高三复数复习专题

合集下载

高三数学复习知识点之复数

高三数学复习知识点之复数

高三数学复习知识点之复数1. ⑴复数的单位为i,它的平方等于-1,即i²=-1.⑵复数及其相关概念:① 复数—形如a + b i的数(其中a,b∈R);② 实数—当b = 0时的复数a + b i,即a;③ 虚数—当b≠0时的复数a + b i;④ 纯虚数—当a = 0且b≠0时的复数a + b i,即b i.⑤ 复数a + b i的实部与虚部—a叫做复数的实部,b叫做虚部(注意a,b都是实数)⑥ 复数集C—全体复数的集合,一般用字母C表示.⑶两个复数相等的定义:a+bi=c+di<=>a=c且b=d(其中,a,b,c,d∈R)特别的a+bi=0<=>a=b=0.⑷两个复数,如果不全是实数,就不能比较大小.注:①若z₁,z₂为复数,则1°若z₁+z₂>0,则z₁>-z₂.(×)[z₁,z₂为复数,而不是实数]2°若z₁<z₂,则z₁-z₂<0.(√)②若a,b,c∈C,则(a-b)²+(b-c)²+(c-a)²=0是a=b=c的必要不充分条件.(当(a-b)²=i²,(b-c)²=1,(c-a)²=0时,上式成立)2. ⑴复平面内的两点间距离公式:d=|z₁-z₂|.其中z₁,z₂是复平面内的两点z₁和z₂所对应的复数,d表示z₁和z₂间的距离.由上可得:复平面内以z0为圆心,r为半径的圆的复数方程:|z-z0|=r(r>0).⑵曲线方程的复数形式:①|z-z0|=r表示以z0为圆心,r为半径的圆的方程.②|z-z₁|=|z-z₂|表示线段z₁z₂的垂直平分线的方程.③|z-z₁|+|z-z₂|=2a(a>0且2a>|z₁z₂|表示以Z₁,Z₂为焦点,长半轴长为a的椭圆的方程(若2a=|z₁z₂|,此方程表示线段Z₁,Z₂).④||z-z₁|-|z-z₂||=2a(0<2a<|z₁z₂|,表示以Z₁,Z₂为焦点,实半轴长为a的双曲线方程(若2a=|z₁z₂|,此方程表示两条射线).⑶绝对值不等式:设z₁,z₂是不等于零的复数,则①||z₁|-|z₂||≤|z₁+z₂|≤|z₁|+|z₂|.左边取等号的条件是z₂=λz₁(λ∈R,且λ<0),右边取等号的条件是z₂=λz₁(λ∈R,λ>0).②||z₁|-|z₂||≤|z₁-z₂|≤|z₁|+|z₂|.左边取等号的条件是z₂=λz₁(λ∈R,且λ>0),右边取等号的条件是z₂=λz₁(λ∈R,且λ<0).注:3. 共轭复数的性质:注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的]4⑴①复数的乘方:zⁿ=z·z·z...z}n(n∈N﹢)②对任何z,z₁,z₂∈C及m,n∈N﹢有③注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如i²=-1,i的4次方=1若由就会得到-1=1的错误结论.②在实数集成立的|x|=x₂. 当x为虚数时,|x|≠x²,所以复数集内解方程不能采用两边平方法.⑵常用的结论:若ω是1的立方虚数根。

高三复数的知识点归纳总结

高三复数的知识点归纳总结

高三复数的知识点归纳总结一、复数的概念复数是指由一个实数和一个虚数共同构成的数,通常表示为a+bi的形式,其中a和b为实数,i是虚数单位,满足i^2=-1。

在复数中,实部为a,虚部为b。

二、复数的表示方法1. 代数形式:a+bi2. 幅角形式:z=r(cosθ + i sinθ),其中r为复数的模,θ为复数的辐角3. 指数形式:z=re^(iθ),其中r为复数的模,e为自然对数的底三、复数的加减乘除1. 加减法:复数相加或相减,实部和虚部分别相加或相减2. 乘法:使用分配律相乘,然后利用i^2=-1进行计算3. 除法:将分母有理化后,再进行乘法的逆运算四、复数的几何意义1. 复数在平面直角坐标系中的表示2. 复数在极坐标系中的表示3. 复平面上的旋转五、共轭复数1. 共轭复数的定义2. 共轭复数的性质3. 共轭复数的几何意义六、模与辐角1. 复数的模的定义2. 复数的模的性质3. 复数的辐角的定义4. 复数的辐角的性质七、欧拉公式1. 欧拉公式的表达式2. 欧拉公式的几何意义3. 欧拉公式的重要性八、复数的方程1. 一元一次复数方程2. 一元二次复数方程3. 复数方程的解法及应用九、复数的应用1. 复数在电学中的应用2. 复数在力学中的应用3. 复数在信号处理中的应用十、复数的常见问题解析1. 关于共轭复数的应用问题2. 关于复数模和辐角的应用问题3. 复数方程的解法与应用十一、复数的图示通过在复数平面上显示几何图形,如复数的绝对值和幅角,显示虚数、复数和实数,这将有助于进一步理解这一主题。

十二、复数的补充知识点1. 复数的讨论2. 复数的等价3. 虚数单位i的应用和推理十三、复数的实际应用举例通过真实问题的应用案例,加深对复数知识点的理解和理论的实际应用。

