在ABC ∆中,90ABC ∠=︒,8AB BC cm ==,动点P 从点A 出发,以2/cm s 的速度沿射线AB 运动,同时动点Q 从点C 出发,以2/cm s 的速度沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t 秒,PCQ ∆的面积为2Scm .(1)直接写出AC 的长:AC = 82 cm ;(2)求出S 关于t 的函数关系式,并求出当点P 运动几秒时,PCQ ABC S S ∆∆=.【解答】解:(1)在Rt ABC ∆中,90ABC ∠=︒,8AB BC cm ==,2282AC AB BC cm ∴=+=.故答案为:82.(2)2AP CQ t ==,8AB =,|82|BP t ∴=-, 1|82|2S CQ BP t t ∴==-, 即2228(04)28(4)t t t S t t t ⎧-+<=⎨->⎩. 当04t <时,2128882t t -+=⨯⨯, 整理,得:24160t t -+=,△2(4)4116480=--⨯⨯=-<,∴该方程无解;当4t >时,2128882t t -=⨯⨯, 整理,得:24160t t --=,解得:1225t =-(不合题意,舍去),2225t =+.∴当点P 运动(225)+秒时,PCQ ABC S S ∆∆=.22.(8分)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示. (1)求演员弹跳离地面的最大高度;(2)已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.【解答】解:(1)将二次函数23315y x x =-++化成23519()524y x =--+,(3分), 当52x =时,y 有最大值,194y =最大值,(5分) 因此,演员弹跳离地面的最大高度是4.75米.(6分)(2)能成功表演.理由是:当4x =时,234341 3.45y =-⨯+⨯+=.即点(4,3.4)B 在抛物线23315y x x =-++上, 因此,能表演成功.(12分).23.(10分)我市有一种可食用的野生菌,上市时,某经销公司按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格y (元)与存放天数x (天)之间的部分对应值如下表所示:但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存110天,同时,平均每天有3千克的野生菌损坏不能出售.(1)请你从所学过的一次函数和二次函数中确定哪种函数能表示y 与x 的变化规律,并直接写出y 与x 之间的函数关系式;若存放x 天后将这批野生茵一次性出售,设这批野生菌的销售总额为P 元,试求出P 与x 之间的函数关系式;(2)该公司将这批野生菌存放多少天后出售可获得最大利润w 元并求出最大利润.【解答】解:(1)由题意得:30y x =+,2(10003)(30)(10003)391030000P y x x x x x =-=+-=-++;(2)22231010003039103000031010003036003(100)30000w P x x x x x x x =--⨯=-++--⨯=-+=--+0110x <,∴当100x =时,利润w 最大,最大利润为30000元,∴该公司将这批野生茵存放100天后出售可获得最大利润30000元;24.(10分)已知关于x 的一元二次方程21(2)(2)04a b x a b +-++=有实数根. (1)若2a =,1b =,求方程的根.(2)若225m a b a =++,若0b <,求m 的取值范围.【解答】解:(1)当2a =、1b =时,原方程为22441(21)0x x x -+=-=,解得:12x =. 答:若2a =,1b =,方程的根为12. (2)20ab ,0b <,0a ∴.方程21(2)(2)04a b x a b +-++=有实数根,∴△221(4(2)(2)(2)04a b a b a b =--⨯+⨯+=--, 2a b ∴=,222255105(1)5m a b a b b b ∴=++=+=+-, 0b <,5m ∴-.25.(14分)在平面直角坐标系xOy 中,对于点(,)P x y ,若点Q 的坐标为(,||)x x y -,则称点Q 为点P 的“关联点”.(1)请直接写出点(2,2)的“关联点”的坐标;(2)如果点P 在函数1y x =-的图象上,其“关联点” Q 与点P 重合,求点P 的坐标;(3)如果点(,)M m n 的“关联点” N 在函数2y x =的图象上,当02m 时,求线段MN 的最大值.【解答】解:(1)|22|0-=,∴点(2,2)的“关联点”的坐标为(2,0).(2)点P 在函数1y x =-的图象上,(,1)P x x ∴-,则点Q 的坐标为(,1)x ,点Q 与点P 重合,11x ∴-=,解得:2x =,∴点P 的坐标为(2,1).(3)点(,)M m n ,∴点(,||)N m m n -.点N 在函数2y x =的图象上,2||m n m ∴-=.()i 当m n 时,2m n m -=,2n m m ∴=-+,2(,)M m m m ∴-+,2(,)N m m . 02m ,22|||||21|M N MN y y m m m m m ∴=-=-+-=-. ①当102m时,221122()48MN m m m =-+=--+, ∴当14m =时,MN 取最大值,最大值为18. ②当122m <时,221122()48MN m m m =-=-+, 当2m =时,MN 取最大值,最大值为6. ()ii 当m n <时,2n m m -=,2n m m ∴=+,2(,)M m m m ∴+,2(,)N m m . 02m ,22||||M N MN y y m m m m ∴=-=+-=, 当2m =时,MN 取最大值2. 综上所述:当02m 时,线段MN 的最大值为6.。
2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷(含解析)印刷版

2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣6C.2D.32.(3分)下列几何体的主视图与众不同的是()A.B.C.D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8×1044.(3分)不等式组的解集是()A.x≥2B.x>﹣2C.x≤2D.﹣2<x≤25.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)6.(3分)观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PBC.点A、B到PQ的距离不相等D.∠APQ=∠BPQ7.(3分)函数y1=ax2+bx+c与y2=x的图象如图所示,当y1<y2时,自变量x的取值范围是()A.1<x<3B.x<1C.x>3D.x<1或x>38.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米二、填空题(本大题共6小题,每小题3分,共18分9.(3分)计算:=.10.(3分)一元二次方程x2﹣5x+3=0根的判别式的值为.11.(3分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为.12.(3分)已知二次函数y=ax2﹣2x+c的图象如图所示,则点P(a,c)在第象限.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为度.14.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上另一点,且AB∥x轴,则以AB为边的菱形ABCD的周长为.三、解答题(本大题共10小题,共78分)15.(6分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.16.(6分)小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度.17.(6分)如图所示,直线AC∥DE,DA⊥AC,隧道BC在直线AC上.某施工队要测量隧道BC的长,在点D处观测点B,测得∠BDA=45°,在点E处观测点C,测得∠CEF=53°,且测得AD=600米,DE=500米,试求隧道BC的长.【参考数据:sin53°≈,cos53°≈,tan53°≈】18.(7分)如图,菱形EFGH的顶点E、G分别在矩形ABCD的边AD,BC上,顶点F,H在矩形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若AB=3,BC=4,则菱形EFGH的面积最大值是.19.(7分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.20.(7分)图①、图②是两个7×7网格,网格中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,请仅用无刻度的直尺按要求作图(保留作图痕迹,不写作法).(1)在图①网格内画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图②网格内以OM为边画一个OMPQ,使OMPQ面积等于5且点P、Q均在格点上.(画出一种即可)21.(8分)如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y(千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:(1)甲车到达B地休息了时;(2)求甲车返回A地途中y与x之间的函数关系式;(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)22.(9分)教材呈现:如图是华师版八年级下册数学教材第75页的部分内容.