浙江大学2014年数学分析考研试题

合集下载

2014年考研数学(一)真题与解析(完整版)

2014年考研数学(一)真题与解析(完整版)
0 2 0
1

1
应该选(D)
4. 若函数



( x a1 cos x b1 sin x ) 2 dx min ( x a cos x b sin x ) 2 dx ,则 a1 cos x b1 sin x
a ,bR



(A) 2 sin x 【详解】注意
1 y 1 ,可知 lim 1 且 lim ( y x ) lim sin 0 ,所以有斜渐近线 y x x x x x x x
(B)当 f ' ( x ) 0 时, f ( x ) g ( x ) (D)当 f ( x ) 0 时, f ( x ) g ( x )

(B) 2 cos x
(C) 2 sin x
(D) 2 cos x
x


2
2 dx 3 , cos 2 xdx sin 2 xdx , x cos xdx cos x sin xdx 0 , 3 2
x sin xdx 2 ,
如果换成直角坐标则应该是

0
1
dx
1 x 2
0
f ( x , y )dy dx
0
1
1 x
0
( A) , (B) f ( x , y )dy ,
两个选择项都不正确;
如果换成极坐标则为


2 0
d cos sin f ( r cos , r sin )rdr d cos sin f ( r cos , r sin )rdr .
2 2
其中 :

2014年全国硕士研究生入学统一考试数学一试题及解析(完整精准版).doc

2014年全国硕士研究生入学统一考试数学一试题及解析(完整精准版).doc
小学数学
96
福清市元载小学
小学数学
97
福清市龙山中心小学
小学数学
98
福清市宏路中心小学
小学数学
99
福清市海口中心小学
小学数学
100
福清市海口中心小学
小学数学
101
福清市海口中心小学
小学数学
102
福清市岑兜中心小学
小学数学
103
福清市城头中心小学
小学数学
104
福清市南岭中心小学
小学数学
105
福清市龙田中心小学
小学英语
182
福清市镜洋中心小学
小学英语
183
福清市镜洋中心小学
小学英语
184
福清市石门小学
小学体育
185
福清市龙田中心小学
小学体育
186
福清市江镜中心小学
小学体育
187
福清市港头中心小学
小学体育
188
福清市高山中心小学
小学体育
189
福清市实验小学
小学音乐
190
福清市海口中心小学
小学音乐
191
福清市东瀚中心小学
小学语文
76
福清市东瀚中心小学
小学语文
77
福清市渔溪中心小学
小学语文
78
福清市渔溪中心小学
小学语文
79
福清市渔溪中心小学
小学语文
80
福清市渔溪中心小学
小学语文
81
福清市上迳中心小学
小学语文
82
福清市上迳中心小学
小学语文
83
福清市占泽中心小学
小学语文
84
福清市占泽中心小学

2014年考研数学二试题及答案解析

2014年考研数学二试题及答案解析

2014年全国硕士研究生入学统一考试数学(二)试题及答案解析一、选择题:1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

(1)当x →0+时,若1ln (12),(1-cos )x x αα+均是比x 高阶的无穷小,则α的取值范围是( ) (A )),(∞+2 (B )(1,2) (C )),(121 (D ))(210, 【答案】B【解析】当x →0+时,∵()()ln12~2x x αα+,111211(1cos )~()()22x x ααα-=·2x α ,∴由2111 2.ααα>>⇔<<且(2)下列曲线有渐近线的是( )(A ).sin x x y += (B ).sin 2x x y +=(C ).1sin x x y += (D )21sin .y x x=+【答案】C【解析】1sin()11lim lim lim(1sin )1x x x x f x x a x x x x→∞→∞→∞+===+= 11lim[()]lim[sin ]lim sin 0x x x b f x ax x x x x→∞→∞→∞=-=+-==∴y=x 是y=x +1sin x的斜渐近线注:渐近线有3种:水平、垂直、斜渐近线。

