多项式乘以多项式公开课数学课件PPT模板
合集下载
《多项式乘以多项式》整式的乘除与因式分解PPT课件 (共12张PPT)

练习: (1) (2x+1)(x+3); (2) 2 (3) ( a - 1) ; (4) (5) (x+2)(x+3); (6) (7) (y+4)(y-2); (8)
(m+2n)(m+ 3n): (a+3b)(a –3b ). (x-4)(x+1) (y-5)(y-3)
(x+2)(x+3) = 5x+6; 2 (x-4)(x+1) = x – 3x-4 2 (y+4)(y-2) = y + 2y-8 2 (y-5)(y-3). = y - 8y+15 观察上述式子,你可以 得出一个什么规律吗? 2 (x+p)(x+q) = x + (p+q) x + p q
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
《多项式乘多项式》PPT课件

观察上面四个等式,你能发现什么规律?
你能根据这个规律解决下面的问题吗?
(x a)(x b) x2 _(a___b_) x _a__b__
口答:
(x-7)(x+5) x2 (_-_2)x (_-_35)
(2)(7 3x)(7 3x) (3)n(n 2)(2n 1)
(4)(6a 5)2
法则
2.化简:
(1)(2x 1)(x2 3x 1)
(2)3x(x2 2x 1) 2x2(x 2)
3.先化简,再求值:
(3a 1)(2a 3) 6(a 1)(a 2) 其中 a 3
思考题 4、解方程
2x2 7x 6 x2 2x 1
x2 9x 7 x2 5x 5 (x2 2x 1)
x2 2x 1
注意!
• 1.计算(2a+b)2应该这样做:
(2a+b)2=(2a+b)(2a+b) =4a2+2ab+2ab+b2 =4a2+4ab+b2
切记 一般情况下
(2a+b)2不等于4a2+b2 .
(2) (x 7 y)(x 5y)
(3) (2m 3n)(2m 3n)
(4) (2a 3b)(2a 3b)
(5) (x+2y)2
你注意到了吗?
多项式乘以多项式,展开 后项数很有规律,在合并同类 项之前,展开式的项数恰好等 于两个多项式的项数的积。
需要注意的几个问题
1.漏乘 2.符号问题 3.最后结果应化成最简形式.
整式的乘除
11.4 多项式乘多项式
回忆 1.单项式乘单项式的法则 2.单项式乘多项式的法则
a c
b c
d
你能根据这个规律解决下面的问题吗?
(x a)(x b) x2 _(a___b_) x _a__b__
口答:
(x-7)(x+5) x2 (_-_2)x (_-_35)
(2)(7 3x)(7 3x) (3)n(n 2)(2n 1)
(4)(6a 5)2
法则
2.化简:
(1)(2x 1)(x2 3x 1)
(2)3x(x2 2x 1) 2x2(x 2)
3.先化简,再求值:
(3a 1)(2a 3) 6(a 1)(a 2) 其中 a 3
思考题 4、解方程
2x2 7x 6 x2 2x 1
x2 9x 7 x2 5x 5 (x2 2x 1)
x2 2x 1
注意!
• 1.计算(2a+b)2应该这样做:
(2a+b)2=(2a+b)(2a+b) =4a2+2ab+2ab+b2 =4a2+4ab+b2
切记 一般情况下
(2a+b)2不等于4a2+b2 .
(2) (x 7 y)(x 5y)
(3) (2m 3n)(2m 3n)
(4) (2a 3b)(2a 3b)
(5) (x+2y)2
你注意到了吗?
多项式乘以多项式,展开 后项数很有规律,在合并同类 项之前,展开式的项数恰好等 于两个多项式的项数的积。
需要注意的几个问题
1.漏乘 2.符号问题 3.最后结果应化成最简形式.