请根据教材的内容,运用此性质解决下列问题:如图①,Rt△ABC与Rt△EDC是两个全等的三角形,当两个三角形完全重合时,将△EDC绕直角顶点C顺时针旋转60°,点D恰好落在AB边上,连结DE,BE.【探究】(1)求证:DE∥BC.(2)判断S△ADC与S△BCE的大小关系S△ADC S△BCE(填”>””<”或”=”);【应用】如图②,在Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,过点D作DE∥BC交AC于点F,交CD的垂线CE于点E,连结BE,AE.若S△BCE=2,EF=4FD,则四边形ADCE的面积为23.(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AB,AB=3,BD=4.动点P从点A出发,沿AC方向以每秒个单位长度的速度向终点C运动,过点P作PE⊥直线AB于点E.设点P的运动时间为t.(1)用含t的代数式表示线段PE的长;(2)当线段PE被线段BC平分时,求t的值;(3)设△APE与△ABC重合部分图形的面积为S,求S与t的函数关系式;(4)点Q是射线PE上一点,在点P的运动过程中,始终保持PQ=1,将△AEQ沿AQ翻折,使点E 的对应点为E′,直接写出当点E′落在直线AD上时t的值.24.(12分)已知,在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B 的左侧),顶点为C,与y轴交点为D.(1)求点C和点A的坐标;(2)把y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折前与翻折后共同组成的图形记为“W”.①点E为“W”上一点,当△EAB的面积等于3时,求点E的横坐标;②点P在“W”,点Q在x轴上,当以点P、Q、C、D为顶点的四边形为平行四边形时,直接写出点Q的坐标;③点M为y=x2﹣4x+3(x≥0)上一点,作点M关于y轴的对称点N,以MN为边向上作正方形MNRS,当直线MD把正方形面积分为1:5两部分时,求点M的横坐标m的值.2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣6C.2D.3【分析】根据①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.即可判断出答案.【解答】解:四个选项中,最小的数是﹣6.故选:B.2.(3分)下列几何体的主视图与众不同的是()A.B.C.D.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:A、主视图是下面两个正方形,上面一个正方形相叠;B、主视图是下面两个正方形,上面一个正方形相叠;C、主视图是下面两个正方形,上面一个正方形相叠;D、主视图上下都是两个正方形相叠.故选:D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将数58000用科学记数法表示为5.8×104.故选:D.4.(3分)不等式组的解集是()A.x≥2B.x>﹣2C.x≤2D.﹣2<x≤2【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解①得:x>﹣2,解②得:x≤2,则不等式组的解集是:﹣2<x≤2.故选:D.5.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.6.(3分)观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PB C.点A、B到PQ的距离不相等D.∠APQ=∠BPQ 【分析】根据角平分线的作法进行解答即可.【解答】解:∵由图可知,PQ是∠APB的平分线,∴A,B,D正确;∵PQ是∠APB的平分线,P A=PB,∴点A、B到PQ的距离相等,故C错误.故选:C.7.(3分)函数y1=ax2+bx+c与y2=x的图象如图所示,当y1<y2时,自变量x的取值范围是()A.1<x<3B.x<1C.x>3D.x<1或x>3【分析】求y1<y2的自变量x的取值范围,从图上看就是二次函数图象在一次函数图象下方时,横坐标x的取值范围.【解答】解:y1<y2的自变量x的取值范围,从图上看就是二次函数图象在一次函数图象下方时,横坐标x的取值范围,从图上看当1<x<3时二次函数图象在一次函数图象下方,所以1<x<3.故选:A.8.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.二、填空题(本大题共6小题,每小题3分,共18分9.(3分)计算:=.【分析】原式利用二次根式乘法法则计算即可得到结果.【解答】解:原式==,故答案为:10.(3分)一元二次方程x2﹣5x+3=0根的判别式的值为13.【分析】直接利用根的判别式△=b2﹣4ac求出答案.【解答】解:一元二次方程x2﹣5x+3=0根的判别式的值是:△=(﹣5)2﹣4×3=13.故答案为:13.11.(3分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线x=2.【分析】点(1,0),(3,0)的纵坐标相同,这两点一定关于对称轴对称,那么利用两点的横坐标可求对称轴.【解答】解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==2.故答案为:直线x=2.12.(3分)已知二次函数y=ax2﹣2x+c的图象如图所示,则点P(a,c)在第二象限.【分析】观察图形得抛物线开口向下,抛物线与y轴的交点在x轴的上方,根据二次函数图形与系数的关系得到a<0,c>0,即可判断P点所在的象限.【解答】解:∵抛物线开口向下,∴a<0;∵抛物线与y轴的交点在x轴的上方,∴c>0.∴点P(a,c)在第二象限.故答案为二.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为65度.【分析】根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA全等,再根据全等三角形对应角相等解答.【解答】解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠ADC=∠B=65°.故答案为:65.14.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上另一点,且AB∥x轴,则以AB为边的菱形ABCD的周长为24.【分析】根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得菱形ABCD的周长.【解答】解:∵在平面直角坐标系中,点点A是抛物线y=a(x﹣3)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=3,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B的横坐标是6,∴AB=6,∴菱形ABCD的周长为:6×4=24,故答案为:24.三、解答题(本大题共10小题,共78分)15.(6分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).16.(6分)小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度.【分析】设小明骑自行车的平均速度为x米/分钟,则小刚乘公交车的平均速度为3.5x米/分钟,根据时间=路程÷速度结合小刚比小明提前4min到达公园,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明骑自行车的平均速度为x米/分钟,则小刚乘公交车的平均速度为3.5x米/分钟,依题意,得:﹣=4,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴3.5x=700.答:小刚乘公交车的平均速度为700米/分钟.17.(6分)如图所示,直线AC∥DE,DA⊥AC,隧道BC在直线AC上.某施工队要测量隧道BC的长,在点D处观测点B,测得∠BDA=45°,在点E处观测点C,测得∠CEF=53°,且测得AD=600米,DE=500米,试求隧道BC的长.【参考数据:sin53°≈,cos53°≈,tan53°≈】【分析】作EM⊥AC于M,解直角三角形即可得到结论.【解答】解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM=DE=500,∴BM=100,在Rt△CEM中,tan53°=,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米18.(7分)如图,菱形EFGH的顶点E、G分别在矩形ABCD的边AD,BC上,顶点F,H在矩形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若AB=3,BC=4,则菱形EFGH的面积最大值是.【分析】(1)证明△BFG≌△DHE(AAS),即可得出BG=DE;(2)当点F与B重合,点H与D重合时,菱形EFGH的面积最大,由菱形的性质得出EG⊥BD,BE =DE=BG,设BE=DE=x,则AE=4﹣x,在Rt△ABE中,由勾股定理得出方程32+(4﹣x)2=x2,解得x=,得出CG=AE=4﹣=,菱形EFGH的面积最大值=矩形ABCD的面积﹣△ABE的面积﹣△CDG的面积,即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠FBG=∠HDE,∵四边形EFGH是菱形,∴FG=EH,∠EFG=∠EHG,∠GFH=∠EFG,∠EHF=∠EHG,∴∠GFH=∠EHG,∴∠BFG=∠DHE,在△BFG和△DHE中,,∴△BFG≌△DHE(AAS),∴BG=DE;(2)解:当点F与B重合,点H与D重合时,菱形EFGH的面积最大,如图所示:∵四边形EFGH是菱形,∴EG⊥BD,BE=DE=BG,∵四边形ABCD是矩形,∴∠BAD=90°,设BE=DE=x,则AE=4﹣x,在Rt△ABE中,由勾股定理得:32+(4﹣x)2=x2,解得:x=,∴CG=AE=4﹣=,∴菱形EFGH的面积最大值=矩形ABCD的面积﹣△ABE的面积﹣△CDG的面积=3×4﹣2×××3=;故答案为:.19.