严重度,频度,探测度
PFMEA的严重度频度探测度评分准则

PFMEA的严重度频度探测度评分准则PFMEA(Process Failure Mode and Effects Analysis),中文为过程失效模式和影响分析,是一种用于识别和评估潜在过程故障模式及其对产品质量造成的影响的方法。
在PFMEA中,严重度(Severity)、频度(Occurrence)和探测度(Detection)是评估风险的三个关键指标。
严重度(Severity)指的是当失效发生时,对产品质量造成的影响程度,评估失效对产品或顾客的影响有多严重。
评价严重度时,通常使用一个评分系统,其中每个等级对应不同程度的影响。
以下是一个例子:1-极低的严重度:失效不影响产品性能或顾客安全2-低的严重度:失效会导致轻微的降低产品性能或顾客满意度,但不影响顾客安全3-中等严重度:失效会导致明显的降低产品性能或顾客满意度,但不影响顾客安全4-高的严重度:失效会导致产品完全失效或明显降低顾客安全频度(Occurrence)是指失效在过程中发生的概率。
评估频度时,可以考虑失效的历史数据、过程控制水平、操作员的熟练程度等因素。
以下是一个例子:1-极低的频度:失效几乎不会发生,或发生的概率非常低2-低的频度:失效的概率较低,但不可忽略3-中等频度:失效的概率较为普遍,但不是非常常见4-高的频度:失效非常常见,几乎每次都会发生探测度(Detection)是指在当前的检测和控制环境中,能够及时检测和预防失效的能力。
评估探测度时,可以考虑当前的检测方法、控制措施、操作员的能力等因素。
以下是一个例子:1-控制措施可以有效地检测和防止失效的发生2-控制措施可以部分地检测和防止失效的发生3-控制措施的效果不确定4-控制措施无法有效地检测和防止失效的发生以上是一个评分准则的简单示例。
在实际应用中,可以根据具体的行业和产品特点,设计适合的评分准则。
在进行PFMEA分析时,将严重度、频度和探测度综合在一起,可以计算出一个“风险优先指数”(Risk Priority Number,RPN)。
PFMEA严重度频度探测度判定方法

PFMEA严重度频度探测度判定方法PFMEA(Process Failure Mode and Effects Analysis)是一种常用的质量管理工具,用于识别、分析和评估潜在的故障模式、影响和危害。
其中严重度、频度和探测度是用于判定故障的重要指标。
以下将介绍这三个指标的判定方法。
1. 严重度(Severity):严重度评估的是故障对于产品、过程或客户的影响程度。
它通常通过一个定量化的评分系统来确定。
评分系统一般分为1到10,其中1表示影响较小,10表示影响十分严重。
在评估严重度时,可以考虑以下几个方面:-对用户的影响:是否会造成人身伤害或财产损失,以及该损失是否可以容忍。
-对质量的影响:是否会导致制品无法达到规定的技术要求。
-对业务影响的程度:是否会导致进一步的生产停工,以及停工的时间和成本。
根据以上因素进行综合评估,并给出一个合适的评分。
2. 频度(Frequency):频度评估的是故障发生的频率或概率。
在进行风险评估时,需要考虑故障的发生频率以及持续时间。
在评估频度时,可以考虑以下几个因素:-过去的经验:根据过去的故障统计数据,评估故障的发生频率。
-设备的可靠性:考虑设备的寿命以及是否有可靠性数据。
-过程控制和维护:评估在实施过程控制和维护计划后,故障发生的频率是否会降低。
综合考虑这些因素,并给出一个适当的评分。
3. 探测度(Detection):探测度评估的是故障在检测或发现时的可能性。
将其评估为一个百分比,表示故障被发现的可能性。
评分从0%到100%,其中0%表示故障无法被发现,100%表示故障可以被完全检测到。
在评估探测度时,可以考虑以下几个因素:-检测工具和技术:考虑使用的检测工具和技术的效率和准确性。
-检测频率:考虑检测的频率和规范是否能够发现所有可能的故障。
-培训和操作规程:考虑员工的培训以及操作规程对于故障检测的影响。
综合考虑这些因素,并给出一个适当的评分。
综上所述,严重度、频度和探测度是PFMEA中用于判定故障重要性的三个关键指标。
PFMEA的严重度、频度、探测度评分准则