整式的乘除
11.4 多项式乘多项式
回忆 1.单项式乘单项式的法则 2.单项式乘多项式的法则
a c
b c
d
5、多项式乘以多项式17页PPT文档

(x+2)(x+3) = x2 + 5x+6; (x-4)(x+1) = x2 – 3x-4 (y+4)(y-2) = y2 + 2y-8 (y-5)(y-3). = y2- 8y+15
观察上述式子,你可以 得出一个什么规律吗?
(x+p)(x+q) = x2 + (p+q) x + p q
练习: 确定下列各式中m的值:
2a3b3a3ba2b3a2 5a3ba2b3a2
当 a 3;b 5 时, 原式的值为-2
8x220xy5x216x210xy 3x230xy
10.(3x-y)(y+3x)-(x-3y)(4x+3y)
3x y 9x2y2 3x y 4x2 3x y 1x2 y 9y2
5x2 9x y 8y2
11.若 (x2n x 3)x(23xm ) 12.
(1) (x+4)(x+9) = x2 + m x + 36 (1) m =13 (2) (x-2)(x-18) = x + m x + 36 (2) m = - 20 (3) (x+3)(x+p) = x + m x + 36 (3) p =12, m= 15 (4) (x-6) (x-p) = x + m x + 36 (4) p= -6, m= -12 (5) (x+p)(x+q) = x + m x + 36
1. B
2. B
A
A
5.
6.
-7
7.
-18
-14
4a27a b3b2
多项式乘以多项式课件.ppt

3.先化简,再求值:
(x+3)(x-3)-x(x-6),其中x=2
观察下列各式的计算结果与相乘的两个 多项式之间的关系: (x+2)(x+3)=x2+5x+6 (x+a)(x+b) (x+4)(x+2)=x2+6x+8 = x2+(a+b)x +ab (x+6)(x+5)=x2+11x+30 (1)你发现有什么规律?按你发现的规律填空:
积的项数与原多项式的项数的积。 2.多项式的每一项分别与另一多项式的 每一项相乘时,要注意积的各项符号 的确定:
同号相乘得正,异号相乘得负 3.不要出现漏乘现象,运算要有顺序。
1. 先化简,再求值:
2
(2a-3)(3a+1)-6a(a-4) 其中a= 17
2.化简:(2x-1)(-3x)-(1-3x)(1+2x)
多项式与多项式相 乘的结果中,要把 同类项合并.
: (1) (x+2y)(5a+3b) (2) (2x–3)(x+4) ;
(3)(2a+b)2
(4)(x-2y)(x-y-3)
多项式乘以多项式,展开后项数有什么规律?
在合并同类项之前,展开式的项数恰好
等于两个多项式的项数的积。
几点注意:
1.多项式乘多项式的结果仍是多项式,
1.多项式与多项式相乘的法则:
2.会用整式乘法的法则,化简整式. 3.数学思想:转化,数形结合
(1)
(2)
(3)
12
(a+n)(b+m) = a(b+m)+n(b+m)
PPT教学课件多项式与多项式相乘

依据图中标注的 C
a- b
数据,计算绿地的
面积?(a>b)
a+b
2.求不等式(3 x+4)(3x–4)>9(x –2)(x +3) 的正整数解.
2.求长方体的体积?(a>b)
a-b a+b
a+2b
长方体
今天我们学习了什么?你有哪些收获?