(7分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.【分析】(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,将A(1,0)代入解析式来求a的值.(2)由锐角三角函数定义解答.【解答】解:(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,(a≠0).把A(1,0)代入,得0=a(1﹣4)2﹣3,解得a=.故该二次函数解析式为y=(x﹣4)2﹣3;(2)令x=0,则y=(0﹣4)2﹣3=.则OC=.因为二次函数图象的顶点坐标为(4,﹣3),A(1,0),则点B与点A关系直线x=4对称,所以B(7,0).所以OB=7.所以tan∠ABC===,即tan∠ABC=.20.(7分)图①、图②是两个7×7网格,网格中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,请仅用无刻度的直尺按要求作图(保留作图痕迹,不写作法).(1)在图①网格内画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图②网格内以OM为边画一个OMPQ,使OMPQ面积等于5且点P、Q均在格点上.(画出一种即可)【分析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可(答案不唯一).【解答】解:(1)如图,△MON即为所求.(2)四边形OMPQ即为所求.21.(8分)如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y(千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:(1)甲车到达B地休息了3小时;(2)求甲车返回A地途中y与x之间的函数关系式;(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)【分析】(1)根据题意和图象中的数据可以求得甲车到达B地休息了多长时间;(2)根据函数图象中的数据可以求得甲车返回A地途中y与x之间的函数关系式;(3)根据函数图象中的数据可以求得甲乙的速度,从而可以解答本题.【解答】解:(1)由题意可得,甲车到达B地休息了:7﹣2﹣2=3(小时),故答案为:3小;(2)设甲车返回A地途中y与x之间的函数关系式是y=kx+b,,得,即甲车返回A地途中y与x之间的函数关系式是y=80x﹣240;(3)甲车的速度为160÷2=80km/h,乙车的速度为:420÷7=60km/h,令60x=160,得x=,令60x=210+(210﹣160),得x=,当x为或时,两车与A地的距离恰好相同.22.(9分)教材呈现:如图是华师版八年级下册数学教材第75页的部分内容.请根据教材的内容,运用此性质解决下列问题:如图①,Rt△ABC与Rt△EDC是两个全等的三角形,当两个三角形完全重合时,将△EDC绕直角顶点C顺时针旋转60°,点D恰好落在AB边上,连结DE,BE.【探究】(1)求证:DE∥BC.(2)判断S△ADC与S△BCE的大小关系S△ADC=S△BCE(填”>””<”或”=”);【应用】如图②,在Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,过点D作DE∥BC交AC于点F,交CD的垂线CE于点E,连结BE,AE.若S△BCE=2,EF=4FD,则四边形ADCE的面积为10【分析】【探究】(1)由旋转的性质可得CB=CD,∠CBD=∠CDE,∠BCD=60°,可得△BCD是等边三角形,可得∠CBD=60°=∠BCD=∠CDE,可得DE∥BC;(2)由平行线之间的距离处处相等,且底相同,可得S△BCE=S△BCD,通过证明AD=BD,可得S△BCD =S△ADC,可得S△ADC=S△BCE;【应用】由中线的性质可求S△BCD=S△ADC,由平行线的性质可求S△BCE=S△BCD=S△ADC=2,由三角形面积公式可求S△ACE=8,即可求解.【解答】证明:【探究】(1)∵将△EDC绕直角顶点C顺时针旋转60°,∴CB=CD,∠CBD=∠CDE,∠BCD=60°,∴△BCD是等边三角形,∴∠CBD=60°,∵∠CDE=60°=∠CBD,∴∠BCD=∠CDE,∴DE∥BC;(2)∵DE∥BC,∴S△BCE=S△BCD,∵∠ACB=90°,∠CBD=∠BCD=60°,∴∠A=∠ACD=30°,∴AD=CD,∴AD=BD,∴S△BCD=S△ADC,∴S△ADC=S△BCE,故答案为:=;【应用】∵CD是斜边AB的中线,∴S△BCD=S△ADC,∵DE∥BC,∠ACB=90°,∴S△BCE=S△BCD=S△ADC=2,∠AFD=∠ACB=90°,∵S△ACD=AC×DF=2,S△ACE=×AC×EF,且EF=4DF,∴S△ACE=8,∴四边形ADCE的面积=S△ADC+S△ACE=10,故答案为:10.23.(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AB,AB=3,BD=4.动点P从点A出发,沿AC方向以每秒个单位长度的速度向终点C运动,过点P作PE⊥直线AB于点E.设点P的运动时间为t.(1)用含t的代数式表示线段PE的长;(2)当线段PE被线段BC平分时,求t的值;(3)设△APE与△ABC重合部分图形的面积为S,求S与t的函数关系式;(4)点Q是射线PE上一点,在点P的运动过程中,始终保持PQ=1,将△AEQ沿AQ翻折,使点E 的对应点为E′,直接写出当点E′落在直线AD上时t的值.【分析】(1)证明△APE∽△AOB,可得=,由此即可解决问题.(2)如图2中,当PE被BC平分时,设PE交BC于F.由PF∥OB,BF=CF,推出OP=PC=OC,求出AP即可解决问题.(3)分两种情形:①如图3﹣1中,当0<t≤1时,重叠部分是△APE,根据S=•AE•PE求解.②如图3﹣2中,当1<t≤2时,重叠部分是四边形ABFP,根据S=S△APE﹣S△BFE求解即可.(4)分两种情形:①如图4﹣1中,当点E′落在DA的延长线上时,作BM⊥AD于M,在AD上截取AN,使得AN=AB,连接BN.证明∠EAQ=∠BNM,推出tan∠EAQ=tan∠BNM,可得=,由此构建方程即可解决问题.②如图4﹣2中,当点E′落在AD的延长线于E′,作MN⊥AD于N.由BM∥QE,推出△ABM∽△AEQ,可得=,由此构建方程即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是平行四边形,∴OB=OD=BD=2,∵BD⊥AB,PE⊥AB,∴OA===,PE∥BD,∴△APE∽△AOB,∴=,即=,解得:PE=2t;(2)如图2中,当PE被BC平分时,设PE交BC于F.∵PF∥OB,BF=CF,∴OP=PC=OC=,∴AP=OA+OP=,∴t=.(3)①如图3﹣1中,当0<t≤1时,重叠部分是△APE,S=•AE•PE=•3t•2t=3t2.②如图3﹣2中,当1<t≤2时,重叠部分是四边形ABFP,S=S△APE﹣S△BFE=3t2﹣•(3t﹣3)•(4t﹣4)=﹣3t2+12t﹣6.综上所述,S=.(4)①如图4﹣1中,当点E′落在DA的延长线上时,作BM⊥AD于M,在AD上截取AN,使得AN=AB,连接BN.在Rt△ABD中,AD===5,∵S△ABD=•AB•BD=•AD•BM,∴BM==,∴AM=MN===,∴NM=AN﹣AM=3﹣=,∵∠E′=∠AEQ=90°,QE=QE′.AQ=AQ,∴Rt△AQE≌Rt△AQE(HL),∴∠QAE=∠QAE′,∵∠E′AE=∠ABN+∠ANB,∠ANB=∠ABN,∴∠EAQ=∠BNM,∴tan∠EAQ=tan∠BNM,∴=,∴=,∴t=.②如图4﹣2中,当点E′落在AD的延长线于E′,作MN⊥AD于N.∵∠QAB=∠QAE′,MB⊥AB,MN⊥AD,∴BM=MN,∠ABM=∥ANM=90°,∵AM=AM,∴△AMN≌△AMB(HL),∴AB=AN=3,设BM=MN=x,则DM=4﹣x,在Rt△DMN中,则有(4﹣x)2=x2+22,解得x=,∵BM∥QE,∴△ABM∽△AEQ,∴=,∴=,解得t=2,综上所述,满足条件的t的值为s或2s.24.(12分)已知,在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B 的左侧),顶点为C,与y轴交点为D.(1)求点C和点A的坐标;(2)把y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折前与翻折后共同组成的图形记为“W”.①点E为“W”上一点,当△EAB的面积等于3时,求点E的横坐标;②点P在“W”,点Q在x轴上,当以点P、Q、C、D为顶点的四边形为平行四边形时,直接写出点Q的坐标;③点M为y=x2﹣4x+3(x≥0)上一点,作点M关于y轴的对称点N,以MN为边向上作正方形MNRS,当直线MD把正方形面积分为1:5两部分时,求点M的横坐标m的值.【分析】(1)y=x2﹣4x+3,令x=0,则y=3,令y=0,则x=1或3,即可求解;(2)①△EAB的面积S=×AB×|y E|=2×|y E|=3,则y E=±3,即可求解;②分DA是平行四边形的一条边、DA是平行四边形的对角线两种情况,分别求解即可;③直线MD把正方形面积分为1:5两部分时,则S△MKS=S正方形MNRS,即可求解.【解答】解:(1)y=x2﹣4x+3,令x=0,则y=3,令y=0,则x=1或3,故点A、B、C、D的坐标为:(1,0)、(3,0)、(2,﹣1)、(0,3),答:点C和点A的坐标分别为:(0,3)、(1,0);(2)y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折后的抛物线表达式为:y=x2+4x+3,①△EAB的面积S=×AB×|y E|=2×|y E|=3,则y E=±3,即:x2﹣4x+3=±3或x2+4x+3=±3,解得:x=0或4或﹣4;答:点E的横坐标为:0或4或﹣4;②设点P(m,n),n=m2±4m+3,点Q(s,0),﹣﹣﹣﹣当DA是平行四边形的一条边时,当x≥0时,点D向右平移1个单位向下平移3个单位得到A,同样,点P(Q)向右平移1个单位向下平移3个单位得到Q(P),故:m+1=s,n﹣3=0或m﹣1=s,n+3=0,且n=m2﹣4m+3,解得:m=0或4(舍去0),故s=5,即点Q(5,0);当x<0时,同理可得:点Q(﹣3,0);当DA是平行四边形的对角线时,当x≥0时,m+s=1,n+0=3,且n=m2﹣4m+3,解得:s=5,即点Q(5,0);当x<0时,同理可得:点Q(﹣3,0);综上,Q的坐标为:(5,0)或(﹣3,0);③如下图:设边RS交直线AC于点K,设点M(m,m2﹣4m+3),则点N(﹣m,m2﹣4m+3),则MN=2m,直线MD函数表达式中的k值为:k ==m﹣4,tan∠MA=﹣k=4﹣m=tanα,则∠RSM=α,直线MD把正方形面积分为1:5两部分时,则S△MKS =S正方形MNRS,即×2m ×=×(2m)2,解得:m=1.第21页(共21页)。