PFMEA的严重度、频度、探测度评分准则严重度评定准则:后果的严重度评定准则:后果的严重度当潜在失效模式导致最终顾客和/或一个严当潜在失效模式导致最终顾客和/或一制造/装配厂产生缺陷时便得出相应的定重个制造/装配厂产生缺陷时便得出相应后果级结果。
最终顾客永远是要首先考虑的。
度的定级结果。
最终顾客永远是要首先考如果两种可能都存在的,采用两个严重值级虑的。
如果两种可能都存在的,采用两中的较高者。
别个严重度值中的较高者。
(顾客的后果)(制造/装配后果)当潜在的失效模式在无警告的情况下影无警告或可能在无警告的情况下对(机器或总10响车辆安全运行和/或涉及不符合政府的危害成)操作者造成危害法规的情形时,严重度定级非常高。
当潜在的失效模式在有警告的情况下影有警告或可能在有警告的情况下对(机器或总9响车辆安全运行和/或涉及不符合政府的危害成)操作者造成危害法规的情形时,严重度定级非常高。
很高车辆/项目不能工作(丧失基本功能)车辆/项目可运行但性能水平下降。
顾客非常不满意。
或100%的产品可能需要报废,或者车辆/8项目需在返修部门返修1个小时以上。
或产品需进行分检、一部分(小于100%)需报废,或车辆项目在返修部门进行返修7的时间在0.5-1小时之间。
高车辆/项目可运行,但舒适性/便利性项目或一部分(小于100%)产品可能需要报中等不能运行。
废,不需分检或者车辆/项目需在返修部6顾客不满意。
门返修少于0.5小时。
低或100%的产品可能需要返工或者车辆/车辆/项目可运行,但舒适性/便利性项目项目在线下返修,不需送往返修部门处5性能水平有所下降。
理。
配合和外观/尖响和卡嗒响项目不舒服。
或产品可能需要分检,无需报废,但部分4多数(75%以上)顾客能发觉缺陷。
产品(小于100%)需返工。
配合和外观/尖响和卡嗒响项目不舒服。
或部分(小于100%)的产品可能需要返350%的顾客能发觉缺陷。
工,无需报废,在生产线上其它工位返工。
PFMEA的严重度、频度、探测度评分准则

1
1ห้องสมุดไป่ตู้
频度
失效发生可能性
可能的失效率*
频度
很高:持续性失效
≥100个,每1000件
10
50个,每1000件
9
高:经常性失效
20个,每1000件
8
10个,每1000件
7
中等:偶然性失效
5个,每1000件
6
2个,每1000件
5
1个,每1000件
4
低:相对很少发生的失效
个,每1000件
3
个,每1000件
2
极低:失效不太可能发生
2
无
无可辨别的影响
或对操作或操作者而言有轻微的不方便或无影响。
1
探测度
探测性
准则
检查类别
探测方法的推荐范围
探测度
A
B
C
几乎
不可能
绝对肯定不可能探测
X
不能探测或没有检查
10
很微小
控制方法可能探测不出来
X
只能通过间接或随机检查来实现控制
9
微小
控制有很少的机会能探测出
X
只通过目测检查来实现控制
8
很小
控制有很少的机会能探测出
4
高
控制有较多机会可探测出
X
X
在工位上的误差探测,或利用多层验收在后续工序上进行误差探测:供应、选择、安装、确认。不能接受有差异零件。
3
很高
控制几乎肯定能探测出
X
X
在工位上的误差探测(自动测量并自动停机)。不能通过有差异的零件。
2
很高
肯定能探测出
X
由于有关项目已通过过程/产品设计采用了防错措施,有差异的零件不可能产出。
PFMEA的严重度频度探测度评分准则

PFMEA的严重度频度探测度评分准则PFMEA(Process Failure Modes and Effects Analysis)是一种系统性的方法,用于识别和评估潜在过程故障模式及其对产品或过程的影响。
在进行PFMEA时,常常需要对故障的严重度、频度和探测度进行评分。
这些评分准则有助于确定哪些故障应该优先考虑,并采取适当的预防和控制措施。
在下面的文章中,将详细介绍PFMEA的严重度、频度和探测度评分准则。
1. 严重度评分准则(Severity):严重度是指故障对产品或过程的影响程度。
在评估严重度时,通常使用1到10的评分量表,其中1表示非常低的影响,10表示非常严重的影响。
以下是一些严重度评级准则的例子:1-3:故障对产品或过程的影响非常低,对用户几乎不可察觉,且不会引起任何损失。
4-6:故障对产品或过程的影响适中,可能引起一些损失,但不会对产品功能和性能产生重大影响。
7-9:故障对产品或过程的影响较大,可能导致功能故障或性能下降,对用户产生一定的不满意度。
10:故障对产品或过程的影响非常严重,可能导致安全隐患或严重故障,对用户造成重大损失或伤害。
2. 频度评分准则(Frequency):频度是指故障发生的可能性或发生的次数。
在评估频度时,通常使用1到10的评分量表,其中1表示非常低的发生频率,10表示非常高的发生频率。
以下是一些频度评级准则的例子:1-3:非常低的频度,可能发生的概率非常低,甚至几乎不会发生。
4-6:中等频度,可能在一段时间内发生一次或多次,但不会频繁发生。
7-9:较高的频度,可能在一段时间内频繁发生,但不是持续性的。
10:非常高的频度,可能持续性地发生,对产品或过程造成持续的风险。
3. 探测度评分准则(Detection):探测度是指发现和检测故障的能力。
在评估探测度时,通常使用1到10的评分量表,其中1表示非常低的探测度,10表示非常高的探测度。
以下是一些探测度评级准则的例子:1-3:非常低的探测度,几乎没有任何探测手段,难以发现故障。
FMEA严重度 频度和可探测度定义参考