在高三的数学学习中,复数是一个非常重要的内容。

它不仅是数学知识的一个重要部分,也是物理、工程和其他领域的基础。

掌握复数的知识对于学生继续深入学习数学和其他相关科学领域都有着非常重要的意义。

高三数学 复数复习

高三数学 复数复习
一、基本知识
1.虚数单位是怎样定义的?
虚数单位,规定: (1)它的平方等于-1,即
i
2
1
(2)实数可以与它进行四则运算,进行四则运算 时,原有的加、乘运算律仍然成立.
根据对虚数单位i的运算规定易知:
i 1, i
4n
4 n1
i, i
4 n 2
1, i
4 n 3
i
2.复数的表示形式是怎样的?
形如 a bi(a, b R ) 的数,叫做复数.
C {z | z a bi, 其中a, b R)
全体复数所形成的集合叫做复数集,一般用字 母C表示 . 实部 虚部 通常用字母 z 表示,即 z a bi(a, b R) 当 b 0 时,z 是实数a. 复数 叫做纯虚数. 实 数 集
答案:C
z +z+ z =3,则z对应点的轨迹 例12.复数z满足z·
是____________. 解析:设z=x+yi(x、y∈R),则x2+y2+2x=3表示圆. 答案:以点(-1,0)为圆心,2为半径的圆
2 2
2
(4)复数的模可以比较大小,一般地,两个复数不能比 较大小,除非两个复数都是实数才可以比较大小。 典型例题:一、代数运算
1 3 i 求证: 例3:设w= 2 2 ① 1+w+w2=o ②w3=1
例6:实数m取什么值时,复数
(m 8m 15) (m 5m 14)i
2 2
对应的点
(1)位于第一、三象限?
(2)位于第四象限? 例7:已知 z 2 z 4i, 求复数z.
2 bi 例9.如果复数 (其中i为虚数单位,b为实数) 1 2i

高考数学专题《复数》习题含答案解析

高考数学专题《复数》习题含答案解析

专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【解析】因为1131313(13)(13)1010i z i i i i +===+--+,所以复数113z i =-的虚部为310.故选:D.2.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( )A .1i --B .1i-+C .1i-D .1i+【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:()()()()2121211112i i z i i i i ++====+--+.故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i-C .62i+D .42i+【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i--B .312i-+C .32i-+D .32i--【答案】B 【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( )A .12i -B .12i+C .1i+D .1i-【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i-+C .34i-D .34i+【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值.【详解】由题意可得:()2434343341i i i i z i i i ++-====--.故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( )A .1-B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( )ABC .3D .5【答案】D 【解析】∵ 故选D.10.(2019·全国高考真题(文))设,则=( )A.2B CD .1【答案】C 【解析】因为,所以,所以,故选C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( )A .-1B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312iz i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,,所以,则,故选B.2.(全国高考真题(理))复数的共轭复数是( )A .B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( )A .B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( )A .B .C .D .【答案】B 【解析】由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,22222a i ai i ai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i-35i()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i+2i--2i-+R a ∈i z a =4z z ⋅=则( )A .1或B或C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i-+C .2i+D .2i--【答案】C 【分析】根据复数除法运算求出z ,即可得出答案.【详解】()2i 35z +=+= ,()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+.故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由欧拉公式计算可得312e π=,然后根据复数的几何意义作出判断即可.【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝,在第一象限.故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =(i 为虚数单位),则下列说法正确的是()A .复数z 在复平面内对应的点坐标为()sin 3cos3,sin 3cos3+-a =1-,4z a z z =+⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解.【详解】复数3cos3i sin 3cos3z =++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin 3cos30->,所以原式()()sin 3cos3i sin 3cos3=-++-,所以选项A 错误;复数z B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确.故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确.对选项B ,因为11cos isin cos isin z z θθθθ+=+++()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=,所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>,所以88cos isin 33z ππ=+在复平面对应的点落在第二象限.故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ(O为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.【答案】16 ()22cossin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ+=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解: 2(cos sin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos 6sin 61i ωθθ=+=,所以sin 60cos 61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( )A .4B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-.【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-.故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置.【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限,故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1C D .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】由得则对应点(-3,-2)位于第三象限.故选C .6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【解析】因为,则,则的实部为.z 32,z i =-+32,z i =--32,z i =--z i 12i z ⋅=+z i 12i z ⋅=+12i2i iz +==-z 2。

单招高三---复数专题训练

单招高三---复数专题训练

复数汇总1.、已知)32()1(i i a z +-+=为纯虚数,a 为实数,则a 的取值为( )A .2≠a 或3≠aB .2=aC .2≠a 且3≠aD .3=a3.、下列复数为复数三角形式是( )A .)43sin43(cos5ππi -B .)43cos 43(sin 5ππi +C .)43sin43(cos5ππi +-D .)43sin43(cos5ππi +4.、若R m ∈,复数i m m m m )23()232(22+-+--为纯虚数的条件是( )A .1=m 或2=mB .2=mC .21-=m D .2-=m5.、设复数i z 31--=,z 为z 的共轭复数,则z 的辐角主值是( )A .32π-B .3πC .32π D .34π6、19951995)1()1(i i --+的值是( )A .i 9982-B .i 9982C .9982D .9982- 7、)40cos 40(sin 5︒+︒-i 的三角形式是( )A .)50sin 50(cos 5︒+︒-iB .)]40cos()40[sin(5︒-+︒-iC .)130sin 130(cos 5︒+︒iD .)230sin 230(cos 5︒+︒i8、复平面上的点A 对应的复数是i 32+,将向量OA 绕原点按逆时针方向旋转︒90,得到向量OB,则点B 对应的复数为( )A .i 32+-B .i 33+C .i 32-D .i 23+-9、已知复数z 的辐角为67π,模为4,则此复数是( )A .i 322--B .i 322+-C .i 232--D .i 232- 10、设z z f -=1)(,i z 211+=,i z 672-=,则)(21z z f -=( )A .7+8iB .-7-8iC .7-8iD .-7+8i 11、复数2010(1)i i + 等于( )A. 1i -+B. 1i +C.55sin)44i ππ+D.55cossin44i ππ+12、若复数z 满足(1)1i z i +=-,则z 等于 ( ) A .1i + B .1i - C .i D .i -13、计算:20002321⎪⎪⎭⎫⎝⎛+i =__________。