本题中(A)(B)(D)都没有渐近线,(C)只有一条斜渐近线。

(3)设函数()f x 具有2阶导数,()()()()011g x f x f x =-+,则在区间[0,1]上( )(A)当0f x '≥()时,()()f x g x ≥.(B)当0f x '≥()时,()()f x g x ≤ (C)当0f ''≥时,()()f x g x ≥.(D)当0f ''≥时,()()f x g x ≤【答案】D【解析】方法1:(利用函数的凹凸性)当() 0f x "≥时,()f x 是凹函数,而()g x 是连接()()0,0f 与()1,1f ()的直线段,如右图 故()()f xg x ≤方法2:(利用函数的单调性)()()()h x g x f x =-令,则(0)(1)0h h ==,由洛尔定理知,(0,1)()0,h ξξ'∃∈=,使若()0f x ''≥,则()0,()h x h x '''≤单调递减, 当(0,)x ξ∈时,()()0h x h ξ''≥=,()h x 单调递增,()(0)0,g(x)()h x h f x ≥=≥即; 当(,1)x ξ∈时,()()0h x h ξ''≤=,()h x 单调递减,()(1)0,g(x)()h x h f x ≥=≥即;注:当0f x '≥()时,只能说明()f x 是单调增加的,但增加的方式可能是以凸的形式,也可能是以凹的形式,若是前者,则()()f x g x ≥,此时(A)成立,如()f x x =;若是后者,则()()f x g x ≤,此时(B)成立,如2()f x x =.(4)曲线⎪⎩⎪⎨⎧++=+=,t t y ,t x 14722上对应1t =的点处的曲率半径是( )(A ).5010 (B ).10010 (C ).1010 (D ).105 【答案】C【解析】令()27x t t ϕ==+ ()241y t t t ψ==++则2,()2t t t ϕϕ'''=()=; ()24t t ψ'=+ ()2t ψ"=当t =1时,(1)2,(1)2(1)6,(1)2ϕϕψψ''''''====则332222|2226|811010(26)40K ⨯-⨯===+,曲率半径11010.K ρ== (5)设函数()arctan f x x =,若)()(ξf x x f '=,则22limx xξ→=( )(A )1. (B ).32 (C ).21(D ).31【答案】D【解析】由()()arctan , f x x f x ==()xf ξ'得21arctan 1x x ξ=⋅+ ()3322222|||()()()()|1[()()]y t t t t K y t t ϕψϕψϕψ''''''''-=='''++2arctan arctan x x x ξ-=,222232000011arctan arctan 11lim lim lim lim arctan 33x x x x x x x xx x x x xx ξ→→→→---+∴==== (6)设函数()u x y ,在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足0022222=∂∂+∂∂≠∂∂∂yux u y x u 及,则( ) (A )()u x y ,的最大值和最小值都在D 的边界上取得. (B )()u x y ,的最大值和最小值都在D 的内部取得.(C )()u x y ,的最大值在D 的内部取得,最小值在D 的边界上取得. (D )()u x y ,的最小值在D 的内部取得,最大值在D 的边界上取得. 【答案】A【解析】A=22u x ∂∂,B=2u x y∂∂∂,C=22u y ∂∂,22200 0B A C AC B A B ≠+=-=--<,,,∴D 内部无极值.(7)行列式=dc dc b a ba 00000000( )(A )2()ad bc - (B )2()ad bc --(C )2222a dbc - (D)2222b c a d -【答案】B【解析】41440000004(1)00(1)00000000a ba b a ba bc bd a c d c d c dc d++-+-按第行展开 32212(1)(1)()()()()()a b a b c b d a c dc dad bc bc ad ad bc ad bc bc ad ad bc ++=-⋅-+⋅⋅-=-⋅--=--=--注:此题按其它行或列展开计算都可以。

2014年考研数学二真题及答案解析

2014年考研数学二真题及答案解析

一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题
目要求的,请将所选项前的字母填在答.题.纸.指定位置上.
1
(1) 当 x 0 时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无穷小,则 的取值范围是( )
(A) (2, )
()10(A)50 Nhomakorabea10
(B)
100
(C)10 10
(D) 5 10
(5)
设函数
f (x)
arctan x ,若
f
(x)
xf
(
)
,则
lim
x0
x
2 2
()
(A)1
(B) 2 3
(C) 1 2
(D) 1 3
(6) 设函数 u(x, y) 在有界闭区域 D 上连续,在 D 的内部具有 2 阶连续偏导数,且满足 2u 0 xy
()
(A) 当 f (x) 0 时, f (x) g(x) (C) 当 f (x) 0 时, f (x) g(x)
(B) 当 f (x) 0 时, f (x) g(x) (D) 当 f (x) 0 时, f (x) g(x)
(4)
曲线
x y
t2 t2
7 4t
1
上对应于
t
1的点处的曲率半径是
lim x0
1
1
1 x
2
3x2
1 3
故选 D.
(D) 1 3
()
(6) 设函数 u(x, y) 在有界闭区域 D 上连续,在 D 的内部具有 2 阶连续偏导数,且满足 2u 0 xy