8
很高 不能运行,显著缺陷,主要功能丧失,顾客生气
9
危害 有警告,能出现伤害,违反了政府规定,显著缺陷
10 极端危害 无警告,会出现伤害,违反了政府规定,全部系统失效
造成生产线严重破坏,大量报废品 生产线停工,100%报废品 有警告,能对操作人员造成伤害,违反了府规定 无警告,能对操作人员造成伤害,违反了政府规定
已证实的类似应用
4
偶尔
设计人员有一定的经验和/或能 相似过程偶尔出现失效,但
参考已证实的类似应用
比例不大
5
偶尔
设计人员有一定的经验和/或能 相似过程偶尔出现失效,但
参考已证实的类似应用
比例不大
6
偶尔
设计人员有一定的经验和/或能 相似过程偶尔出现失效,但
参考已证实的类似应用
比例不大
7
反复出现 设计人员很少的经验和/或能 相似过程经常出现失效
参考已证实的类似应用
8
高
设计人员很少的经验和/或能 相似过程经常出现失效
参考已证实的类似应用
9
很高
设计人员很少的经验和/或能 相似过程无法避免失效
参考已证实的类似应用
10
不可避免 设计人员很少的经验和/或能 相似过程无法避免失效
参考已证实的类似应用
可能失效比率
10M到1.5M中 有一次 20K到150K中 有一次 4K到15K中 有一次 一年中有一次
Cpk
≤1/1.5M ≥ 1.67
1/150K ≥ 1.50
1/15K
≥ 1.33
1/2K
≥ 1.17
一季度中有一次 1/400
≥ 1.00
一个月中有一次
一个星期中有一 次; 20-40个中有一次 10-20个中有一次
FMEA严重度、频度和可探测度定义参考

现行控制能100%探测出失效模式,已知相似
分析方法经过证实
过程的探测控制是可靠的,没理由漏掉缺陷
2
很高 现行控制能很有效的探测出失效
现行控制能很有效探测出失效模式,
模式,>90%分析方法经过证实
90%、100%自动检测
3
高 现行控制能有效的探测出失效模式
现行控制能很有效探测出失效模式,
>80%
80%、100%自动检测
4
设计人员有一定的经验和/或能 相似过程偶尔出现失效,但比例不大 偶尔
参考已证实的类似应用
一年中有一次
1/2K
≥ 1.17
5
设计人员有一定的经验和/或能 相似过程偶尔出现失效,但比例不大 偶尔
参考已证实的类似应用
一季度中有一次 1/400 ≥ 1.00
6
设计人员有一定的经验和/或能 相似过程偶尔出现失效,但比例不大 偶尔
4
中上 现行控制能有效的探测出失效模式
现行控制能很有效探测出失效模式,>70%
>70%
测量方便,应用SPC
5
中等 现行控制可能探测出失效模式.
现行控制可能探测出失效模式,>60%
>60%
测量不方便,应用SPC
6
低 现行控制可能探测出失效模式
现行控制可能探测出失效模式,>50%
>50%
测量不方便,未使用SPC
严重度(S)分级定义
序号 后 果
设计
过程
1
无 对产品或顾客无明显的影响
对产品,顾客或生产无明显的影响
2 很轻微 配合/外观问题,仅能被有识别力的顾客发现
部分产品需要生产线/原位返工
3
轻微 配合/外观问题,轻微缺陷,有一半顾客发现
FMEA严重度、频度、探测度评价准-新(修改后) (1)