2023届高考数学复习:历年经典好题专项(复数)练习(附答案)

2023届高考数学复习:历年经典好题专项(复数)练习(附答案)
(1+i)2n=
,
1 i
√2
=
.
参考答案
10
3-i
10(3 i)
=3+i,故选
(3-i)(3 i)
1.D z=
D.
2.D ∵z=2+i,∴ =2-i.
∴z =(2+i)(2-i)=5. 故选 D.
3.D 复数 z 满足|z+1|=|z-i|,∴
1)
(


(-1) ,化简得 x+y=0,故选 D.
A.x=0
B.y=0
C.x-y=0
D.x+y=0
4.(多选)对任意 z1,z2,z∈C,下列结论成立的是(
*
m n
)
)
m+n
A.当 m,n∈N 时,有 z z =z
=0,则 z1=0 且 z2=0
B.当 z1,z2∈C 时,若
C.互为共轭复数的两个复数的模相等,且||2=|z|2=zꞏ
D.z1=z2 的充要条件是|z1|=|z2|
R)的一个根为 1+i(i 为虚数单位),则
A.1-i
B.-1+i
C.2i
D.2+i

=(
1 i
)
π
2
π
2
16.(多选)(历年山东济南高三考前模拟)已知复数 z=1+cos 2θ+isin 2θ - <θ<
,则下列说法正确的是
(
)
A.复数 z 在复平面上对应的点可能落在第二象限
B.z 可能为实数
C.|z|=2cos θ
故选 D.
1 7i
2 i
zi-7i=1-2z,即 z=

高三复习(复数的极式)

高三复习(复数的极式)

4. 求 (cos130°+i sin 50°) ⋅ (cos 40°+i sin 220°) 之值= 5. 求
( − cos13°+i cos 77° ) (cos137°+i sin 763° ) 之值= (cos 317°+i sin 223° ) (sin 103°+i sin 193° )
今將線段 OP 不變其長度,繞原點 O 逆時針方向旋轉 60° 而得線段 OQ ,若 Q 點的坐標為
Q( a + b 3 , c + d 3 ) , a , b, c, d 均為有理數,則 a + b + c + d =
.
MathB2-03-02
15.設方程式 x 4 + x 3 + x 2 + 1 = 0 之四根在複數平面上之對應點分別以 A , B , C , D 表之,且 P 表 0 + 2 i 所在之點,則 PA ⋅ PB ⋅ PC ⋅ PD = 16.若複數 z 與 3 + i 之積為 − 2 3 + 2 i ,則 z 的主輻角為 . .
MathB2-03-02
高雄市明誠中學數學題庫 焦點 9(複數的極式)
1. 設 z =
(1 + 3 i ) 4 ( 5 − 5 i ) 3 + 3i

z =
.
2. 設 z = (3 + 4 i ) 3 (1 − 3 i ) 2 則 3. 試將 2 3 − 2 i 化為極式
z =
. ,其主幅角為 . . .
1 1 1 1 = + + + 2 3 1+ ω 1+ ω 1+ ω 1+ ω 4 1 = 3 則z= z

高考数学专题02 复数(解析版)

高考数学专题02 复数(解析版)

