一次函数知识点及常见题型

一次函数知识点及常见题型
一次函数知识点及常见题型

一次函数知识点及常见类型

1、变量:在一个变化过程中不断发生变化的量;常量:在一个变化过程中保持不变的量。

例:在匀速运动公式vt

s=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。在圆的周长公式C=2πr中,变量是________,常量是________.

2、函数:一般地,设在一个变化过程中有两个变量x和y,如果对于x允许取值范围内的每一个值,y都有唯一确定的值与它对应,那么我们就说x是自变量,(y称为因变量,)称y是x的函数,如果x=a时,y=b,那么b叫做当自变量的值为a时函数值。

注意:函数不是数,它是指某一变化过程中两个变量之间的关系。

判断x是否为y的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应

例:下列函数(1)y=πx (2)y=2x-1 (3)y=1

x(4)y=2

-1-3x (5)y=x2-1中是一次函

数的有()(A)4个(B)3个(C)2个(D)1个3、自变量的取范围:确定自变量的取范的方法:

(1)关系式为整式时,函数定义域为全体实数;

(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;

(4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,自变量的取范围还要和实际情况相符合,使之有意义。

例:1、下列函数中,自变量x的取值范围是x≥2的是()

A.

B.

y=C.

D.

2

、函数y=中的自变量x的取值范围是.

4、函数的图象

一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵

坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

5、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

6、描点法画函数图象的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

注意:根据“两点确定一条直线”的道理(也叫 两点法)。 一般的,一次函数y=kx+b(k≠0)

的图象过(0,b )和(-k

b ,0)两点画直线即可;正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k )两点。

7、函数的表示方法

1.列表法

2.图象法

3.解析式法

例:1、东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是______________.

2、平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是__________.

3、小亮从家步行到公交车站台,等公交车去学校. 图中的

折线表示小亮的行程s (km)与所花时间t (min)之间的函

数关系. 下列说法错误..

的是 ( ) A .他离家8km 共用了30min B .他等公交车时间为6min

C .他步行的速度是100m/min

D .公交车的速度是350m/min

8、正比例函数及性质

一般地,形如y=kx(k 是常数,k≠0)的函数 叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零)

① k 不为零 ② x 指数为1 ③ b 取零

(1) 解析式:y=kx (k 是常数,k ≠0) (第3题图)

八年级数学上册 一次函数解析式常见题型分析 人教新课标版

求一次函数解析式常见题型解析 一次函数解析式的求法在初中数学教学内容中占有举足轻重的作用,如何把这一部分内容学的扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学门有所帮助。 一:定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 ,故一次函数的解析式为 注意:利用定义求一次函数解析式时,要保证。如本例中应保证 二. 点斜型 例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。 解:一次函数的图像过点(2,-1) ,即 这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。 三. 两点型 已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

解:设一次函数解析式为 由题意得 故这个一次函数的解析式为 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为 由图可知一次函数的图像过点(1,0)、(0,2) 有 故这个一次函数的解析式为 五. 斜截型

例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线:;:。当,时, 直线与直线平行,。 又直线在y轴上的截距为2, 故直线的解析式为 六. 平移型 例6. 把直线向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为,直线向下平移2个单位得到的直线 与直线平行 直线在y轴上的截距为,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得,即 故所求函数的解析式为() 注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

一次函数 最全面 知识点题型总结

初中数学一次函数知识点总结 基本概念: 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k ≠0)。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 图像性质 1.作法与图形:

(1)列表. (2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 一次函数的图象特征和性质: y =kx+b b>0 b<0 b=0 y=kx k >0 经过第一、二、 三象限 经过第一、三、 四象限 经过第一、 三象限图象从左到右上升,y随x的增大而增大 k <0 经过第一、二、 四象限 经过第二、三、 四象限 经过第二、 四象限图象从左到右下降,y随x的增大而减小