2u x2

数学分析与高等代数考研真题详解--浙江大学卷

数学分析与高等代数考研真题详解--浙江大学卷

∴(αT Aβ )2 = (α TCTCβ )2 = (Cα ,Cβ )2 ≤ (Cα ,Cα )(Cβ ,Cβ ) = (αTCTCα )(β TCTCβ ) = (α T Aα )(β T Aβ )
由于上述不等式,等号成立时候当且仅当,存在数 k1, k2 ,使
k1Cα + k2Cβ = 0 ,即 k1α + k2β = 0 ,即α , β 线性相关
2
浙江大学
1999 年招收硕士研究生入学考试《高等代数》试题及解答
3
1999 年招收硕士研究生入学考试《高等代数》试题解答
一:证明:充分性:若 f ( x) 能表示成一个整数多项式的平方,显然 f ( x) 在有理数域上可

必要性:由于 f ( x) 在有理数域上可约,在存在整数系数多项式 g ( x), h ( x) 有
所以 Α 是一个线性变换,
由于 A 和 − A 无公共特征根,即根据 (1) 的结论就有
AX = X (− A) 只有零解,即 AX + XA = 0 只有零解,从而 Α 可逆,即
八:证明:(1) 设 A 的特征多项式为 f (λ ) , B 的特征多项式为 g (λ ) ,由于 A, B 无公共特
( 征值,从而 f (λ ), g (λ )) = 1,所以 f ( B) 可逆,由于 AX = XB ,故对于 ∀n ∈ ∗ ,均有
An X = XBn ,就有 f ( A) X = Xf ( B) ,所以 Xf ( B) = 0 ⇒ X = 0 ,
⎡⎣En − αα T ⎤⎦−1 = ⎡⎣En + αα T ⎤⎦
三:证明: (1) 由于存在 m 阶可逆矩阵 P1 和 n 阶可逆矩阵 P2 ,有 A = P1 [Em 0] P2 ,即

2014考研数学一真题及答案

2014考研数学一真题及答案

(23) 【答案】 (1) EX
ˆ (2)
(3)存在
1 n X i2 n i 1
6( y )2 y 3 y 2 y 2 yy 2 yy x 2( y )2 x 2 yy 2 y 2 xy 2 xy x 2 y 0 12 y( 1 ) 4 y( 1 ) 4 y( 1 ) 0 9 y( 1 ) 4 y( 1 ) 9 0 4
y 2x 1 x
(12) (13)[-2,2] (14)
2 5n
三、解答题:15—23 小题,共 94 分.请将解答写在答题纸 指定位置上.解答应写出文字说明、 ... 证明过程或演算步骤. (15) 【答案】
2014 年全国硕士研究生入学统一考试数学一
x
lim

x
1
[ t ( e 1 ) t ] dt x 2 ln( 1
2E 2E f ( e x cos y )e 2 x ( 4 E e x cos y )e 2 x x 2 y 2 f ( e x cos y ) 4 f ( e x cos y ) e x cos y
令 e x cos y u , 则 f ( u ) 4 f ( u ) u , 故 f ( u ) C1e 2 u C 2 e 2u 由 f ( 0 ) 0 , f ( 0 ) 0 , 得
(21) 【答案】利用相似对角化的充要条件证明。
0, y 0, 3 y, 0 y 1, 4 (22) 【答案】 (1) FY y 1 1 1 y ,1 y 2, 2 2 1, y 2.
(2)
3 4 1 , EX 2 2
1 x x

2014年浙江专升本(高等数学)真题试卷(题后含答案及解析)

2014年浙江专升本(高等数学)真题试卷(题后含答案及解析)