专题02 复数一、单选题1.(2022·河北深州市中学高三期末)已知复数()()2i 1i z a =++(其中i 为虚数单位,a R ∈)在复平面内对应的点为()1,3,则实数a 的值为( ) A .1 B .2C .1-D .0【答案】A 【解析】 【分析】先利用复数的乘法化简,再利用复数的几何意义求解. 【详解】因为()()()2i 1i 22i z a a a =++=-++, 又因为复数在复平面内对应的点为()1,3,所以2123a a -=⎧⎨+=⎩,解得1a = 故选:A2.(2022·河北保定·高三期末)()()2212i 1i --+=( ) A .32i -- B .36i -- C .32i - D .36i -【答案】B 【解析】 【分析】根据复数的四则运算计算即可. 【详解】22(12i)(1i)34i 2i 36i --+=---=--.故选:B3.(2022·河北张家口·高三期末)已知12z i =-,则5iz=( ) A .2i -+ B .2i - C .105i -D .105i -+【答案】A 【解析】 【分析】利用复数的除法化简可得结果. 【详解】()()()5i 12i 5i 5i2i 12i 12i 12i z +===-+--+, 故选:A.4.(2021·福建·莆田二中高三期末)复数()()cos2isin3cos isin θθθθ+⋅+的模为1,其中i 为虚数单位,[]0,2πθ∈,则这样的θ一共有( )个. A .9 B .10C .11D .无数【答案】C 【解析】 【分析】先根据复数()()cos2isin3cos isin θθθθ+⋅+的模为1及复数模的运算公式,求得22cos 2sin 31θθ+=即22cos 2cos 3θθ=,接下来分cos2cos3θθ=与cos2cos3θθ=-两种情况进行求解,结合[]0,2πθ∈,求出θ的个数. 【详解】()()cos2isin3cos isin =cos2isin3cos isin 1θθθθθθθθ+⋅++⋅+=,其中cos isin 1θθ+=,所以cos2isin31θθ+=,即22cos 2sin 31θθ+=,222cos 21sin 3cos 3θθθ=-=,当cos2cos3θθ=时,①1232πk θθ=+,1k Z ∈,所以12πk θ=-,1k Z ∈,因为[]0,2πθ∈,所以0θ=或2π;②2232πk θθ=-+,2k Z ∈,所以22π5k θ=,2k Z ∈,因为[]0,2πθ∈,所以0θ=,2π5,4π5,6π5,8π5或2π;当cos2cos3θθ=-时,①()32321πk θθ=++,3k Z ∈,即()321πk θ=-+,3k Z ∈,因为[]0,2πθ∈,所以πθ=,②()42321πk θθ=-++,4k Z ∈,即()421π5k θ+=,4kZ ∈,因为[]0,2πθ∈,所以π5θ=,3π5,π,7π5,9π5,综上:π5mθ=,0,1,10m =,一共有11个. 故选:C5.(2022·山东省淄博实验中学高三期末)设复数z 满足()23i 32i z -=+,则z =( )A.12 B C .1 D 【答案】C 【解析】 【分析】根据给定条件结合复数除法计算复数z ,进而计算z 的模作答. 【详解】因复数z 满足()23i 32i z -=+,则32i (32i)(23i)13ii 23i (23i)(23i)13z +++====--+, 所以1z =. 故选:C6.(2022·山东枣庄·高三期末)已知i 为虚数单位,则2022i =( ). A .1 B .1- C .I D .i -【答案】B 【解析】 【分析】由于41i =,故2022i 可以化简为2i ,即可得到答案. 【详解】20224505+22i i ==i ⨯=1-.故选:B.7.(2022·山东德州·高三期末)已知复数z 满足()121i iz +=-,其中i 为虛数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】根据复数的模长公式以及四则运算得出z =,最后确定复数z 在复平面内所对应的点的象限. 【详解】21i 22|2i |i i +=+=-=z =则复数z 在复平面内所对应的点坐标为⎝⎭,在第一象限.故选:A8.(2022·山东淄博·高三期末)已知复数z 是纯虚数,11iz+-是实数,则z =( ) A .-i B .iC .-2iD .2i【答案】B 【解析】 【分析】由题意设i()z b b R =∈,代入11iz+-中化简,使其虚部为零,可求出b 的值,从而可求出复数z ,进而可求得其共轭复数 【详解】由题意设i()z b b R =∈, 则11i (1i)(1i)(1)(1)i1i 1i (1i)(1i)2z b b b b ++++-++===---+, 因为11iz+-是实数,所以10b +=,得1b =-, 所以i z =-, 所以i z =, 故选:B9.(2022·山东临沂·高三期末)已知复数26i1iz +=-,i 为虚数单位,则z =( )A.B .C .D .【答案】C 【解析】 【分析】利用复数除法运算求得z ,然后求得z . 【详解】 ()()()()()()()()26i 1i 26i 1i 13i 1i 24i1i 1i 2z ++++===++=-+-+,z =故选:C10.(2022·湖北武昌·高三期末)已知复数1i z =-,则2iz=-( ) A .13i 55-B .13i 55--C .13i 55-+D .1355i +【答案】D 【解析】 【分析】先得出z ,由复数的乘法运算可得答案. 【详解】复数1i z =-,则1i z =+则()()()()1i 2i 1i 13i 2i 2i 2i 2i 5z ++++===---+ 故选:D11.(2022·湖北·黄石市有色第一中学高三期末)已知复数数列{}n a 满足12i a =,1i i 1n n a a +=++,N n *∈,(i 为虚数单位),则10a =( ) A .2i B .2i - C .1i + D .1i -+【答案】D 【解析】 【分析】推导出数列{}i n a -是等比数列,确定该数列的首项和公比,即可求得10a 的值. 【详解】由已知可得()1i i i n n a a +-=-,因此,数列{}i n a -是以1i i a -=为首项,以i 为公比的等比数列,所以,91010i i i i 1a -=⋅==-,故101i a =-+.故选:D.12.(2022·湖北江岸·高三期末)已知()12i 43i z -=-,则z =( ) A .10i +B .2i +C .2i -D .25i +【解析】 【分析】利用复数的除法化简复数z ,利用共轭复数的定义可得结果. 【详解】 由已知可得()()()()43i 12i 43i 105i2i 12i 12i 12i 5z -+-+====+--+,因此,2i z =-. 故选:C.13.(2022·湖北襄阳·高三期末)下面是关于复数22i 1i z =-(i 为虚数单位)的命题,其中真命题为( )A .2z =B .复数z 在复平面内对应点在直线y x =上C .z 的共轭复数为11i 22-D .z 的虚部为1i 2-【答案】B 【解析】 【分析】化简复数为代数形式,然后求模,写出对应点的坐标.得其共轭复数及虚部,判断各选项即得. 【详解】∵22i 11i 1i 1i 2z ---===--,所以z =A 错误;所以复数z 在复平面内对应点坐标为11(,)22--,在直线y x =上,B 正确;所以z 的共轭复数为11i 22-+,C 错误;所以z 的虚部为12-,D 错误.故选:B .14.(2022·湖北省鄂州高中高三期末)复数4i1iz =+,则z =( ) A .22i -- B .22i -+C .22i +D .22i -【答案】D 【解析】先计算z ,再根据共轭复数的概念即可求解. 