2019—2020年华东师大版数学九年级上学期第一次月考试卷及答案解析(基础提分试卷).docx

最新华东师大版九年级上学期第一次月考数学试卷一、选择题(每小题3分,共36分)1.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是( ) A.bcosB=c B.csinA=a C.atanA=b D.2.下列说法正确的是( )A.所有的矩形都是相似形B.有一个角等于100°的两个等腰三角形相似C.对应角相等的两个多边形相似D.对应边成比例的两个多边形相似3.如图,在△ABC中,D是边AC上一点,连接BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD •AC;③∠A=∠ABD;④AB•BC=AC•BD.其中单独能够判定△ABD∽△ACB的个数是( )A.1个B.2个C.3个D.4个4.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )A.1:3 B.2:3 C.:2 D.:35.如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为( )A.B. C.D.6.等腰三角形底边与底边上的高的比是2:,则顶角为( )A.60°B.90°C.120° D.150°7.数学活动课上,小敏、小颖分别画了△ABC和△DEF,尺寸如图.如果两个三角形的面积分别记作S△ABC、S△DEF,那么它们的大小关系是( )A.S△ABC>S△DEF B.S△ABC<S△DEF C.S△ABC=S△DEF D.不能确定8.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB于点E,则tan∠BDE的值等于( )A.B.C.D.9.湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为( )(参考数据:sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)A.34米B.38米C.45米D.50米10.如图:AB⊥CD,CD为⊙O直径,且AB=20,CE=4,那么⊙O的半径是( )A.B.14 C.D.1511.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.现在Rt△ABC内叠放边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点D,E分别在AC,BC上,依次这样叠放上去,则最多能叠放多少?( )A.16个B.13个C.14个D.15个12.平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,正方形A2013B2013C2013C2012的面积为( )A.B.C.D.二、填空题(每小题3分,共15分)13.如图,已知A (4,2),B(2,﹣2),以点O为位似中心,按位似比1:2把△ABO缩小,则点A的对应点A′的坐标为__________.14.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=__________.15.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=__________.16.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,则坝底AD=__________.17.如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为__________.三、解答题(18题5分,23,24题12分,其余题10分,共69分)18.计算:|﹣5|+2cos30°+()﹣1+(9﹣)0+.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.20.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=4.(1)求BC的长;(2)求tan∠DAE的值.21.如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.22.如图,我校九年级某班数学课外活动小组利用周末开展课外实践活动,他们要在佳山公路上测量“佳山”高AB.于是他们采用了下面的方法:在佳山公路上选择了两个观察点C、D(C、D、B在一条直线上),从C处测得山顶A的仰角为30°,在D处测得山顶A的仰角为45°,已知测角仪的高CE与DF的高为1.5m,量得CD=450m.请你帮助他们计算出佳山高AB.(精确到1m,,)23.已知:如图,⊙O的弦AB长为8,延长AB至C,使BC=AB,tanC=.求:(1)⊙O的半径;(2)点C到直线AO的距离.24.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动(E不与B、C重合),且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.月考数学试卷一、选择题(每小题3分,共36分)1.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是( ) A.bcosB=c B.csinA=a C.atanA=b D.【考点】锐角三角函数的定义;勾股定理的逆定理.【分析】由于a2+b2=c2,根据勾股定理的逆定理得到△ABC是直角三角形,且∠C=90°,再根据锐角三角函数的定义即可得到正确选项.【解答】解:∵a2+b2=c2,∴△ABC是直角三角形,且∠C=90°,∴sinA=,即csinA=a,∴B选项正确.故选B.【点评】本题考查了锐角三角函数的定义和勾股定理的逆定理.2.下列说法正确的是( )A.所有的矩形都是相似形B.有一个角等于100°的两个等腰三角形相似C.对应角相等的两个多边形相似D.对应边成比例的两个多边形相似【考点】相似图形.【分析】利用相似图形的判定方法分别判断得出即可.【解答】解:A、所有的矩形都是相似形,对应边的比值不一定相等,故此选项错误;B、有一个角等于100°的两个等腰三角形相似,此角度一定是顶角,即可得出两三角形相似,故此选项正确;C、对应角相等的两个多边形相似,对应边的比值不一定相等,故此选项错误;D、对应边成比例的两个多边形相似,对应角不一定相等,故此选项错误;故选:B.【点评】此题主要考查了相似图形的判定,熟练应用判定方法是解题关键.3.如图,在△ABC中,D是边AC上一点,连接BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD •AC;③∠A=∠ABD;④AB•BC=AC•BD.其中单独能够判定△ABD∽△ACB的个数是( )A.1个B.2个C.3个D.4个【考点】相似三角形的判定.【分析】由图可知△ABD与△ACB中∠A为公共角,所以只要再找一组角相等,或夹∠A的两边对应成比例即可解答.【解答】解:①∵∠ABD=∠ACB,∠A=∠A,∴△ABD∽△ACB;②∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB;③∠A=∠ABD,不能判定△ABD∽△ACB;④∵AB•BC=AC•BD,∴=,∠A=∠A,△ABC与△ADB不相似;故选:B.【点评】本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.4.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )A.1:3 B.2:3 C.:2 D.:3【考点】相似三角形的判定与性质;等边三角形的判定与性质.【分析】首先根据题意求得:∠DFE=∠FED=∠EDF=60°,即可证得△DEF是正三角形,又由直角三角形中,30°所对的直角边是斜边的一半,得到边的关系,即可求得DF:AB=1:,又由相似三角形的面积比等于相似比的平方,即可求得结果.【解答】解:∵△ABC是正三角形,∴∠B=∠C=∠A=60°,∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠AFE=∠CED=∠BDF=90°,∴∠BFD=∠CDE=∠AEF=30°,∴∠DFE=∠FED=∠EDF=60°,=,∴△DEF是正三角形,∴BD:DF=1:①,BD:AB=1:3②,△DEF∽△ABC,①÷②,=,∴DF:AB=1:,∴△DEF的面积与△ABC的面积之比等于1:3.故选:A.【点评】此题考查了相似三角形的判定与性质,以及直角三角形的性质.此题难度不是很大,解题时要注意仔细识图.5.