2014年浙江专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.当x→x0时,若f(x)存在极限,g(x)不存在极限,则下列结论正确的是( )A.当x→x0时,f(x)g(x)必定存在极限B.当x→x0时,f(x)g(x)必定不存在极限C.当x→x0时,f(x)g(x)若存在极限,则此极限必为零D.当x→x0时,f(x)g(x)可能存在极限,也可能不存在极限正确答案:D解析:极限运算法则,可以举反例,若f(x)=x2,g(x)=lnx,则f(x)= x2=0,g(x)=lnx=-∞,但f(x).g(x)=x2lnx=0;若f(x)=2,g(x)=sin=2,不存在,但f(x).g(x)=不存在;可见选项D正确.2.曲线y=x3-3x上切线平行于x轴的点是( )A.(0,0)B.(1,2)C.(一1,2)D.(0,2)正确答案:C解析:由导数几何意义可知,k切=y′(x0)=3—3=0,所以切点坐标为(1,一2)或(一1,2),即选项C正确.3.函数f(x)=(x2—x一2)|x3一x|的不可导点个数是( )A.3B.2C.1D.0正确答案:B解析:导数定义,f′(0)=所以f′-(0)==2,f′+(0)==-2所以函数f(x)在x=0处不可导;同理,f′(1)=所以f′-(1)=一(x2一x—2)|x(x+1)|=4.f′+(1)=(x2一x—2)|x(x+1)|=-4,所以函数f(x)在x=1处不可导;f′(-1)==(x-2)|x3-x|=0,所以函数f(x)在x=-1处可导;综上可知,函数f(x)共有2个不可导点,选项B正确.4.若f(x=sin(t一x)dt,则f(x)= ( )A.-sinxB.-1+cosxC.sinxD.0正确答案:A解析:变限函数求导数,因为sin(t一x)dt sinudu,所以sin(t—x)dt=sinudu=0一sin(一x).(一1)=-sim,可见选项A正确.5.微分方程y′+的通解是( )A.arctanx+CB.(arctanx+C)C.arctanx+CD.+arctanx+C正确答案:B解析:一阶线性微分方程,由通解公式可得y=e-∫p(x)dx[∫Q(x).e∫p(x)dxdx+C]=.elnxdx+C]=(arctanx+C),可见选项B正确.填空题6.设f(x)在(-∞,+∞)上连续,且f(2)=3,则=___________.正确答案:9解析:利用连续性求极限,=3f(2)=9 7.设f(x)=,则f[f(x)]=___________.正确答案:解析:求复合函数的表达式,f[f(x)]=f[f(x)]=8.曲线y=xln(e+)(x>0)的渐近线方程是___________.正确答案:y=x+解析:计算斜渐近线,设直线y=ax+b为所求曲线的渐近线,则a==lne=1,b=所以,斜渐近线为y=x+.9.设y=ln,则y′|x=0=___________.正确答案:-1解析:求导函数,因为y=ln[ln(1一x)一ln(1+x)]所以y′=,故y′(0)=-1.10.曲线y=(x>0)的拐点是___________.正确答案:()解析:求曲线的拐点,当x>0时,y′=令y″=0,得x=,所以拐点为().11.由曲线y=x和y=x2所围成的平面图形的面积是___________.正确答案:解析:据题意画图,求所围平面图形的面积S=(x—x2)dx=(x2一12.将函数f(x)=sin2x展开成x的幂级数为___________.正确答案:,x∈(一∞,+∞)解析:麦克劳林展式,f(x)=sin2x=cos2x,又因cosx=x2n,x∈(一∞,+∞),所以cos2x=(2x)2n即f(x)=,x∈(一∞,+∞).13.设(a×b).c=1,则[(a+b)×(b+c)].(c+a)=___________.正确答案:2解析:混合积,向量积运算法则,在混合积计算中,如有两向量相同,则混合积为0.因此,[(a+b)×(b+c)].(c+a)=[a×(b+c)+b×(b+c)]=[a×b+a×c+b×b+b ×c].(c+a)=[a×b+a×c+b×c].(c+a)=(a×b).c+(a×b).a+(a×c).c+(a×c).a+(b×c).c+(b×c).a=(a×b).c-(b×c).a=2(a×b).c=214.微分方程(1+x)ydx+(1一y)xdy=0的通解为___________.正确答案:ln|xy|+x-y+C=0,C为任意常数解析:可分离变量的微分方程,(1+x)ydx+(1一y)xdx=0x+ln|x+C=y—ln|y|,即通解为y=x+ln|xy|+C,C为任意常数.15.设二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=C1ex+C1e2x,那么非齐次y″+ay′+by=1满足的条件y(0)=2,y′(0)=-1的解为___________.正确答案:y=4ex-解析:求二阶线性常系数非齐次方程的通解,特征方程为r2+ar+b=0,r1=1,r2=2即(r-1)(r-2)=0,r2-3r+2=0,故a=-3,b=2.所以原微分方程为y″一3y′+2y=1,由于λ=0不是特征方程的根,取k=0,因此,设特解y*=A,则(y*)′=0,(y*)″=0,代入可得A=,所以y*=,所以y″一3y′+2y=1的通解为y=C1ex+C2e2x+,再由y(0)=2,y′(0)=-1,可得C1=4,C2=,故满足初始条件的特解为y=4ex-解答题解答时应写出推理、演算步骤。