【详解】根据复数除法的运算法则可得41i z i =+()()()414422112i i i i i i -+===+-+ ,所以可得其共轭复数22z i =-.故选:D.15.(2022·湖北·高三期末)已知复数121i,i z z =-=,则复数12z z 的共轭复数的模为( ) A .12 B2C .2 D【答案】D 【解析】 【分析】根据复数的除法运算得121i z z =--,再根据共轭复数的概念与模的公式计算即可. 【详解】解:因为121i,i z z =-=, 所以()121iii 1i 1i z z -==--=--, 所以复数12z z 的共轭复数为1i -+.故选:D16.(2022·湖北·恩施土家族苗族高中高三期末)若1i z =-+.设zz ω=,则ω=( ) A .2i B .2C .22i +D .22i -【答案】B 【解析】 【分析】根据1i z =-+求出1i z =--,结合复数的乘法运算即可. 【详解】由1i z =-+,得1i z =--,所以2(1i)(1i)=(i 1)=2zz ω==-+----. 故选:B17.(2022·湖南常德·高三期末)已知复数z 满足:()1i i z +=,则z z ⋅=( )A .12 B C .1D .i 2【答案】A 【解析】 【分析】首先根据复数的除法运算求出z ,然后根据复数的乘法运算即可求出结果. 【详解】 因为(1)z i i +=, 所以()()i 1i i 1i 11i 1i (1i)1i 222z -+====+++-, 因此11111i i 22222z z ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭⋅=.故选:A.18.(2022·湖南娄底·高三期末)复数()i 3i z =-⋅在复平面内对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】由复数乘法法则计算出z ,然后可得其对应点的坐标,得所在象限. 【详解】∵()3i i 13i z =-=+⋅,∴z 在复平面内对应的点为()1,3,位于第一象限. 故选:A .19.(2022·湖南郴州·高三期末)已知i 为虚数单位,复数z 满足()i 123i 4z +=+,则z 的共轭复数z =( ) A .12i - B .12i +C .2i -D .2i +【答案】B 【解析】根据复数的模和除法运算,即可得到答案; 【详解】 |43i |55(12i)12i 12i 12i 5z +-====-++ ∴12i z =+,故选:B20.(2022·广东揭阳·高三期末)复数z 满足()1i 1i(i z +=-为虚数单位),则z 的模为( ) A.12-B .12C .1 D【答案】C 【解析】 【分析】先做除法运算求出复数z ,再根据复数模的计算公式求其模. 【详解】由()1i 1i z +=-得1ii 1iz -==-+,从而i 1z =-= 21.(2022·广东潮州·高三期末)已知i 为虚数单位,复数21i 1i -=+z ,则z 的虚部为( )A .0B .-1C .-iD .1【答案】B 【解析】 【分析】化简复数z 1i =-, z 的虚部为i 前面的系数,即可得到答案. 【详解】21i 22(1-i)1i 1i 1i (1i)(1-i)z -====-+++.则z 的虚部为-1.故选:B.22.(2022·广东罗湖·高三期末)已知复数()1i i =+⋅z (i 为虚数单位),则z 的共轭复数z =( ) A .1i + B .1i -C .1i -+D .1i --【答案】D 【解析】求出复数z,进而可得其共轭复数.【详解】()1i i=1+iz=+⋅-,则1iz=--故选:D.23.(2022·广东清远·高三期末)已知i为虚数单位,复数z的共轭复数z满足(1i)|1|+=z,则z=()A.1i-B.1i+C.22i-D.22i+【答案】B【解析】【分析】结合复数除法运算求出z,进而得出z.【详解】因为21i1i===-+z,所以1iz=+.故选:B24.(2022·广东汕尾·高三期末)若复数z满足1i12iz+=+其中(i为虚数单位),则复数z的共轭复数为()A.3i5--B.3i5-+C.3i5-D.3i5+【答案】D 【解析】【分析】化简可得3i5z-=,根据共轭复数的概念,即可得答案.【详解】因为1i(1i)(12i)3i12i(12i)(12i)5z++--===++-,所以3i5z+ =,故选:D.25.(2022·江苏通州·高三期末)20221i1i-⎛⎫=⎪+⎝⎭()A .1B .iC .-1D .-i【答案】C 【解析】 【分析】由复数的除法和复数的乘方运算计算. 【详解】21i (1i)i 1i (1i)(1i)--==-+-+, 所以2022202221i (i)i 11i -⎛⎫=-==- ⎪+⎝⎭.故选:C .26.(2022·江苏宿迁·高三期末)已知复数z 满足()1i 4i z +=,则z =( ) A.2 B C .D .【答案】C 【解析】 【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果. 【详解】由已知可得()()()()4i 1i 4i2i 1i 22i 1i 1i 1i z -===-=+++-,因此,z = 故选:C.27.(2022·江苏扬州·高三期末)若复数z =202112i +(i 为虚数单位),则它在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】 化简复数z =202112i +,得到其对应点的坐标即可解决.【详解】z 202112i ==+12i =+2i 21i 555-=-, 则z 在复平面上对应的点为21(,)55Z -,Z 位于第四象限.故选:D28.(2022·江苏海安·高三期末)已知复数z 满足(1-i)z =2+3i (i 为虚数单位),则z =( ) A .-12+52iB .12+52iC .12-52iD .-12-52i 【答案】A 【解析】 【分析】利用复数的运算法则求解. 【详解】 ∵(1-i)z =2+3i, ∴()()()()23i 1i 23i 15i 15i 1i 1i 1i 222z +++-+====-+-+-. 故选:A.29.(2022·江苏如东·高三期末)已知复数z 满足202120222023i 4i 3i z =-,则z =( ) A .4+3i B .4-3iC .3+4iD .3-4i【答案】C 【解析】 【分析】将202120222023i 4i 3i z =-中的202120222023i ,i ,i ,根据41i = 化简,即可得答案. 【详解】 因为41i =,故由202120222023i 4i 3i z =-可得:23i 4i 3i z =-,即4i 334i z =+=+, 故选:C.30.(2022·江苏苏州·高三期末)设i 为虚数单位,若复数(1i)(1i)a -+是纯虚数,则实数a 的值为( ) A .1- B .0C .1D .2【答案】A【解析】 【分析】用复数的乘法法则及纯虚数的定义即可. 【详解】(1i)(1i)1i i 1(1)i a a a a a -+=+-+=++-为纯虚数,10a ∴+=,1a ∴=-,故选:A .31.(2022·江苏无锡·高三期末)已知3i1ia ++(i 为虚数单位,a ∈R )为纯虚数,则=a ( ) A .1- B .1C .3-D .3【答案】C 【解析】 【分析】先利用复数除法法则进行化简,结合纯虚数条件列出方程,求出a 的值. 【详解】3i (3i)(1i)i 3i+31i 22a a a a ++--+==+3(3)i2a a ++-=为纯虚数, 30a ∴+=,3a ∴=-,故选:C. 二、多选题32.(2022·河北唐山·高三期末)已知复数i z a b =+(,a b ∈R 且0b ≠),z 是z 的共扼复数,则下列命题中的真命题是( ) A .z z +∈R B .z z -∈RC .z z ⋅∈RD .zz∈R【答案】AC 【解析】 【分析】由题知i z a b =-,进而根据复数的加减乘除运算依次讨论各选项即可得答案. 