单项式乘以多项式_课件
合集下载
单项式乘单项式和单项式乘多项式 (优质课)获奖课件

班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
二、探究新知 问题:光的速度约为3×105千米/秒,太阳光照射到地球上需 要的时间大约是5×102秒,你知道地球与太阳的距离约是多少 千米? 注:从实际的问题导入,让学生自己动手试一试,主动探索, 在自己的实践中获得知识,从而构建新的知识体系. 地 球 与 太 阳 的 距 离 约 为 (3×105)×(5×102) 千 米 . 问 题 是 (3×105)×(5×102)等于多少呢?学生提出运用乘法交换律和结 合律可以解决: (3×105)×(5×102)=(3×5)×(105×102)=15×107(为什么?) 在此处再问学生更加规范的书写是什么?应该是地球与太阳 的距离约为1.5×108千米.
一、复习导入 1.知识回顾: 回忆幂的运算性质: am·an=am+n(m,n都是正整数), 即同底数幂相乘,底数不变,指数相加. (am)n=amn(m,n都是正整数), 即幂的乘方,底数不变,指数相乘. (ab)n=anbn(n为整数), 即积的乘方,等于把积的每一个因式分别乘方,再把所得的 幂相乘. 口答: 幂的三个运算性质是学习单项式与单项式、单项式与多项式 乘法的基础,所以先组织学生对上述的内容作复习.
11.2 与三角形有关的角
单项式与多项式相乘完整版课件PPT

三.选择
下列计算错误的是( D ) (A)5x(2x2-y)=10x3-5xy (B)-3xa+b •4xa-b=-12x2a (C)2a2b•4ab2=8a3b3 (D)(-xn-1y2)•(-xym)2=xnym+2
=(-xn-1y2)•(x2y2m=) -xn+1y2m+2
四:解方程
7x-(x–3)x–3x(2–x)=(2x+1)x+6
2.4(a-
4a-4b+4
b3+.13)x=(_2_x_-_y_2_)_=____6__x__2__-__3__x__y__2_____________
4.-3x(2x-5y+6z)=__-_6_x_2_+1_5_x_y_-_1_8_xz____ 5.(-2a2)2(-a-2b+c)=-_4_a_5_-_8_a4_b_+_4_a_4_c__
3.不要出现漏乘现象,运算要有顺序。
注:
单项式与多项式相乘时,分两个阶段: ①按乘法分配律把乘积写成单项式 与单项式乘积的代数和的形式; ②单项式的乘法运算。
作业:
一、教科书P104习题14.1第3(4)、4题。
二、已知 a 2 ,b 3 求
3ab(a2b ab2 ab) ab2 (2a2 3ab 2a) 的值。
想一想
如何进行单项式的乘法运算? 单项式的系数? 相同字母的幂? 只在一个单项式里含有的字母?
(系数×系数)×(同字母幂相乘)×单独的幂
计算
( 2a2b3c) (-3ab) = -6a3b4c
问题: 怎样算简便?
6(1 1 1) 236
=6×
1 2
+6×
人教版(八年级上册)数学单项式与单项式、多项式相乘课件

如果把它看成一个大长方形,那么它的面积可表示为 _p_(_a_+_b_+_c_)_.
p(a+b+c)
pa+pb+pc
根据乘法的分配律
p (a + b+ c)
pa + pb + pc
p(a+b+c)
pa+pb+pc
知识要点
单项式乘以多项式的法则 单项式与多项式相乘,就是用单项式乘多项式的每一项,
再把所得的积相加.
复习引入
1.幂的运算性质有哪几条?
同底数幂的乘法法则:am·an=am+n ( m、n都是正整数). 幂的乘方法则:(am)n=amn ( m、n都是正整数).
积的乘方法则:(ab)n=anbn ( m、n都是正整数).
ห้องสมุดไป่ตู้
2.计算:(1)x2 ·x3 ·x4= x9
; (2)(x3)6= x18
;
(3)(-2a4b2)3= -8a12b6 ; (4) (a2)3 ·a4= a10
3
2
解:原式 2 ab2 1 ab (2ab) 1 ab
32
2
1 a2b3 a2b2. 3
单项式与多项式相乘
转化 乘法分配律
单项式与单项式相乘
当堂练习
1.单项式与多项式相乘,就是用单项式去乘多项式的__每__一__项__, 再把所得的积__相__加____. 2.4(a-b+1)=________4_a_-_4_b_+_4_____.
3.3x(2x-y2)=________6_x_2_-_3_x_y2_____. 4.(2x-5y+6z)(-3x) =__-_6_x_2+__1_5_x_y-_1_8_x_z_____. 5.(-2a2)2(-a-2b+c)=___-_4_a_5-_8_a_4_b_+_4_a_4c_____.
单项式乘以多项式课件