多项式与多项式相乘的内容在课本第26页~ 第27页,请同学们课后认真阅读,记住所学的法
代表作:“三吏” “三别” 石壕吏 杜甫
暮投石壕村,有吏夜捉人。老翁逾墙走,老妇出门看。
吏呼一何怒,妇啼一何苦。听妇前致词:“三男邺城戍。
一男附书至,二男新战死。存者且偷生,死者长已矣。
室中更无人,惟有乳下孙。有孙母未去,出入无完裙。
老妪力虽衰,请从吏夜归。急应河阳役,犹得备晨炊。
夜久语声绝,如闻泣幽咽。天明登前途,独与老翁别。
1
2
3
4
积相加得:x·5a+x·3b+2y·5a+2y·3b
解:(x+2y)(5a+3b) = x ·5a +x ·3b +2y ·5a +2y ·3b
=5ax +3bx +10ay +6by
(2) (2x–3)(x+4) ;
1
2
拆分成多个单项式:(2x,-3)(x,4)
3
4
按法则算得:2x·x, 2x·4, -3·x , -3·4
《诗经》和楚辞
• 屈原和楚辞:
– 屈原是我国古代的伟 大诗人,在我国文学 史上占有崇高的地位, 也是世界文化名人之 一
路漫漫其修远兮, 吾将上下而求索
多项式乘以多项式人教版八年级数学上册精品课件PPT

第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
(2)运用以上方法求:22 020+22 019+22 + 018 …+22+2+1 的值.
原式=(2-1)(22 020+22 019+22 018+22 017+…+22+2+1) =22 021-1.
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
10. 已知(x+2)(x+3)=x2+mx+6,则 m 的值是
(C )
A. -1
B. 1 C. 5
D. -5
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
解:(1)该绿化带的面积为(6a+4b)·( =18a2-12ab+12ab-8b2 =18a2-8b2(平方米). 答:该绿化带的面积用含有a,b的代数式表示为 18a2-8b2平方米. (2)当a=10、b=5时, 18a2-8b2=18×100-8×25 =1 800-200=1 600(平方米). 答:该绿化带的面积是1 600平方米.
;
……
(x-1)(xn+xn-1+xn-2+…+x+1)= xn+1-1 .
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
(2)运用以上方法求:22 020+22 019+22 + 018 …+22+2+1 的值.
原式=(2-1)(22 020+22 019+22 018+22 017+…+22+2+1) =22 021-1.
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
10. 已知(x+2)(x+3)=x2+mx+6,则 m 的值是
(C )
A. -1
B. 1 C. 5
D. -5
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
解:(1)该绿化带的面积为(6a+4b)·( =18a2-12ab+12ab-8b2 =18a2-8b2(平方米). 答:该绿化带的面积用含有a,b的代数式表示为 18a2-8b2平方米. (2)当a=10、b=5时, 18a2-8b2=18×100-8×25 =1 800-200=1 600(平方米). 答:该绿化带的面积是1 600平方米.
;
……
(x-1)(xn+xn-1+xn-2+…+x+1)= xn+1-1 .
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
第14章第6课 多项式乘以多项式-2020秋人教版八 年级数 学上册 课件
《多项式与多项式相乘》PPT课件

能力提升练
15.【中考·吉林】如图,长方形 ABCD 的面积为_x_2_+__5_x_+__6___.(用 含 x 的式子表示)
能力提升练
16.已知(x-2)(1-kx)-(2x-3)(2x+3)的结果中不含有 x 的一次 项,则 k=__-__12____.
【点拨】原式=x-kx2-2+2kx-4x2+9=(-4-k)x2+(2k+ 1)x+7,由结果中不含有 x 的一次项, 得到 2k+1=0,解得 k=-12.