【详解】解:对于A 选项,i z a b =+,i z a b =-,所以2z z a +=∈R ,故正确; 对于B 选项,i z a b =+,i z a b =-,2i z z b -=∉R ,故错误;对于C 选项,i z a b =+,i z a b =-,22z z a b ⋅=+∈R ,故正确;对于D 选项,i z a b =+,i z a b =-,()22222222i i i i z a b ab z a a b a b a b b a b --===+-+-+, 所以当0a =时,z z ∈R ,当0a ≠时,zz ∉R ,故错误.故选:AC33.(2022·山东莱西·高三期末)已知复数()21i z a a =+-,i 为虚数单位,a R ∈,则下列正确的为( )A .若z 是实数,则1a =-B .复平面内表示复数z 的点位于一条抛物线上C .zD .若21z z =+,则1a =±【答案】BC 【解析】 【分析】以实数定义求出参数a 判断选项A ;以复数z 对应点的坐标判断选项B ;求出复数z 的模判断选项C ;以复数相等求出参数a 判断选项D. 【详解】选项A :由复数()21i z a a =+-是实数可知210a -=,解之得1a =±.选项A 判断错误;选项B :复数()21i z a a =+-在复平面内对应点2(,1)Z a a -,其坐标满足方程21y x =-,即点2(,1)Z a a -位于抛物线21y x =-上. 判断正确;选项C :由()21i z a a =+-,可得z ===判断正确; 选项D :21z z =+ 即()()221i =2121i a a a a +-+--可得()2221121a a a a =+⎧⎪⎨-=--⎪⎩,解之得1a =-.选项D 判断错误. 故选:BC34.(2022·广东东莞·高三期末)已知复数123,,z z z ,1z 是1z 的共轭复数,则下列结论正确的是( ) A .若120z z +=,则12=z zB .若21z z =,则12=z zC .若312z z z =,则312z z z =D .若1211z z +=+,则12=z z【答案】ABC 【解析】 【分析】若i z a b =+ ,则i z a b =-,z z ==,利用复数代数运算,可以判断AB ;利用复数的三角运算,可以判断C ;利用数形结合,可以判断D. 【详解】 对于A :若120z z += ,则12z z =-,故122z z z =-=, 所以A 正确; 对于B :若21z z =,则12=z z , 所以B 正确; 对于C :设11(cos i sin )z r αα=+ ,22(cos i sin )z r ββ=+则()()31212cos()i sin z z z r r αβαβ==+++ ,故312z z z = , 所以C 正确; 对于D :如下图所示,若11OA z =+ ,21OB z =+,则1OC z =,2OD z =,故12z z ≠ , 所以D 错误.故选:ABC35.(2022·江苏如皋·高三期末)关于复数12z =- (i 为虚数单位),下列说法正确的是( )A .|z |=1B .z +z 2=-1C .z 3=-1D .(z +1)3=i【答案】AB 【解析】 【分析】根据复数模的计算公式求得复数的模,可判断A;根据复数的乘方运算可判断B,C,D. 【详解】由复数12z =-,可得||1z == ,故A 正确;2211112222z z +=--=-- ,故B 正确;3222111()1222z z z =⋅=--+--=,故C 错误;3221111(1)(1)(1)(((12222z z z ⎛⎫+=++=+=-=- ⎪ ⎪⎝⎭,故D 错误, 故选:AB.36.(2022·江苏苏州·高三期末)下列命题正确的是( ) A .若12,z z 为复数,则1212z z z z =⋅ B .若,a b 为向量,则a b a b ⋅=⋅C .若12,z z 为复数,且1212z z z z +=-,则120z z =D .若,a b 为向量,且a b a b +=-,则0a b ⋅= 【答案】AD 【解析】 【分析】根据复数运算、向量运算的知识对选项进行分析,从而确定正确选项. 【详解】令1i z a b =+,()2i ,,,R z c d a b c d =+∈,,12()i z z ac bd ad bc =-++,12z z ===1z =2z =1212z z z z ∴=⋅,A 对;cos a b a b θ⋅=⋅⋅,cos a b a b a b θ∴⋅=⋅⋅=⋅不一定成立,B 错; 12()()i z z a c b d +=+++,12()()i z z a c b d -=-+-,1212z z z z -=+,0ac bd ∴+=,12(i)(i)()i 0z z a b c d ac bd ad bc =++=-++≠,C 错.将a b a b +=-两边平方并化简得0a b ⋅=,D 对. 故选:AD 三、填空题37.(2021·福建·莆田二中高三期末)设x ∈R ,记[]x 为不大于x 的最大整数,{}x 为不小于x 的最小整数.设集合{}|23,A z z z C =≤⎡⎤≤∈⎣⎦,{}{}|23,B z z z C =≤≤∈,则A B 在复平面内对应的点的图形面积是______ 【答案】5π 【解析】 【分析】依题意表示出集合{}|24,A z z z C =≤<∈,{}|13,B z z z C =<≤∈,从求出A B ,再根据复数的几何意义求出复数z 的轨迹,即可得解; 【详解】解:依题意由23z ≤⎡⎤≤⎣⎦,所以24z ≤<,由{}23z ≤≤,所以13z <≤,所以{}{}|23,|24,A z z z C z z z C =≤⎡⎤≤∈=≤<∈⎣⎦,{}{}{}|23,|13,B z z z C z z z C =≤≤∈=<≤∈,所以{}|23,A B z z z C =≤≤∈设()i ,z x y x y R =+∈,由23z ≤≤,所以23≤,所以2249x y ≤+≤,所以复数z 再复平面内对应的点为在复平面内到坐标原点的距离大于等于2且小于等于3的圆环部分,所以圆环的面积()22325S ππ=-=故答案为:5π38.(2022·广东佛山·高三期末)在复平面内,复数z 对应的点的坐标是(3,5)-.则(1i)z -=___________. 【答案】28i -- 【解析】 【分析】根据给定条件求出复数,再利用复数的乘法运算计算作答. 【详解】在复平面内,复数z 对应的点的坐标是(3,5)-,则35i z =-,所以(1i)(1i)(35i)28i z -=--=--. 故答案为:28i --39.(2022·江苏常州·高三期末)i 是虚数单位,已知复数z 满足等式2i0i z z+=,则z 的模z =________.【解析】 【分析】以复数运算规则和复数模的运算性质对已知条件进行变形整理,是本题的简洁方法. 【详解】 由2i 0i z z +=,可得2i i z z =- 则有2ii z z-=,即i 2i 2z z ⨯=⨯-=,故有z =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三复数专题复习: 一、复数的概念及运算:1、复数的概念:(1)虚数单位i ; (2)实部:z Re ,虚部:z Im ;(3)复数的分类(bi a z +=)()⎪⎪⎩⎪⎪⎨⎧∈⎩⎨⎧≠=≠⎩⎨⎧=R b a a a b b ,)0()0()0()0(非纯虚数纯虚数虚数无理数有理数实数;(4)相等的复数:2、复数的加、减、乘、除法则: (1)加减法具有交换律和结合律; (2)乘法具有交换律、结合律、分配律; (3)除法:)0(2222≠++-+++=++di c i dc adbc d c bd ac di c bi a 。