数2--14真题答案

数2--14真题答案

2014年考研数学(二)试题答案速查一、选择题(1)B (2)C (3)D (4)C (5)D (6)A (7)B (8)A 二、填空题(9)3π8 (10)1 (11)1(d d )2x y −+ (12)2ππ2y x =−+ (13)2011 (14)]2,2[−三、解答题 (15)21. (16)(1)1y =为极大值,(1)0y −=为极小值. (17)34−. (18)22111()e e 444u u y f u u −⎛⎫==−− ⎪⎝⎭.(19)略. (20)1. (21)5π2πln24−. (22)(Ⅰ)T(1,2,3,1)ξ=−.(Ⅱ)123123123123261123212134313k k k k k k k k k k k k −−−−⎛⎫⎪−+−++ ⎪=⎪−+−++⎪⎝⎭B ,123,,k k k 为任意常数.(23)略.2014年全国硕士研究生入学统一考试数学(二)参考答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)【答案】B.【解答】由定义02lim )2(lim )21(ln lim 1000===+−→→→ααααx xx x x x x x ,所以10,1αα−>>.当+→0x 时,ααα1212~)cos 1(x x −是比x 的高阶无穷小,所以210,2αα−><.故选择B.(2)【答案】C.【解答】C 选项,11sinsinlimlim1lim 1,x x x x x x a x x→∞→∞→∞+==+= 11lim[sin ]limsin 0x x b x x x x→∞→∞=+−==,所以x x y 1sin +=存在斜渐近线y x =,故选择C.(3)【答案】D.【解答】令)()1()1)(0()()()(x f x f x f x f x g x F −+−=−=,则0)1()0(==F F ,)()(),()1()0()(x f x F x f f f x F ''−='''−+−='.若()0,f x ''则()0,()F x F x ''在]1,0[上是凸的,又0)1()0(==F F ,故当]1,0[∈x 上时,()0F x ,从而()()g x f x ,故选择D.(4)【答案】C.【解答】22111122d 24d 3,1d 2d 2t t t t y t y t x t x t ====−+====−, 10101,)91(1)1(23232==+='+''=KR y y K ,故选择C. (5)【答案】D. 【解答】因,11)()(2ξξ+='=f x x f 所以)()(2x f x f x −=ξ,313111limarctan arctan lim )()(limlim220202022=+−=−=−=→→→→x x x x xx x f x x f x x x x x x ξ,故选择D. (6)【答案】A.【解答】记C A B yuC y x u B x u A ,,0,,,22222≠∂∂=∂∂∂=∂∂=互为相反数,故20AC B −<. 由于闭区域上连续函数必有极值,所以),(y x u 在D 内无极值,则极值在边界上取得.故选择A. (7)【答案】B.【解答】00000000a b abc d cd=0000000000000000c d c d a b a b c d d c a b b a −=2()c d d cad bc a b b a=⋅=−−. 故选择B.(8)【答案】A.【解答】132312310()(,,)01k ,l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα,记1323()k ,l =++A αααα,123(,,)=B ααα,1001k l ⎛⎫⎪= ⎪ ⎪⎝⎭C . 若123,,ααα线性无关,则()()()2r r r ===A BC C ,故1323k ,l ++αααα线性无关,所以13k +αα,23l +αα线性无关是向量组123,,ααα线性无关的必要条件;反之,未必成立,例如取3=α0,12,αα线性无关,虽然13k +αα,23l +αα线性无关,123,,ααα却线性相关,故选A.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)【答案】3π8. 【解答】1122111113πd d arctan 25(1)4228x x x x x x −∞−∞+===−∞++++⎰⎰. (10)【答案】1.【解答】由于]2,0[),1(2)(∈−='x x x f ,所以]2,0[,)1()(2∈+−=x C x x f ,又)(x f 为奇函数,故0)0(=f ,代入方程可得1−=C ,故]2,0[,1)1()(2∈−−=x x x f ,又)(x f 是周期为4的奇函数,则1)1()1()81()7(=−=−=+−=f f f f . (11)【答案】1(d d )2x y −+. 