运算示例
$(a+b) times x = ax + bx$
注意事项
乘法交换律在单项式乘以多项式的运算中可以简 化计算,但需要注意符号的变化。
03
单项式乘以多项式的实例 解析
实例一:单项式与二项式相乘
01
02
总结词:简单易懂
详细描述:通过具体的单项式与二项式相乘的例子,展示乘法的基本 规则和运算步骤,帮助学生理解单项式乘以多项式的计算方法。
单项式乘以多项式课件
目录
• 单项式与多项式的定义 • 单项式乘以多项式的运算规则 • 单项式乘以多项式的实例解析
目录
• 单项式乘以多项式的运算技巧 • 单项式乘以多项式的应用
01
单项式与多项式的定义
单项式的定义
总结词
单项式是数学中基本的代数表达式之一,由数字、变量和它们的幂次通过乘法运算连接 而成。
在物理中的应用
力学分析
在力学分析中,单项式乘 以多项式可以用于计算物 体的运动轨迹、速度和加 速度等物理量。
电磁学
在电磁学中,单项式乘以 多项式可以用于计算电场 、磁场等物理量的分布和 变化规律。
热力学
在热力学中,单项式乘以 多项式可以用于计算温度 、压力等物理量的变化规 律。
在日常生活中的应用
详细描述
单项式和多项式通常用数学符号表示,其中幂次表示变量的次数。单项式的表示方法为数字系数与变 量及其幂次的乘积,如 $ax^n$ 表示 $a$ 与 $x$ 的 $n$ 次幂的乘积。多项式的表示方法为若干个单 项式的和,如 $ax^n + bx^m + c$ 表示一个多项式,其中 $a$、$b$ 和 $c$ 是系数,$x^n$、 $x^m$ 是幂次。
$(a+b) times x = ax + bx$
注意事项
乘法交换律在单项式乘以多项式的运算中可以简 化计算,但需要注意符号的变化。
03
单项式乘以多项式的实例 解析
实例一:单项式与二项式相乘
01
02
总结词:简单易懂
详细描述:通过具体的单项式与二项式相乘的例子,展示乘法的基本 规则和运算步骤,帮助学生理解单项式乘以多项式的计算方法。
单项式乘以多项式课件
目录
• 单项式与多项式的定义 • 单项式乘以多项式的运算规则 • 单项式乘以多项式的实例解析
目录
• 单项式乘以多项式的运算技巧 • 单项式乘以多项式的应用
01
单项式与多项式的定义
单项式的定义
总结词
单项式是数学中基本的代数表达式之一,由数字、变量和它们的幂次通过乘法运算连接 而成。
在物理中的应用
力学分析
在力学分析中,单项式乘 以多项式可以用于计算物 体的运动轨迹、速度和加 速度等物理量。
电磁学
在电磁学中,单项式乘以 多项式可以用于计算电场 、磁场等物理量的分布和 变化规律。
热力学
在热力学中,单项式乘以 多项式可以用于计算温度 、压力等物理量的变化规 律。
在日常生活中的应用
详细描述
单项式和多项式通常用数学符号表示,其中幂次表示变量的次数。单项式的表示方法为数字系数与变 量及其幂次的乘积,如 $ax^n$ 表示 $a$ 与 $x$ 的 $n$ 次幂的乘积。多项式的表示方法为若干个单 项式的和,如 $ax^n + bx^m + c$ 表示一个多项式,其中 $a$、$b$ 和 $c$ 是系数,$x^n$、 $x^m$ 是幂次。
单项式乘以多项式(yong)