华师版 八年级上
第12章 整式的乘除
第2节 整式的乘法 第3课时 多项式与多项式相乘
习题链接
提示:点击 进入习题
新知笔记
1 每一项;相加
基础巩固练 1B 2C
3B 4D 5B
答案显示
习题链接
6C 7 x2+x-2 8 见习题 9 见习题 10 见习题
11 A 12 C 13 B 14 D 15 x2+5x+6
此页为防盗标记页(下载后可删)
1、谢谢大家听得这么专心。 2、大家对这些内容这么感兴趣,真让我高兴。 3、你们专注听讲的表情,使我快乐,给我鼓励。 4、我从你们的姿态上感觉到,你们听明白了。 5、我不知道我这样说是否合适。 6、不知我说清了没有,说明白了没有。 7、我的解释不知是否令你们满意,课后让我们大家再去找有关的书来读读。 8、你们的眼神告诉我,你们还是没有明白,想不想让我再讲一遍? 9、会“听”也是会学习的表现。我希望大家认真听好我下面要说的一段话。 10、从听课的情况反映出,我们是一个素质良好的集体。 1、谢谢你,你说的很正确,很清楚。 2、虽然你说的不完全正确,但我还是要感谢你的勇气。 3、你很有创见,这非常可贵。请再响亮地说一遍。 4、××说得还不完全,请哪一位再补充。 5、老师知道你心里已经明白,但是嘴上说不出,我把你的意思转述出来,然后再请你学说一遍。 6、说,是用嘴来写,无论是一句话,还是一段话,首先要说清楚,想好了再说,把自己要说的话在心里整理一下就能说清楚。 7、对!说得很好,我很高兴你有这样的认识,很高兴你能说得这么好! 8、我们今天的讨论很热烈,参与的人数也多,说得很有质量,我为你们感到骄傲。 9、说话,是把自己心里的想法表达出来,与别人交流。说时要想想,别人听得明白吗? 10、说话,是与别人交流,所以要注意仪态,身要正,不扭动,眼要正视对方。对!就是这样!人在小时候容易纠正不良习惯,经常 注意哦。
八年级数学多项式乘以多项式优秀课件

例二 小丽设计了两幅邮票,第一幅的宽是m,长比宽多x厘米,第二 幅的宽是第一幅的长,且第二幅的长比宽多2x厘米。 〔1〕求第一幅邮票的面积; 〔2〕第二幅比第一幅的面积大多少? 解:〔1〕第一幅邮票宽是m厘米,那么长是m+x厘米;
∴其面积为:m(m+x)=m2+mx (2) 由题意知:第二幅邮票的宽是〔m+x〕厘米,那么长 是m+3x厘米 。 ∴〔m+x〕(m+3x)-(m2+mx) =3mx+3x2
(m+b)·〔n+a〕=mn+ma+bn+ba
多项式与多项式相乘,先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加。
运用法那么时注意:
拓展研学:
例一计算 〔1〕(3x+1) (x+2)
解:原式=3x·x+3x·2+1·x+1+1×2 =3x2+6x+x+2 =3x2+7x+2
〔2〕(x-8y) (x-y)
解:原式=x·x+x·(-y)+(-8y)·x+(-8y)·(-y) =x2-xy-8xy+8y2 =x2-9xy+8y2
〔3〕(x+y) (x2-xy+y2) 解:原式(x=3x+·xx22+x-·2(-)xy)+x·y2+y·x2+y·(-xy)+y·y2
=x3-x2y+xy2+x2y-xy2+y3 =x3+y3
D.(m+2)(3m+6)=3m2+6m+12 a=-4,b=16,c=-15;
∴其面积为:m(m+x)=m2+mx (2) 由题意知:第二幅邮票的宽是〔m+x〕厘米,那么长 是m+3x厘米 。 ∴〔m+x〕(m+3x)-(m2+mx) =3mx+3x2
(m+b)·〔n+a〕=mn+ma+bn+ba
多项式与多项式相乘,先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加。
运用法那么时注意:
拓展研学:
例一计算 〔1〕(3x+1) (x+2)
解:原式=3x·x+3x·2+1·x+1+1×2 =3x2+6x+x+2 =3x2+7x+2
〔2〕(x-8y) (x-y)
解:原式=x·x+x·(-y)+(-8y)·x+(-8y)·(-y) =x2-xy-8xy+8y2 =x2-9xy+8y2
〔3〕(x+y) (x2-xy+y2) 解:原式(x=3x+·xx22+x-·2(-)xy)+x·y2+y·x2+y·(-xy)+y·y2
=x3-x2y+xy2+x2y-xy2+y3 =x3+y3
D.(m+2)(3m+6)=3m2+6m+12 a=-4,b=16,c=-15;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习:
(1) (2x+1)(x+3) ;
(2) (m+n)(a+b+c)
练习:
(1) (2a+b)2; (2) (x+y)(2x–y)
恭喜你,加10分!