【解答】对方程两边同时对y x ,求偏导数得22e 210,e (22)20,yzyz z z y x x z z z y y y y ∂∂⎧⋅⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩当21==y x 时,0=z ,故21,21)21,21()21,21(−=∂∂−=∂∂yz x z ,故11(,)221d (d d )2zx y =−+.(12)【答案】2ππ2y x =−+. 【解答】由直角坐标和极坐标的关系cos cos ,sin sin ,x r y r θθθθθθ==⎧⎨==⎩于是ππ(,)(,)22r θ=对应于π(,)(0,)2x y =,切线斜率d d cos sin d d d cos sin d yy x x θθθθθθθθ+==−, 所以π(0,)2d 2d πy x=−,从而切线方程为2ππ2y x =−+. (13)【答案】2011. 【解答】质心坐标为1010()d ()d x x x x x xρρ=⎰⎰,而11205()d (21)d 3x x x x x ρ=−++=⎰⎰,1120011()d (21)d 12x x x x x x x ρ=−++=⎰⎰,所以2011351211==x . (14)【答案】]2,2[−.【解答】3231222132142),,(x x x ax x x x x x f ++−==232232231)4()2()(x a x x ax x −+−−+,由于二次型的负惯性指数为1,故240a −,故22a −.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分)解:11221122(e 1)d (e 1)d limlim 11ln(1)xx t tx x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤−−−−⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12201e 1lim [(e 1)]limt xx t t t x x x t +→+∞→=−−=−−00e 11lim lim 222t t t t t t ++→→−===.(16)(本题满分10分)解:由y y y x '−='+122得,221)1(x y y −='+ ① 此时方程为可分离变量,通解为C x x y y +−=+333131,由0)2(=y 得32=C ; 由①可得2211)(y x x y +−=',当0)(='x y 时,1±=x ,且有 0)(,1;0)(,11;0)(,1<'>>'<<−<'−<x y x x y x x y x ,所以)(x y 在1−=x 处取得极小值,在1=x 取得极大值,且1)1(,0)1(==−y y , 故)(x y 的极限值为0,极大值为1. (17)(本题满分10分)解:如图因为D 关于x y =对称,由轮换对称性质,则22sin(π)d d Dx x y x y x y ++⎰⎰22sin(π)d d D y x y x y x y +=+⎰⎰ 所以,22sin(π)d d Dx x y I x y x y +=+⎰⎰22()sin(π)1d d 2D x y x y x y x y++=+⎰⎰ yxO12221x y +=224x y +=221sin(π)d d 2D x y x y =+⎰⎰π220113d sin πd 24r r r θ=⋅=−⎰⎰.(18)(本题满分10分) 解:由(e cos )x z f y =可得(e cos )e cos ,(e cos )(e sin )x x x x z zf y y f y y x y∂∂''=⋅=⋅−∂∂, 22(e cos )e cos e cos (e cos )e cos x x x x xz f y y y f y y x ∂'''=⋅⋅+⋅∂,22(e cos )(e sin )(e sin )(e cos )(e cos )x x x x xz f y y y f y y y ∂'''=⋅−⋅−+⋅−∂.由22222(4e cos )e x xz z z y x y∂∂+=+∂∂,并把以上式子代入得 22(e cos )e[4(e cos )e cos ]e xxx x x f y f y y ''⋅=+,即 (e cos )4(e cos )e cos x x xf y f y y ''−=,令 e cos xu y =得 ()4()f u f u u ''−= ① 特征方程为 042=−λ,特征根为2λ=±,通解2212e e uu y C C −=+.设方程①的特解b au y +=*,代入方程 得1,04a b =−=,特解为*4u y =−, 则原方程的通解为22121()ee 4uu y f u C C u −==+−,由0)0(,0)0(='=f f 得1211,1616C C ==−,则方程为22111()e e 444u u y f u u −⎛⎫==−− ⎪⎝⎭.