如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为( )A.B. C.D.【考点】锐角三角函数的定义;三角形的面积;勾股定理.【分析】利用图形构造直角三角形,进而利用sinA=求出即可.【解答】解:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA==,故选:A.【点评】此题主要考查了锐角三角函数关系以及勾股定理逆定理等知识,得出sinA=是解题关键.6.等腰三角形底边与底边上的高的比是2:,则顶角为( )A.60°B.90°C.120° D.150°【考点】解直角三角形.【分析】由题意在等腰三角形中,底边上的高与底边上的中线重合,还与顶角的平分线重合,根据已知可以推出底边上的高与底边的一半之比为,且等于顶角一半的余切,所以顶角的一半为30°,由此即可得到顶角为60°.【解答】解:如图,在△ABC中,AB=AC,AD⊥CB于D,依题意得CD:AD=1:=:3,而tan∠DAC=CD:AD,∴tan∠DAC=:3,∴∠DAC=30°,∴顶角∠BAC=60°.【点评】本题利用了等腰三角形的性质和锐角三角函数的概念解决问题.7.数学活动课上,小敏、小颖分别画了△ABC和△DEF,尺寸如图.如果两个三角形的面积分别记作S△ABC、S△DEF,那么它们的大小关系是( )A.S△ABC>S△DEF B.S△ABC<S△DEF C.S△ABC=S△DEF D.不能确定【考点】解直角三角形.【分析】在两个图形中分别作BC、EF边上的高,欲比较面积,由于底边相等,所以只需比较两条高即可.【解答】解:如图,过点A、D分别作AG⊥BC,DH⊥EF,垂足分别为G、H,在Rt△ABG中,AG=ABsinB=5×sin 50°=5sin 50°,在Rt△DHE中,∠DEH=180°﹣130°=50°,DH=DEsin∠DEH=5sin 50°,∵BC=4,EF=4,∴S△ABC=S△DEF.故选C.【点评】本题考查了解直角三角形中的正弦函数的应用以及等底等高两三角形面积相等,求得三角形的高相等是解题的关键.8.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB于点E,则tan∠BDE的值等于( )A.B.C.D.【考点】解直角三角形;等腰三角形的性质;勾股定理.【分析】连接AD,由△ABC中,AB=AC=13,BC=10,D为BC中点,利用等腰三角形三线合一的性质,可证得AD⊥BC,再利用勾股定理,求得AD的长,那么在直角△ABD中根据三角函数的定义求出tan∠BAD,然后根据同角的余角相等得出∠BDE=∠BAD,于是tan∠BDE=tan∠BAD.【解答】解:连接AD,∵△ABC中,AB=AC=13,BC=10,D为BC中点,∴AD⊥BC,BD=BC=5,∴AD==12,∴tan∠BAD==.∵AD⊥BC,DE⊥AB,∴∠BDE+∠ADE=90°,∠BAD+∠ADE=90°,∴∠BDE=∠BAD,∴tan∠BDE=tan∠BAD=.故选C.【点评】此题考查了解直角三角形、等腰三角形的性质、勾股定理、锐角三角函数的定义以及余角的性质.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.9.湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为( )(参考数据:sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)A.34米B.38米C.45米D.50米【考点】解直角三角形的应用-仰角俯角问题.【分析】Rt△ADE中利用三角函数即可求得AE的长,则AB的长度即可求解.【解答】解:过D作DE⊥AB于E,∴DE=BC=50米,在Rt△ADE中,AE=DE•tan41,5°≈50×0.88=44(米),∵CD=1米,∴BE=1米,∴AB=AE+BE=44+1=45(米),∴桥塔AB的高度为45米.【点评】本题考查仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.10.如图:AB⊥CD,CD为⊙O直径,且AB=20,CE=4,那么⊙O的半径是( )A.B.14 C.D.15【考点】垂径定理;勾股定理.【分析】连接OA,设⊙O的半径为R,根据垂径定理求出AE,根据勾股定理得出关于R的方程,求出方程的解即可.【解答】解:连接OA,设⊙O的半径为R,∵AB⊥CD,CD为⊙O直径,AB=20,∴AE=BE=10,在Rt△OEA中,OA=R,OE=R﹣4,AE=10,由勾股定理得:R2=102+(R﹣4)2,解得:R=,故选C.【点评】本题考查了垂径定理,勾股定理的应用,解此题的关键是能构造直角三角形并得出关于R 的方程,注意:垂直于弦的直径平分这条弦,难度适中.11.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.现在Rt△ABC内叠放边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点D,E分别在AC,BC上,依次这样叠放上去,则最多能叠放多少?( )A.16个B.13个C.14个D.15个【考点】相似三角形的判定与性质;正方形的性质.【专题】压轴题;规律型.【分析】首先求得斜边上的高线的长度,即可确定小正方形的排数,然后确定每排的个数即可.【解答】解:作CF⊥AB于点F.在Rt△ABC中,∠C=90°,AC=8,BC=6,则由勾股定理,得AB==10.∵S△ABC=AB•CD=AC•BC∴CF=4.8.则小正方形可以排4排.最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E.∵DE∥AB,∴=,则=,解得:DE=整数部分是7.则最下边一排是7个正方形.第二排正方形的上边的边所在的直线与△ABC的边交于G、H.则=,解得GH=,整数部分是5,则第二排是5个正方形;同理:第三排是:3个;第四排是:1个.则正方形的个数是:7+5+3+1=16.故选A.【点评】本题考查了相似三角形的性质:相似三角形的对应边上的比等于相似比.12.平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,正方形A2013B2013C2013C2012的面积为( )A.B.C.D.【考点】相似三角形的判定与性质;坐标与图形性质;正方形的性质.【分析】先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1B,所以正方形A1B1C1C的边长等于正方形ABCD边长的,以此类推,后一个正方形的边长是前一个正方形的边长的,然后即可求出第2014个正方形的边长与第1个正方形的边长的关系,从而求出第2014个正方形的面积.【解答】解:如图,∵四边形ABCD是正方形,∴∠ABC=∠BAD=90°,AB=BC,∴∠ABA1=90°,∠DAO+∠BAA1=90°,又∵在坐标平面内,∠DAO+∠ADO=90°,∴∠ADO=∠BAA1,在△AOD和△A1BA中,,∴△AOD∽△A1BA,∴OD:AO=AB:A1B=2,∴BC=2A1B,∴A1C=BC,以此类推A2C1=A1C,A3C2=A2C1,…,即后一个正方形的边长是前一个正方形的边长的倍,∴第2014个正方形的边长为()2013BC,∵A的坐标为(1,0),D点坐标为(0,2),∴BC=AD==,∴A2013B2013C2013C2012,即第2014个正方形的面积为[()2013BC]2=5×()4026=5×()2013.故选D.【点评】本题主要考查了相似三角形的性质与正方形的性质,根据规律推出第2014个正方形的边长与第1个正方形的边长的关系是解题的关键,也是难点,本题综合性较强.二、填空题(每小题3分,共15分)13.如图,已知A (4,2),B(2,﹣2),以点O为位似中心,按位似比1:2把△ABO缩小,则点A的对应点A′的坐标为(2,1)或(﹣2,﹣1).【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k计算即可.【解答】解:∵A (4,2),以点O为位似中心,按位似比1:2把△ABO缩小,∴点A的对应点A′的坐标为:(2,1)或(﹣2,﹣1).故答案为:(2,1)或(﹣2,﹣1).【点评】本题考查的是位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.14.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】先根据△ABC中,tanA=1,cosB=,求出∠A及∠B的度数,进而可得出结论.【解答】解:∵△ABC中,|tanA﹣1|+(cosB﹣)2=0∴tanA=1,cosB=∴∠A=45°,∠B=60°,∴∠C=75°.故答案为:75°.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.15.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=.【考点】解直角三角形;线段垂直平分线的性质;勾股定理.【分析】在Rt△ABC中,先求出AB,AC继而得出AD,再由△ADE∽△ACB,利用对应边成比例可求出DE.【解答】解:∵BC=6,sinA=,∴AB=10,∴AC==8,∵D是AB的中点,∴AD=AB=5,∵△ADE∽△ACB,∴=,即=,解得:DE=.故答案为:.【点评】本题考查了解直角三角形的知识,解答本题的关键是熟练掌握三角函数的定义及勾股定理的表达式.16.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,则坝底AD=56+20.【考点】解直角三角形的应用-坡度坡角问题.【分析】过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形,利用相应的性质求解即可.