需要注意的几个问题
1、漏乘 2、符号问 3 、 最题后 结 果 应 化 成 最 简 形 式 。
祝大家马到成功!
感谢您的阅读! 为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载!
346
单项式与多项式相乘的法则:
2: 单项式与多项式相乘,就是用单项式去乘 多项式的每一项 再把所得的积相加
xa b xa xb
问题 & 探索
(a b) X a X b X
(a b) (m n) a (m n) b (m n)
am an bm bn
2
1
1
2
3
汇侨中学初二备课组
授课班级:初二(4) 班 授课人: 陈鑫
让我们一起来回顾:
1、单项式与单项式相乘的法则?
单项式与单项式相乘,只要将它们 的系数、相同字母的幂分别相乘,其
①余2字x2母·(连-4x同y)它= 的-8指x3y数 不 变 , 作 为 积 的 ②因(式-2.x2)·(-3xy2)=6x3y2 ③(-9a2 b3)·(8ab2) = -72a3 b5 ④12×( 2 - 3 + 5 )= 9
a
b
b
a
a
+ b
a
m
n
m+n
图5-5
图5-6
由图5-6,可得总面积为 (a+b)(m+n);
(1)
由图5-7,可得总面积为 am+an+bm+bn.
(2)
bm
bn
am
an
m
n
图5-7
问题 & 探索
= (a+b)(m+n) am + an + bm + bn
a+b
am an
bm
bn
m
n
m+n
am
+
an
(2) (3x-1)(x+3)
解:原式 x a x 2b y a y 2b
ax 2bx ay 2by
解:原式 3x2 9x x 3 3x2 8x 3
注意:多项式与多项式相乘的结果中,要把同类 项合并.
7个金蛋你可以任选一个,记得给我留一个, 就把7号蛋留给我吧。敲击金蛋,如果出现 “恭喜你”的字样,你将为小组获得加分;否 则你将战胜考验你的数学问题才能加分哟.
+
bm
ห้องสมุดไป่ตู้
+ bn
由此,我们可以得到什么结论呢?
(a+b)(m+n) =am+an+bm+bn
多项式与多项式相乘的法则: 多项式与多项式相乘,先用一个多项式的每 一项乘另一个多项式的每一项,再把所得的 积相加.
即(a+b)(m+n)= am+an +bm+bn
例1 计算:
(1)(x+y)(a+2b);
4
(a+b)(m+n)=am+an+bm+bn
34
为了扩大街心花园的面积,把原来长为m米,宽为a米 的长方形绿地增长了n米,加宽了b米.你能用几种方法 求出扩大后绿地的面积?
b
a
m
n
图5-5
我们怎样来表示扩 大后绿地的总面积 呢?
参考 图5-6 与 图5-7 试试看,你可以有哪 几种方法来表示此绿地的总面积?
35
12
46
牛刀 & 小试 ☞
1、计算:
(1)(3x+1)(x−2); =3x·x+3x·(-2)+1·x+1× (−2) =3x2-6x+x−2 =3x2-5x−2 (2)(x-8y)(x−y) ;
=x2-xy−8xy+8y2 =x2−9xy+8y2
计算:
(1) (x+2y)(5a+3b) ; 解:(x+2y)(5a+3b)
=x ·5a +x·3b+2y·5a+2y ·3b =5ax +3bx+10ay +6by (2) (2x–3)(x+4) ; 解: (2x–3)(x+4) =2x2+8x–3x –12
=2x2+5x –12
深入探索----试一试
1、计算
(2x 3)( x 2) (x 1)2
2、应用举例: 小东找来一张挂历画包数学课本,已知课本长a厘米, 宽b厘米,厚c厘米,小东想将课本封面与封底的每 一边都包进去m厘米。问小东应在挂历画上裁下一 块多大面积的长方形?