3、复数的共轭与模:(1)z z R z =⇔∈;z 是纯虚数z z -=⇒,反之不成立;(2)复数bi a z +=与点()b a Z ,是一一对应关系,另:z 与z 关于x 轴对称,z 表示z 对应点与原点的距离。

4、复数共轭运算性质:212121212121,,z z z z z z z z z z z z =⎪⎪⎭⎫⎝⎛⋅=⋅+=+; 5、复数模的运算性质:nn z z z z z z z z z z z z =≠==),0(,22121121。

6、复数的模与共轭的练习:z z z ⋅=2。

7、 重要结论(1)对复数z 、1z 、2z 和自然数m 、n ,有n m n m z z z +=•,mn n m z z =)(,nn n z z z z 2121)(•=•(2) i i =1,12-=i ,i i -=3,14=i ;114=+n i ,124-=+n i ,i i n -=+34,14=n i . (3) i i 2)1(2±=±,i i i -=+-11,i ii=-+11. (4)设231i+-=ω,ϖω=2,ωω=2,012=++ωω,n n 33ωω=,021=++++n n n ωωω8.一些几何结论的复数形式()()().0,,,,)4(.Im 21)3(.3sin 3cos 0.3;.2;.1)2().()1(242314134321121232132123132212322211332213213123,2,1≠∈⋅--=----=∆⎪⎭⎫ ⎝⎛+==+-++=++-=-=-∆∈=--λλλππωωωλλR z z zz z z z z z z z z z z z z S S Z Z Z i z z z z z z z z z z z z z z z z z z Z Z Z R z z zz Z Z Z z:四点共圆的充要条件是复平面上表示为的面积为复平面上是等价的)是(有三种形式,它们为正三角形的充要条件复平面上三点共线的充要条件是,,复平面上二、复数的三角形式: 1、复数的三角形式概念:;sin ,cos ,),sin (cos ,122rb r a b a r i r z bi a z ==+=+=+=θθθθ其中:式:都可以改写成复数的形个复数任何2、复数的三角形式的乘法公式:()()[]βαβαββααββαα+++=+⋅+=⋅+=+=sin cos )sin (cos )sin (cos )sin (cos ),sin (cos 2121212211i r r i r i r z z i r z i r z 则,设复数即:两个复数相乘,积的模等于两个复数的模之积,积的辐角等于两个复数的辐角之和。

()()[]n n n n n n n i r r r r i r i r i r i r z z z z θθθθθθθθθθθθθθθθ +++++++=++⋅+⋅+=321321321333222111321sin cos )sin (cos )sin (cos )sin (cos )sin (cos ;有限个复数相乘的情况上述结论,可以推广到3、复数的三角形式的乘方公式(棣莫佛定理)[])sin (cos )sin (cos ααααn i n r i r n n +=+即:复数的n (n ∈N )次幂的模等于模的n 次幂,辐角等于这个复数的辐角的n 倍,这个定理称为棣莫佛定理。