一次函数知识点总结与常见题型.doc

一次函数知识点总结与常见题型 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1 x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y B .y C .y D .y 函数y = x 的取值范围是___________. 已知函数22 1 +-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k >0时,图像经过一、三象限;k <0时,?图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( ) A .0 B . 23 C .23- D .32 - .(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( ) A .0k C .1≤k D .10时,向上平移;当b <0时,向下平移) (1)解析式:y =kx +b (k 、b 是常数,k ≠0 (2)必过点:(0,b )和(- k b ,0) (3)走向: k >0,图象经过第一、三象限;k <0,图象经过第二、四象限 b >0,图象经过第一、二象限;b <0,图象经过第三、四象限 ????>>00b k 直线经过第一、二、三象限 ??? ?<>00 b k 直线经过第一、三、四象限 ????><00b k 直线经过第一、二、四象限 ?? ??<<00 b k 直线经过第二、三、四象限 (4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小. (5)倾斜度:|k | 越大,图象越接近于y 轴;|k | 越小,图象越接近于x 轴. (6)图像的平移: 当b >0时,将直线y =kx 的图象向上平移b 个单位; (上加下减,左加右减) 当b <0时,将直线y =kx 的图象向下平移b 个单位. 例题:若关于x 的函数1 (1)m y n x -=+是一次函数,则m = ,n . .函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )

必修一指数函数各种题型大全最新版

指数函数 【知识点梳理】 要点一、指数函数的概念: 函数y=ax(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?, 1 2x y =,31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x ==???时,在实数范围 内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点二、指数函数的图象及性质:

要点诠释: (1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1)①x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2, 3, (), ()2 3 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可

一次函数知识点及常见题型

一次函数知识点及常见类型 1、变量:在一个变化过程中不断发生变化的量;常量:在一个变化过程中保持不变的量。 例:在匀速运动公式vt s=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。在圆的周长公式C=2πr中,变量是________,常量是________. 2、函数:一般地,设在一个变化过程中有两个变量x和y,如果对于x允许取值范围内的每一个值,y都有唯一确定的值与它对应,那么我们就说x是自变量,(y称为因变量,)称y是x的函数,如果x=a时,y=b,那么b叫做当自变量的值为a时函数值。 注意:函数不是数,它是指某一变化过程中两个变量之间的关系。 判断x是否为y的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应 例:下列函数(1)y=πx (2)y=2x-1 (3)y=1 x(4)y=2 -1-3x (5)y=x2-1中是一次函 数的有()(A)4个(B)3个(C)2个(D)1个3、自变量的取范围:确定自变量的取范的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,自变量的取范围还要和实际情况相符合,使之有意义。 例:1、下列函数中,自变量x的取值范围是x≥2的是() A. B. y=C. D. 2 、函数y=中的自变量x的取值范围是. 4、函数的图象 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵

坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 5、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。 6、描点法画函数图象的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 注意:根据“两点确定一条直线”的道理(也叫 两点法)。 一般的,一次函数y=kx+b(k≠0) 的图象过(0,b )和(-k b ,0)两点画直线即可;正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k )两点。 7、函数的表示方法 1.列表法 2.图象法 3.解析式法 例:1、东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是______________. 2、平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是__________. 3、小亮从家步行到公交车站台,等公交车去学校. 图中的 折线表示小亮的行程s (km)与所花时间t (min)之间的函 数关系. 下列说法错误.. 的是 ( ) A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min 8、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数 叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 (1) 解析式:y=kx (k 是常数,k ≠0) (第3题图)

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函 数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 指数函数·例题解析

(完整版)一次函数解析式练习题

一次函数解析式练习题 一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。其中求一次函数解析式就是一类常见题型。 例1. 已知函数y m x m =-+-()3328是一次函数,求其解析式。 例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。 例3. 已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),求这个函数的解析式。 例4. 已知某个一次函数的图像如图所示,求函数的解析式。 例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为___________。 例6. 把直线y x =+21向下平移2个单位得到的图像解析式为___________。 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t (分钟)的函数关系式为___________。 例8. 已知直线y kx =-4与两坐标轴所围成的三角形面积等于4,求此直线的解析式。