【解答】解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形,由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1:2.5,在Rt△ABE中,∵=,∴AE=50米,在Rt△CFD中,∵∠D=30°,∴DF=CFcot∠D=20米,∴AD=AE+EF+FD=50+6+20=(56+20)米.故答案为:56+20.【点评】本题考查了坡度及坡角的知识,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.17.如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为.【考点】相似三角形的判定与性质;平行线之间的距离;勾股定理.【专题】压轴题.【分析】过点B作EF⊥l2,交l1于E,交l3于F,在Rt△ABC中运用三角函数可得=,易证△AEB∽△BFC,运用相似三角形的性质可求出FC,然后在Rt△BFC中运用勾股定理可求出BC,再在Rt△ABC中运用三角函数就可求出AC的值.【解答】解:如图,过点B作EF⊥l2,交l1于E,交l3于F,如图.∵∠BAC=60°,∠ABC=90°,∴tan∠BAC==.∵直线l1∥l2∥l3,∴EF⊥l1,EF⊥l3,∴∠AEB=∠BFC=90°.∵∠ABC=90°,∴∠EAB=90°﹣∠ABE=∠FBC,∴△BFC∽△AEB,∴==.∵EB=1,∴FC=.在Rt△BFC中,BC===.在Rt△ABC中,sin∠BAC==,AC===.故答案为.【点评】本题主要考查了相似三角形的判定与性质、三角函数、特殊角的三角函数值、勾股定理、平行线的判定与性质、同角的余角相等等知识,构造K型相似是解决本题的关键.三、解答题(18题5分,23,24题12分,其余题10分,共69分)18.计算:|﹣5|+2cos30°+()﹣1+(9﹣)0+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==11.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)利用关于y轴对称点的性质得出各对应点位置,进而得出答案;(2)利用位似变换的性质得出对应点位置,进而得出答案;(3)利用位似图形的性质得出D点坐标变化规律即可.【解答】解:(1)如图所示:△A1B1C1,即为所求,C1点坐标为:(3,2);(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(﹣6,4);(3)如果点D(a,b)在线段AB上,经过(2)的变化后D的对应点D2的坐标为:(2a,2b).【点评】此题主要考查了轴对称变换以及位似变换以及位似图形的性质,利用位似图形的性质得出对应点变化规律是解题关键.20.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=4.(1)求BC的长;(2)求tan∠DAE的值.【考点】解直角三角形.【专题】计算题.【分析】(1)在Rt△ABD中,根据正弦的定义得到sinB==,可计算出AB=6,则根据勾股定理计算出BC=2,然后在Rt△ADC中,利用∠C=45°得到CD=4,于是BC=BD+CD=2+4;(2)先根据三角形中线定义得到CE=BC=+2,则ED=CE﹣CD=﹣2,然后根据正切的定义求解.【解答】解:(1)∵AD是BC边上的高,∴∠ADB=90°,在Rt△ABD中,sinB==,而AD=4,∴AB=6,∴BD==2,在Rt△ADC中,∠C=45°,∴CD=AD=4,∴BC=BD+CD=2+4;(2)∵AE是BC边上的中线,∴CE=BC=+2,∴ED=CE﹣CD=﹣2,在Rt△AED中,tan∠DAE==.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.21.如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.【考点】相似三角形的判定与性质.【分析】(1)利用已知条件易证AB∥DE,进而证明△DCE∽△BCA;(2)首先证明AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=4﹣x,利用(1)中相似三角形的对应边成比例即可求出x的值,即DE的长.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠DA,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)解:∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=4﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(4﹣x):4,解得:x=,∴DE的长是.【点评】本题考查了相似三角形的判定和性质、平行线的判定和性质、等腰三角形的判定和性质,题目的综合性较强,难度不大.22.如图,我校九年级某班数学课外活动小组利用周末开展课外实践活动,他们要在佳山公路上测量“佳山”高AB.于是他们采用了下面的方法:在佳山公路上选择了两个观察点C、D(C、D、B在一条直线上),从C处测得山顶A的仰角为30°,在D处测得山顶A的仰角为45°,已知测角仪的高CE与DF的高为1.5m,量得CD=450m.请你帮助他们计算出佳山高AB.(精确到1m,,)【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题;压轴题.【分析】连接EF并延长交AB于H,则可得到△AEH、△AFH均为直角三角形,在Rt△AFH中,根据∠AFH=45°得到AH=FH,最后设AH=FH=x (m),则EH=450+x 利用在Rt△AEH中,利用30°的正切值列出有关x的方程即可求解.【解答】解:连接EF并延长交AB于H,则△AEH、△AFH均为直角三角形,在Rt△AFH中,∵∠AFH=45°,∴∠FAH=45°,∴AH=FH,设AH=FH=x (m),则EH=450+x (m),在Rt△AEH中,∵tan30°=,∴,解得x=225+225∴AB=225+225+1.5≈225×1.73+226.5≈616(m).答:佳山高约为616(m).【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.23.已知:如图,⊙O的弦AB长为8,延长AB至C,使BC=AB,tanC=.求:(1)⊙O的半径;(2)点C到直线AO的距离.【考点】垂径定理;解直角三角形.【分析】(1)作OD⊥AB,垂足为点,求出AD、CD,根据勾股定理求出AO即可;(2)解直角三角形即可求出答案.【解答】解:(1)作OD⊥AB,垂足为点D,由垂径定理,得AD=BD,∵BC=AB=8,∴AD=4,CD=12,∵,∴OD=3,∴AO=5,由勾股定理得:AO==5,即⊙O的半径等于5;(2)作CE⊥AO,垂足为点E,∵,∴,解得,∴点C到直线AO的距离是.【点评】本题考查了垂径定理,解直角三角形,勾股定理的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中.24.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动(E不与B、C重合),且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.【考点】相似形综合题.【分析】(1)由AB=AC,根据等边对等角,可得∠B=∠C,又由△ABC≌△DEF与三角形外角的性质,易证出∠CEM=∠BAE,从而可证得△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分别从AE=EM与AM=EM去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴=,∴CE=,∴BE=6﹣=;∴BE=1或.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、全等三角形的判定与性质以及二次函数的最值问题,此题难度较大,注意数形结合思想、分类讨论思想与函数思想的应用是解此题的关键.。
2019-2020学年河北省衡水市武邑中学九年级(上)第一次月考数学试卷解析版

2019-2020学年河北省衡水市武邑中学九年级(上)第一次月考数学试卷一.选择题(每题3分,共计18分)1.(3分)下列方程为一元二次方程的是()A.ax2+bx+c=0B.x2﹣2x﹣3C.2x2=0D.xy+1=02.(3分)如图是某物体的直观图,它的俯视图是()A.B.C.D.3.(3分)下列图中是太阳光下形成的影子是()A.B.C.D.4.(3分)在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.5.(3分)如图,P为反比例函数y=的图象上一点,P A⊥x轴于点A,△P AO的面积为6,则下列各点中也在这个反比例函数图象上的是()A.(2,3)B.(﹣2,6)C.(2,6 )D.(﹣2,3)6.(3分)如图,双曲线y=经过点A(2,2)与点B(4,m),则△AOB的面积为()A.2B.3C.4D.5二.填空题(每题3分,共30分)7.(3分)分解因式:4m2﹣16n2=.8.(3分)一个三角形的两边长分别为4cm和7cm,第三边长是一元二次方程x2﹣10x+21=0的实数根,则三角形的周长是cm.9.(3分)将一个正十边形绕其中心至少旋转°就能和本身重合.10.(3分)某工厂两年内产值翻了一番,若设该工厂产值年平均增长的百分率为x,则可列方程为.11.(3分)如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED=.12.(3分)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.13.(3分)如图,PB是⊙O的切线,A是切点,D是上一点,若∠BAC=70°,则∠ADC的度数是度.14.