2
没有影响 无可识别的后果
1
FMEA频度数评价准则
失效可能性 准则
起因发生可能性
等级
很高
持续不断的超标(工艺参数与指标不可控 制,合格率低于90%)
10
工艺、设备参数,关键质量控制点指标, 每小时超标1次,且时间超过2分钟
9
高
工艺、设备参数,关键质量控制点指标, 每天超标超过5,且时间超过2分钟
8
9
工艺指标与参数无法控制,产品可能出现不合格或威胁安全生造成 很严重 系统全停,系统无法运行,生产工艺系统紊乱,内部顾客投诉超过 8
5次,外部顾客投诉超过3次。
工艺指标与参数无法控制,产品可能出现不合格或威胁安全生产,
部分机组跳停。工艺指标没有实现分级管控,关键质量控制点指标
严重 合格率低于95%,造成质量事故,工艺参数超标严重,关键控制点
7
失控或存在较大缺陷,系统负荷能力下降,内部顾客投诉超过4
次,外部顾客投诉超过2次。
机组运行受到严重影响,工艺指标实现了分级管控,但监管不到
中等
位,生产可以维持运行,指标与参数偶尔不可控,关键质量控制点 进入红区。关键控制点存在缺陷,造成内部顾客投诉超过2次,外
6
部顾客投诉超过1次。
低
机组运行受到较大影响,发电出力下降但可保持系统运行,指标与 参数在合格范围内,但指标控制进入黄区。内部顾客投诉1次。
5
机组运行受影响,生产运行调整运行负荷,产能低,工艺与设备参
很低 数较稳定,关键控制点上涨趋势明显,但可被接受,户满意度较
4
高,无投诉。
轻微
机组运行受影响小,指标合格率达标,但运行工艺指标存在波动, 无投诉。
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
All
4th
3rd
Rank 级别
Likelihood of detection 探测可能性
探测度
10
Almost impossible 几乎不可能 几乎不可能
Very remote 很微小
很微小
8
Remote 微小
微小
7
Very low 很低
很低
6
Low 低
低
5
Moderate 中等
中等
greater
4th
4th
Opportunity for detection 可探测机率
Criteria: Likelihood of detection by process control 准则: 过程控制探测可能性
No detection opportunity 没有探测的可能
No current process control; Cannot detect or is not analyzed. 没有现行的过程控制; 不能探测或不可分析.
Problem detection at source 从源头进行问题的 探测 Error detection and/or problem prevention 错误探测和/或问题 预防 Detection not applicable; Error prevention 探测不可行; 错误预防
Failure mode detection in-station by automated controls that will detect discrepant part and automatically lock part in station to prevent further processing.由自动化控制 进行工位上失效模式探测,这种自动化控制能探测不符合零件,并自动锁定工位上的零 件以放置进一步操作. Error(cause) detection in-station by automated controls that will detect error and prevent discrepant part from being made. 由自动化控制进行工位上错误(起因)探测,这种自动化控制能探测错误和预防不符合 零件的制造. Error(cause) prevention as a result of fixture design, machine design or part design. Discrepant parts cannot be made because item has been error-proofed by process/product design.错误(起因)预防时通过固定设施设计,机械设计或零件设计而 产生的.通过过程或产品设计进行防错而避免制造不符合零件.
Problem detection Failure mode detection post-processing by operator through visual /tactile/audible means. post processing 操作人员通过视觉/触觉/听觉在加工后进行失效模式探测. 加工后问题探测 Failure mode detection in-station by operator through visual/tactile/audible means or Problem detection post-processing through use of attribute gauging(go/no-go, mannual torque at source check/clicker wrench,etc.). 从源头进行问题的 操作人员通过视觉/触觉/听觉的方式进行工位上失效模式探测或通过运用特性测量 探测 (通/止,手工扭矩检查/点检扳手等)进行加工后失效模式探测. Failure mode detection post-processing by operator through use of variable gauging Problem detection or in-station by operator through us of attribute gauging(go/no-go, manual torque check/clicker wrench, etc). post processing 操作人员通过使用各种测量进行加工后失效模式探测或操作人员通过使用特性测量 加工后问题探测 (通/止,手工扭矩检查/冲裁扳手等)进行工位上的失效模式探测. Failure mode or error(cause) detection in-station by operator through use of variable gauging or by automated controls in-station that will detect discrepant part and notify Problem detection operator(light,buzzer,etc.) Gauging performed on setup and first-piece check(for setat source up causes only) 从源头进行问题的 操作人员通过使用各种测量进行工位上的失效模式或错误(起因)探测或由工位上的自 探测 动化的控制设备探测不符合零件并通过(指示灯,鸣声)通知操作人员.在作业前准备和 首件检查时进行测量(仅用于探测作业前前准备的起因). Failure mode detection post-processing by automated controls that will detect Problem detection discrepant part and lock part to prevent further processing. post processing 由自动化控制进行加工后失效模式探测,这种自动化控制能探测不符合零件并锁定零 加工后问题探测 件以防止进一步的操作.
Not likely to detect Failure Mode and/or Error(cause) is not easily detected.( e.g.,random audits) at any stage 在任何阶段不太可 失效模式和/错误(原因)不容易被探测.(如,随机审核) 能探测
4
Moderately high 中上 中上
3
High 高
高
2
Very high 很高
很高
1
Almost certain 几乎肯定
几乎肯定