练习题: 1. 已知直线y=3x -2, 当x=1时,y= 2. 已知直线经过点A (2,3),B (-1,-3),则直线解析式为________________ 3. 点(-1,2)在直线y=2x +4上吗? (填在或不在) 4. 当m 时,函数y=(m-2) +5是一次函数,此时函数解析式为 。 5. 已知直线y=3x+b 与两坐标轴所围成的三角形的面积为6,则函数的解析式为 . 6. 已知变量y 和x 成正比例,且x=2时,y=-2 1,则y 和x 的函数关系式为 。 7. 直线y=kx +2与x 轴交于点(-1,0),则k= 。 8. 若直线y=kx +b 平行直线y=3x +4,且过点(1,-2),则k= . 9. 已知A(-1,2), B(1,-1), C(5,1), D(2,4), E(2,2),其中在直线y=-x+6上的点有_________,在直 线y=3x-4上的点有_______ 10. 某人用充值50元的IC 卡从A 地向B 地打长途电话,按通话时间收费,3分钟内收费2.4元, 以后每超过1分钟加收1元,若此人第一次通话t 分钟(3≤t ≤45),则IC 卡上所余的费用y (元)与t (分)之间的关系式是 . 11. 某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表 由上表得y 与x 之间的关系式是 12. 已知:一次函数的图象与正比例函数y=-3 2x 平行,且通过点(0,4), (1)求一次函数的解析式. (2)若点M(-8,m)和N(n,5)在一次函数的图象上,求m,n 的值 13. 已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y= 12 x 的图象相交于点(2,a),求 (1)a 、k 、b 的值 (2)这两个函数图象与x 轴所围成的三角形面积. 32 m x

指数及指数函数知识点

指数函数 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . (二)分数指数幂 1.分数指数幂:()102 5 0a a a ==>()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a =45a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

一次函数知识点总结

一次函数知识点总结 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

一次函数 一、函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应, 那么我们就把x称为自变量,把y称为因变量,y是x的函数。 *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数(函数关系)的表示方法 ①列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 画法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值) ②解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 用含有表示自变量字母的代数式表示因变量的式子叫做解析式。一般情况下,等号右边的变量是自变量,等号左边的变量是因变量。 ③图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

指数与指数函数题型归纳(非常全)

指数式及指数函数题型归纳(2019.10.25)一.指数幂与根式的互化: 题组一:根式化为分数指数幂 (1)化简=________.(2) 计算=________. (3)若a<0,则=________. (4)的值为() 题组二:运用分数指数幂进行化简: (1)下列各式中错误的是() 1. A. B. C. D. 2.化简()×(-)÷()的结果() A. 6a B. C. D. 3.(1)计算:(2)化简:. (3)(×)6+()-4()-×80.25-(-2009)0. 题组三:指数式的条件求值问题: 1.已知,求下列各式的值(写出过程): (1) (2) (3)= 2.(1)已知,求的值.(2)已知2x+2-x=3,则 4x+4-x= ______ .

题组四:利用指数函数比较大小; 1.下列各式比较大小正确的是: ;; 2.已知,则a,b,c三者的大小关系是 A. B. C. D. 3.已知,b=,c=,则() A. B. C. D. 题组五:指数函数过定点问题; 1.函数f(x)=2-a x+1(a>0且a≠1)的图象恒过定点() A. B. C. D. 2.函数y=a x-3+1(a>0且a≠1)图象一定过点______ . 3.函数y(a>0,a≠1)的图象经过定点为______ 4.题组六:指数函数解方程(或不等式); 1.设集合A={x|-1<x<2},{x|<()x<1},则A∩B=() A. B. C. D. 2.(1)不等式的解集为________.(2)不等式2x-2>22x+4的解集为______ (3)求不等式a2x-7>a4x-1(a>0,且a≠1)中x的取值范围 3.方程4x-6×2x+8=0的解是______ . 题组七:指数函数有关图像问题; 1.函数其中且的图象一定不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2. 若函数y=a x+b的部分图象如图所示,则() A. , B. , C. , D. ,