(3分)如图,正五边形ABCDE内接于⊙O,则∠CAD=度.15.(3分)关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是.16.(3分)已知⊙O的直径CD为4,的度数为80°,点B是的中点,点P在直径CD上移动,则BP+AP 的最小值为.三.解答题(共72分)17.用适当的方法解下列方程(1)2x2﹣5x=3(2)x(x﹣5)=2(x﹣5)18.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.19.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.20.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是.有n个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.21.已知:如图A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,∠B=30°.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.22.已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),将剩余部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计)(1)填空:EF=cm,GH=cm;(用含x的代数式表示)(2)若折成的长方体盒子的表面积为950cm2,求该长方体盒子的体积.23.如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=8,OC=6.(1)求直线AC的表达式;(2)若直线y=x+b与矩形OABC有公共点,求b的取值范围;(3)若点O与点B位于直线y=kx﹣2﹣10k两侧,直接写出k的取值范围.24.如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D 三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为10m,∠BAC=60°,求DE的长.2019-2020学年河北省衡水市武邑中学九年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共计18分)1.【解答】解:A、a=0时,属于一元一次方程,故本选项错误;B、不是方程,不符合一元二次方程的定义,故本选项错误;C、该方程符合一元二次方程的定义,故本选项正确;D、该方程中含有2个未知数,不是一元二次方程,故本选项错误.故选:C.2.【解答】解:圆柱的俯视图是圆,长方体的俯视图是长方形,所以该组合几何体的俯视图应是长方形内有一个圆.故选:A.3.【解答】解:在同一时刻,不同物体的物高和影长成比例且影子方向相同.B、D的影子方向相反,都错误;C中物体的物高和影长不成比例,也错误.故选:A.4.【解答】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;依物同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选:A.5.【解答】解:由于P为反比例函数的y=图象上一点,所以S=|k|=6,又因为函数位于第二象限,所以k=﹣12.再把各选项中的坐标代入进行判断:A、2×3=6≠﹣12,故不在函数图象上;B、﹣2×6=﹣12,故在函数图象上;C、2×6=12≠﹣12,故不在函数图象上;D、(﹣2)×3=﹣6≠﹣12,故不在函数图象上.故选:B.6.【解答】解:过A、B分别作x轴的垂线,垂足分别为C、D,如图,∵双曲线y=经过点A(2,2),∴k=2×2=4,而点B(4,m)在y=上,∴4•m=4,解得m=1,即B点坐标为(4,1),∴S△AOB=S△AOC+S梯形ABDC﹣S△BOD=OC•AC+×(AC+BD)×CD﹣×OD×BD=×2×2+×(2+1)×(4﹣2)﹣×4×1=3.故选:B.二.填空题(每题3分,共30分)7.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)8.【解答】解:方程x2﹣10x+21=0,分解因式得:(x﹣3)(x﹣7)=0,解得:x=3或x=7,当x=3时,三角形三边分别为3cm,4cm,7cm,3+4=7,不合题意,舍去;当x=7时,三角形三边为4cm,7cm,7cm,此时周长为4+7+7=18cm,故答案为:189.【解答】解:∵多边形每个中心角为:=36°,该图形绕其中心至少旋转36°和本身重合.故答案为:36.10.【解答】解:设该工厂产值年平均增长的百分率为x,原产值为1,由题意得:(1+x)2=2,故答案是:(1+x)2=2.11.【解答】解:∵AD为⊙O的直径,∴∠ABD=90°,∵AC=BC,∠ABC=75°,∴∠BAC=∠ABC=75°,∴∠C=180°﹣∠ABC﹣∠BAC=30°,∠CBD=∠ABD﹣∠ABC=15°,∴∠D=∠C=30°,∴∠BED=180°﹣∠CBD﹣∠D=135°.故答案为:135°.12.【解答】解:根据旋转过程可知:∠CAD=30°=∠CAB,AC=AD=4.∴∠BCA=∠ACD=∠ADC=75°.∴∠ECD=180°﹣2×75°=30°.∴∠E=75°﹣30°=45°.过点C作CH⊥AE于H点,在Rt△ACH中,CH=AC=2,AH=2.∴HD=AD﹣AH=4﹣2.在Rt△CHE中,∵∠E=45°,∴EH=CH=2.∴DE=EH﹣HD=2﹣(4﹣2)=2﹣2.故答案为2﹣2.13.【解答】解:如图,∵在优弧AC上取点E,连接AE,CE,PB是⊙O的切线,∠BAC=70°,∴∠E=70°,∴∠D=180°﹣∠E=110°.14.【解答】解:∵五边形ABCDE是正五边形,∴=====72°,∴∠CAD=×72°=36°.故答案为36.15.【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=﹣2或x+2=1,解得x=﹣4或x=﹣1.故答案为:x3=﹣4,x4=﹣1.16.【解答】解:过点B关于CD的对称点B′,连接AB′交CD于点P,延长AO交圆O与点E,连接B′E.∵点B与点B′关于CD对称,∴PB=PB′..∴当点B′、P、A在一条直线上时,PB+P A有最小值,最小值为AB′.∵点B是的中点,∴=120°.∴∠B′EA=60°.∴AB′=AE•sin60°=4×=2.故答案为:2.三.解答题(共72分)17.【解答】解:(1)方程整理得:x2﹣x=3,配方得:x2﹣x+=,即(x﹣)2=,开方得:x﹣=±,解得:x1=3,x2=﹣;(2)方程整理得:x(x﹣5)﹣2(x﹣5)=0,分解因式得:(x﹣2)(x﹣5)=0,解得:x1=5,x2=2.18.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EG=12cm,∠EGF=30°,∴EQ=AB=×12=6(cm).故答案为:6.19.【解答】解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B是双曲线y=上一点,∴k=xy=3.故答案为:3.20.【解答】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为7.故答案为:18,7.21.【解答】(1)证明:如图,连接OA;∵OC=BC,OA=OC,∴OA=OB.∴∠OAB=90°,即OA⊥AB,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.22.【解答】解:(1)EF=(30﹣2x)cm,GH=(20﹣x)cm.故答案为(30﹣2x),(20﹣x);(2)根据题意,得:40×30﹣2x2﹣2×20x=950,解得:x1=5,x2=﹣25(不合题意,舍去),所以长方体盒子的体积=x(30﹣2x)(20﹣x)=5×20×15=1500(cm3).答:此时长方体盒子的体积为1500cm3.23.【解答】解:(1)∵OA=8,OC=6,∴A(8,0),C(0,6),设直线AC解析式为y=mx+n(m≠0),将A(8,0)、C(0,6)代入y=mx+n,得:,解得:,∴直线AC的解析式为y=﹣x+6;(2)当直线y=x+b过点C时,将C(0,6)代入y=x+b,得:6=0+b,∴b=6;当直线y=x+b过点A时,将A(8,0)代入y=x+b,得:0=8+b,∴b=﹣8.∵若直线y=x+b与矩形OABC有公共点,∴b的取值范围为:﹣8<b<6.(3)∵OA=8,OC=6,四边形OABC为矩形,∴B(8,6).将A(0,0)代入y=kx﹣2﹣10k,得:﹣2﹣10k=0,解得:k=﹣;将B(8,6)代入y=kx﹣2﹣10k,得:8k﹣2﹣10k=6,解得:k=﹣4.∴k的取值范围为:﹣4<k<﹣.24.【解答】(1)证明:如图连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径;(2)DE与圆O相切,理由为:证明:连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切;(3)解:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=20,设AC与⊙O交于点F,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=10,DE∥BF,∵D为BC中点,∴E为CF中点,即DE为△BCF中位线,在Rt△ABF中,AB=20,AF=10,根据勾股定理得:BF=,则DE==5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年九年级上学期数学第一次月考试卷(I)卷
一、单选题 (共10题;共20分)
1. (2分)下列标志中,可以看作是中心对称图形的是()
A .