(19)(本题满分10分) 证:(Ⅰ)由积分中值定理()d ()(),[,]xag t t g x a a x ξξ=−∈⎰,因为0()1g x ,故0()(),0()d ()xag x a x a g t t x a ξ−−−⎰;(Ⅱ)()d ()()()d ()d ua ua g t t aaF u f x g x x f x x +⎰=−⎰⎰令,()()()(()d )()u aF u f u g u f a g t t g u '=−+⋅⎰()[()(()d )]uag u f u f a g t t =−+⎰,由(Ⅰ)知0()d (),()d uuaag t t u a a a g t t u −+⎰⎰,由于)(x f 单调增加,则()(()d )0uaf u f ag t t −+⎰,所以()0,()F u F u '单调不减,则()()0F u F a =, 取b u =得()0F b ,即所证结论成立.(20)(本题满分11分)解:因为12(),()112x xf x f x x x==++,3()13x f x x =+,…,由数学归纳法可得()1n xf x nx =+,所以1100()d d 1n n x S f x x x nx==+⎰⎰, 111000d 1()d d 11ln(1)11n n nx x nS n f x x x n nx nx n===−=−+++⎰⎰⎰,从而可知lim 1n n nS →∞=.(21)(本题满分11分) 解:因为)1(2+=∂∂y yf,所以)(),(2),(2x x y y y x f ϕϕ其中++=为待定函数. 又因为2(,)(1)(2)ln f y y y y y =+−−,则()(2)ln y y y ϕ=−−,从而x x y x x y y y x f ln )2()1(ln )2(12),(22−−+=−−++=,所以0),(=y x f 对应的方程为2(1)(2)ln ,(12)y x x x +=−, 其所围图形绕直线1−=y 旋转所成旋转体的体积为222221111π(1)d π(2)ln d π2ln d πln d V y x x x x x x x x x =+=−=−⎰⎰⎰⎰π352π(2ln 21)(4ln 2)(2ln 2)π224=−−−=−.(22)(本题满分11分)解:(Ⅰ)对矩阵A 作初等行变换,可得123410010111010212030013−−⎛⎫⎛⎫ ⎪ ⎪=−→− ⎪ ⎪ ⎪ ⎪−−⎝⎭⎝⎭A ,则方程组=Ax 0的一个基础解系为T)1,3,2,1(−=ξ. (Ⅱ)对矩阵()AE 作初等行变换,有12341001234100()0111010011101012030010431101−−−−⎛⎫⎛⎫⎪ ⎪=−→− ⎪ ⎪ ⎪ ⎪−−−⎝⎭⎝⎭A E123410010012610111010010213100131410013141−−−⎛⎫⎛⎫ ⎪ ⎪→−→−−− ⎪ ⎪ ⎪ ⎪−−−−−−⎝⎭⎝⎭. 记T3T 2T 1)1,0,0(,)0,1,0(,)0,0,1(===e e e ,则1e x A =的通解为T1111T1),31,21,2()0,1,1,2(k k k k ξk x +−+−−=−−+=, 2e x A =的通解为T2222T2),34,23,6()0,4,3,6(k k k k k x +−+−−=−−+=ξ, 3e x A =的通解为T3333T3),31,21,1()0,1,1,1(k k k k k x ++−−=−+=ξ,所以,123123123123261123212134313k k k k k k k k k k k k −−−−⎛⎫⎪−+−++ ⎪=⎪−+−++⎪⎝⎭B ,123,,k k k 为任意常数.(23)(本题满分11分)证:不妨设111111111⎛⎫ ⎪⎪= ⎪⎪⎝⎭A ,00100200B n ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,则, ()()111...111...111...111 (1)..................11...111...1n n n λλλλλλλλλ−−−−−−−−−−−−==−=−−−−−−E A ,特征值为1210,n n n λλλλ−=====,()10...10 (2).........00...n n n λλλλλλ−−−−==−−E B ,特征值为1210,n n n λλλλ−=====,因为矩阵A 为对称阵,所以必可以对角化,相似于矩阵00n ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭Λ; 对于矩阵B ,当0λ=时,(0)()1r r −==E B B ,所以矩阵B 对应于特征值0有1n −个线性无关的特征向量,所以矩阵B 可以对角化为00n ⎛⎫⎪⎪= ⎪ ⎪⎝⎭Λ,所以二者相似.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档