一次函数知识点总结与常见题型

一次函数知识点总结与常见题型

x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k >0时,图像经过一、三象限;k <0时,?图像经过 二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减 小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( ) A .0 B .23 C .23- D .32 - .(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( ) A .0k C .1≤k D .10时,向上平移;当b <0时,向下平移)

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

北师大八年级上《一次函数解析式》常见题型总结

求一次函数解析式的常见题型 一次函数及其图像是初中代数的重要容,也是高中解析几何的基石,更是中考的重点考查容。其中求一次函数解析式就是一类常见题型。 一、定义型 例1、已知函数y m x m =-+-()332 8 是一次函数,求其解析式。 知识巩固 1、已知函数y=(n-1)x n 2 +2是一次函数,求其解析式。 2、已知函数y=(n-2)x n 2-3+2是一次函数,求其解析式。 二、点截型点斜型 例1、 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。 知识巩固 1、已知一次函数y kx =-3,当x=1时,y =1,求这个函数的解析式。

2、若函数y=3x+b经过点(2,-6),求函数的解析式。 3、已知一次函数 y=kx+2,当x=5时,y的值为4,求k的值。 三、两点型 例1、已知一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),求这个函数的解析式。 知识巩固 1、已知一次函数的图像经过(1,2)和(3,1)两点,求一次函数的解析式。 2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求一次函数的解析式。 3、已知一次函数的图象经过(2,5)和(-1,-1)两点,求一次函数的解析式。

4、一次函数的图象经过点(2,1)和(1,5),求一次函数的解释式。 四、图像型 例1.、已知某个一次函数的图像如图所示,求该函数的解析式。 y 2 O 1 x 知识巩固 1、已知某个一次函数的图像如图所示,求该函数的解析式。 2已知某个一次函数的图像如图所示,求该函数的解析式。 3已知某个一次函数的图像如图所示,求该函数的解析式。

一次函数经典例题大全

一.定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 , ,故一次函数的解析式为y=-6x+3。 注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二. 点斜型 例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。 解:一次函数的图像过点(2, -1), ,即k=1。故这个一次函数的解析式为y=x-3。 变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。 三. 两点型 例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。 解:设一次函数解析式为y=kx+b,由题意得 ,故这个一次函数的解析式为y=2x+4 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2) 有故这个一次函数的解析式为y=-2x+2 五. 斜截型 例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线;。当k1=k2,b1≠b2时,

直线y=kx+b与直线y=-2x平行,。 又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2 六. 平移型 例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为 y=kx+b, 直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行 直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得Q=20-0.2t ,即Q=-0.2t+20 故所求函数的解析式为 Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。 八. 面积型 例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。 解:易求得直线与x轴交点为,所以,所以|k|=2 ,即 故直线解析式为y=2x-4或y=-2x-4 九. 对称型 若直线与直线y=kx+b关于 (1)x轴对称,则直线的解析式为y=-kx-b (2)y轴对称,则直线的解析式为y=-kx+b (3)直线y=x对称,则直线的解析式为 (4)直线y=-x对称,则直线的解析式为 (5)原点对称,则直线的解析式为y=kx-b 例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。 解:由(2)得直线l的解析式为y=-2x-1 十. 开放型 例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。 解:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6 (2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以 是双曲线,解析式为 (3)其它(略)

一次函数知识点总结与常见题型

三乐教育名师点拔中心 学生姓名: 家长签名 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其 对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1 x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y B .y C .y D .y 函数y = x 的取值范围是___________. 已知函数22 1 +-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k >0时,图像经过一、三象限;k <0时,?图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( ) A .0 B . 23 C .23- D .32 - .(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( ) A .0k C .1≤k D .1

相关文档
最新文档