B .
C .
D .
2. (2分)一元二次方程x2+x+0.25=0的根的情况是()
A . 有两个不相等的实数根
B . 有两个相等的实数根
C . 无实数根
D . 无法确定根的情况
3. (2分)已知:点P到直线l的距离为3,以点P为圆心,r为半径画圆,如果圆上有且只有两点到直线L的距离均为2,则半径r的取值范围是()
A . r>1
B . r>2
C . 2<r<2
D . 1<r<5
4. (2分)一元二次方程4x2﹣x=1的解是()
A . x=0
B . x1=0,x2=4
C . .x1=0,x2=
D . x1=, x2=
5. (2分)如图,在正方形ABCD中,AB=3,点E在CD边上,DE=1,把△ADE绕点A 顺时针旋转90°,得到△ABE′,连接EE′,则线段EE′的长为()
A .
B .
C . 4
D .
6. (2分)某汽车销售公司2013年盈利1500万元,2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.设每年盈利的年增长率为x,根据题意,所列方程正确的是()
A . 1500(1+x)+1500(1+x)2=2160
B . 1500x+1500x2=2160
C . 1500x2=2160
D . 1500(1+x)2=2160
7. (2分)若二次函数y=x2+bx﹣5的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()
A . x1=0,x2=4
B . x1=1,x2=5
C . x1=1,x2=﹣5
D . x1=﹣1,x2=5
8. (2分)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()
A . 30°
B . 40°
C . 50°
D . 80°
9. (2分)如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为()
A .
B . 2
C . 2
D . 3
10. (2分)已知抛物线和直线l在同一直角坐标系中的图像如图所示,抛物线的对称轴为直线x=﹣1,P1(x1 , y1),P2(x2 , y2)是抛物线上的点,P3(x3 , y3)是直线l上的点,且x3<﹣1<x1<x2 ,则y1 , y2 , y3的大小关系是()
A . y1<y2<y3
B . y2<y3<y1
C . y3<y1<y2
D . y2<y1<y3
二、填空题 (共6题;共6分)
11. (1分)如果代数式3x﹣2与1﹣ x的值互为相反数,那么x=________.
12. (1分)如图,M是弦AB(非直径)的中点,弦CD与弦AB相交于点M.当________ 时,CD⊥AB(只需填一个符合要求的答案).
13. (1分)已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是________ cm2 .
14. (1分)已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1 ,则下列结论正确的是________.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.
15. (1分)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(, 0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是________.(填写正确结论的序号)
16. (1分)如图,在Rt△ABC中,∠C=90°,∠B=40°,点D在边BC上,BD=2CD,把△ABC绕点D逆时针旋转m度后(0°<m<360°),如果点B恰好落在初始Rt△ABC的边所在的直线上,那么m=________
三、综合题 (共8题;共84分)
17. (10分)已知,如图,点M在x轴上,以点M为圆心,2.5长为半径的圆交y轴于
A、B两点,交x轴于C(x1 , 0)、D(x2 , 0)两点,(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的两根.
(1)求点C、D及点M的坐标;
(2)若直线y=kx+b切⊙M于点A,交x轴于P,求PA的长;
(3)⊙M上是否存在这样的点Q,使点Q、A、C三点构成的三角形与△AOC相似?若存在,请求出点的坐标,并求出过A、C、Q三点的抛物线的解析式;若不存在,请说明理由.
18. (10分)如图,正方形ABCD的边长为2,E是BC的中点,以点A为中心,把△ABE 逆时针旋转90°,设点E的对应点为F.
(1)画出旋转后的三角形.
(2)在(1)的条件下,
①求EF的长;
②求点E经过的路径弧EF的长.
19. (10分)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求证:无论p取何值时,方程总有两个不相等的实数根;
(2)求证:无论p取何值时,方程总有两个不相等的实数根;
(3)设方程两实数根分别为x1 , x2 ,且满足,求实数p的值.(4)设方程两实数根分别为x1 , x2 ,且满足,求实数p的值.
20. (10分)如图,Rt△ABC中,∠C=90°.
(1)求作:△ABC的内切圆⊙O(不写作法,保留作图痕迹)
(2)若⊙O的半径为2,tan∠A= ,求AB的长.
21. (7分)为迎接G20杭州峰会的召开,某校八年级(1)(2)班准备集体购买一种T恤衫参加一项社会活动.了解到某商店正好有这种T恤衫的促销,当购买10件时每件140元,购买数量每增加1件单价减少1元;当购买数量为60件(含60件)以上时,一律每件80元.
(1)如果购买件(10<<60),每件的单价为元,请写出关于
的函数关系式;
(2)如果八(1)(2)班共购买了100件T恤衫,由于某种原因需分两批购买,且第一批购买量多于30件且少于60件.已知购买两批T恤衫一共花了9200元,求第一批T恤衫的购买数量.
22. (10分)某公司经市场调查发现,该公司生产的某商品在第x天的售价(1≤x≤100)为(x+30)元/件,而该商品每天的销售量y(件)满足关系式:y=220-2x,如果该商品第15天的售价按8折出售,仍然可以获得20%的利润.
(1)求该公司生产每件商品的成本为多少元;
(2)问销售该商品第几天时,每天的利润最大?最大利润是多少?
(3)该公司每天需要控制人工、水电和房租支出共计a元,若考虑这一因素后公司对最大利润要控制在4000元至4500元之间(包含4000和4500),且保证至少有90天的盈利,请直接写出a的取值范围.
23. (12分)如图,抛物线y=a(x﹣m﹣1)2+2m(其中m>0)与其对称轴l相交于点P.与y轴相交于点A(0,m)连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC将△PBC绕点P逆时针旋转,使点C落在抛物线上,设点C、B的对应点分别是点B′和C′.
(1)当m=1时,该抛物线的解析式为:________.
(2)求证:∠BCA=∠CAO;
(3)试问:BB′+BC﹣BC′是否存在最小值?若存在,求此时实数m的值,若不存在,请说明理由.
24. (15分)一节数学课后,老师布置了一道课后练习题:
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.
(1)理清思路完成解答
本题证明的思路可用下列框图表示:
根据上述思路,请你完整地书写本题的证明过程.
(2)若PB平分∠ABO,其余条件不变.求证:AP=CD.
(3)知识迁移,探索新知
若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、综合题 (共8题;共84分) 17-1、
17-2、
17-3、18-1、
18-2、19-1、
19-2、
19-3、
19-4、
20-1、
20-2、
21-1、21-2、22-1、22-2、
22-3、23-1、
23-2、
24-1、
24-2、24-3、。