4、复数的三角形式的除法公式()()()()()()[].sin cos sin cos sin cos ;sin cos ,sin cos 2121212211βαβαββααββαα-+-=++=+=+=i r r i r i r z z i r z i r z 则:设 即:两个复数像除,商的模等于被除数的模除以除数的模,商的辐角等于被除数的辐角减去除数的辐角。

三、复数中的方程问题:1、实系数一元二次方程的根的情况:对方程02=++c bx ax (其中R c b a ∈,,且0≠a ),令ac b 42-=∆, 当0>∆时,方程有两个不相等的实数根。

当∆=0时,方程有两个相等的实根;当0<∆时,方程有两个共轭虚根:2,221ib x i b x ∆---=∆-+-=。

2、复系数一元二次方程根的情况:对方程ab xc bx ax 2,02的平方根∆+-==++;3、一元二次方程的根与系数的关系:若方程02=++c bx ax (其中R c b a ∈,,且0≠a )的两个根为21x x 、,则⎪⎩⎪⎨⎧=-=+a c x x a b x x 2121;四、例题精选例1:已知40323222=--+++i z i z ,求z ;例2:已知()()104232212343ii i z -⎪⎪⎭⎫⎝⎛---=,求z ;例3:设z 为虚数,zz 1+=ω为实数,且21<<-ω。

(1)求z 的值及z 的实部的取值范围; (2)证明:zzu +-=11为纯虚数;例4:已知关于t 的方程)(022R a a t t ∈=+-有两个根21t t 、,且满足3221=-t t 。

(1)求方程的两个根以及实数a 的值;(2)当0>a 时,若对于任意R x ∈,不等式()k mk k a x a 22log 22-+-≥+对于任意的⎥⎦⎤⎢⎣⎡-∈21,2k 恒成立,求实数m 的取值范围。

例5:已知复数1z 满足i a z i z i --=+-=+2,51)1(21,其中i 为虚数单位,R a ∈,若121z z z <-,求a 的取值范围。

例6:设虚数z 满足1052+=+z z 。

(1)求z 的值; (2)若zmm z +为实数,求实数m 的值; (3)若()z i 21-在复平面上对应的点在第一、第三象限角平方线上,求复数z 。

例7:已知方程02=++p x x 有两个根1x 和2x ,R p ∈。

(1)若321=-x x ,求实数p ; (2)若321=+x x ,求实数p ;例8:已知复数),(*∈+=R b a bi a z 是方程0542=+-x x 的根,复数)(3R u i u ∈+=ω满足52<-z ω,求u 的取值范围。

例9:关于x 的方程0)2(2=-+--bi a x bi a x 有实根,求一个根的模是2,求实数b a ,的值。

例10:设两复数21,z z 满足0422402121=+-z a z z a z x(其中0>a 且1≠a ,R x ∈),求21z z 是虚数。

(1)求证:21z z 是定值,求出此定值; (2)当*∈N x 时,求满足条件的虚数21z z 的实部的所有项的和。

例11:设两个复数21z z 、满足()R k z kz z z ∈=+212221100,并且12z z 是虚数,当*∈N k 时,求所以满足条件的虚数12z z 的实部之和。

例12:计算:(1)⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+6sin 6cos 312sin12cos2ππππi i (2)55sin 5cos 3⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+ππi(3)⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+6sin 6cos 63sin 3cos 12ππππi i例13:给定复数z ,在z ,222,,,,,,z z z z z z z z ⋅这八个值中,不同值的个数至多是___________。

例14:已知下列命题(1)R z z z ∈⇔=;(2)z z z ⇔-=为纯虚数;(3)21210z z z z >⇔>-;(4)0002121==⇔=⋅z z z z 或;(5)00212221==⇔=+z z z z ;(6)2222z z z z ===.其中正确的命题是____________;例15:是否存在复数z 同时满足条件:①6101≤+<zz ;②z 的实部、虚部为整数。

若存在,求出复数z ,若不存在,说明理由。

例16:设1z 是已知复数,z 为任意复数且1,1z z z z -==ω,则复数ω对应的点的轨迹是( )A 、以1z 的对应点为圆心、1为半径的圆;B 、以1z -的对应点为圆心,1为半径的圆;C 、以121z 的对应点为圆心、21为半径的圆; D 、以121z -的对应点为圆心,21为半径的圆;例17:满足方程1Re =+z z 的复数z 对应的点的轨迹是 ( )。

A 、圆 B 、椭圆 C 、双曲线 D 、抛物线例18:复平面内,满足2)1()1(=--++-i z i z 的复数z 所对应的点的轨迹是 ( )A 、椭圆B 、双曲线C 、一条线段D 、不存在例19:满足方程016152=--z z 的复数z 对应的点的轨迹是( )A 、四个点B 、四条直线C 、一个圆D 、两个圆例20:设复数R a x i a a z x x ∈+++=-、,)2()2(,当x 在()+∞∞-,内变化时,求z 的最小值()a g 。

例21:若复数1z 和2z 满足:)0(12>=a i az z ,且2482112+=-++z z z z 。

1z 和2z 在复平面中对应的点为1Z 和2Z ,坐标原点为O ,且21OZ OZ ⊥,求21Z OZ ∆面积的最大值,并指出此时a 的值。

例22:已知复数()()010,,,,,z mi m z x yi a bi x y a b ω=->=+=+∈R ,i 为虚数单位,且对于任意复数z ,有0,2z z z ωω=⋅=。

(1)试求m 的值,并分别写出a 和b 用x 、y 表示的关系式;(2)将(),x y 作为点P 的坐标,(),a b 作为点Q 的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P 变到这一平面上的点Q ,当点P 在直线1y x =+上移动时,试求点P 经该变换后得到的点Q 的轨迹方程;(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上若存在,试求出所有这些直线;若不存在,则说明理由。

相关文档
最新文档