解:原式=-2a3b-2a2b2-5a3b+5a2b2
=-2a3b-2a2b2-5a3b+5a2b2 =-7a3b+3a2b2
注意: 1.将-2a2与-5a的“-”看成性质符号 2.单项式与多项式相乘的结果中,应将 同类项合并。
化简求值: yn(yn +9y-12)–3(3yn+1-4yn), 其中y=-3,n=2. 解:yn(yn + 9y-12)–3(3yn+1-4yn)
一.判断
巩固练习
1.m(a+b+c+d)=ma+b+c+d(
×)
(
1 1 3 1 2 2 2. a(a a 2) a a 1 2 2 2
3.(-2x)•(ax+b-3)=-2ax2-2bx-6x(
×)
×)
二.填空
1.单项式与多项式相乘,就是用单项式去乘 多项式的________,再把所得的积________ 每一项 相加
1、同底数幂的乘法:
2、幂的乘方: a
m
n
a a
m
n
a
m n
(m,n 均为正整数)
a
n
mn
(m,n均为正整数)
n
3、积的乘方: ab
a
n
b
(n为正整数)
•单项式与单项式相乘: 把它们的系数、相同字母分
别相乘,对于只在一个单项式 里含有的字母,则连同它的指 数作为积的一个因式
m(a+b+c)=ma+mb+mc
(m、a、b、c都是单项式)
例1 计算:
(1)(-4x)·(2x2+3x-1);
=-2a3b-2a2b2-5a3b+5a2b2 =-7a3b+3a2b2
注意: 1.将-2a2与-5a的“-”看成性质符号 2.单项式与多项式相乘的结果中,应将 同类项合并。
化简求值: yn(yn +9y-12)–3(3yn+1-4yn), 其中y=-3,n=2. 解:yn(yn + 9y-12)–3(3yn+1-4yn)
一.判断
巩固练习
1.m(a+b+c+d)=ma+b+c+d(
×)
(
1 1 3 1 2 2 2. a(a a 2) a a 1 2 2 2
3.(-2x)•(ax+b-3)=-2ax2-2bx-6x(
×)
×)
二.填空
1.单项式与多项式相乘,就是用单项式去乘 多项式的________,再把所得的积________ 每一项 相加
1、同底数幂的乘法:
2、幂的乘方: a
m
n
a a
m
n
a
m n
(m,n 均为正整数)
a
n
mn
(m,n均为正整数)
n
3、积的乘方: ab
a
n
b
(n为正整数)
•单项式与单项式相乘: 把它们的系数、相同字母分
别相乘,对于只在一个单项式 里含有的字母,则连同它的指 数作为积的一个因式
m(a+b+c)=ma+mb+mc
(m、a、b、c都是单项式)
例1 计算:
(1)(-4x)·(2x2+3x-1);
单项式乘以多项式(共29张PPT)

③ -3a
2
a
2
+ 2a -1 = -3a + 6a - 3a
4 3
4 3
2
×
2
-3a -6a +3a
④
-4a 2a - 3a +1 = -8a +12a +1
2 3 2
3 2
×
-8a +12a -4a
巩固练习: 1.计算: (1)3a(5a-2b) (2)(x-3y)·(-6x) 2.化简: x(x-1)+2x(x+1)-3x(2x-5)
2x x 1.
2
的项
2. 乘法对加法的分配律 .
a(b c) ab ac
问题1 三家连锁店以相同的价格m(单位:
元/瓶)销售某种商品,它们在一个月内的销 售量(单位:瓶)分别是a,b,c.你能用不同的 方法计算它们在这个月内销售这种商品的 总收入吗? 法一:先求三家连锁店的总销量,再求总收入, 即总收入(单位:元)为m(a+b+c)------① 法二:先分别求三家连锁店的收入,再求它 们的和,总收入(单位:元)为 ma+mb+mc------②
1、下列各题的计算是否正确,如果错了, 指出错在什么地方,并改正过来。 2 2 2 3 ①
2xy - 3x y 2xy = 4x y
2 2
2
②
3a b 1 - ab c = -3a b ×
3 3
6x y × 2 2 3 2 4x y 6 x y
3 3
3a b-3a b c
1、下列各题的计算是否正确,如果错了, 指出错在什么地方,并改正过来。
当y=-3,n=2时, 原式=(-3)2×2=(-3)4=81
单项式乘以多项式

②单项式的乘法运算。
几点注意:
1.单项式乘多项式的结果仍是多项式, 积的项数与原多项式的项数相同。
2.在单项式乘法运算中要注意系数的符 号。
3.不要出现漏乘现象,运算要有顺序。
(单项式乘法)
(2)(2xy2 5x2 y 7 x3 )(3xy2 )
解:原式=-2xy2 ×-3xy2 + 5x2y×-3xy2 + -7x3 ×-3xy2
=6x2y4 -15x3y3 + 21x4y2
单项式与多项式相乘时,分两个阶段: ①按乘法分配律把乘积写成单项式与单项 式乘积的代数和的形式;
单项式乘以多项式
设长方形长为(a+b+c),宽为m, 则面积为;m(a+b+c)
这个长方形可分割为宽为m,长分别为a、b、c
的三个小长方形,它们的面积之和为ma+mb+mc
∴ m(a+b+c)=ma+mb+mc
m ma
mb
mc
a
b
c
m(a+b+c) = ma+mb+mc
单项式与多项式相乘的 法则:
用单项式分别去乘多项式的 每一项,再把所得的积相加。
用字母表示这一结论
a(b c) ab ac
思路:单×多
转化 分配律
单×单
例 计算: (1)(- 2a) • (2a 2 - 3a + 1)
= (- 2a) • 2a 2 +(- 2a) •( - 3a)+(- 2a) • 1
(乘法分配律)
= - 4a3+6a2 - 2a
几点注意:
1.单项式乘多项式的结果仍是多项式, 积的项数与原多项式的项数相同。
2.在单项式乘法运算中要注意系数的符 号。
3.不要出现漏乘现象,运算要有顺序。
(单项式乘法)
(2)(2xy2 5x2 y 7 x3 )(3xy2 )
解:原式=-2xy2 ×-3xy2 + 5x2y×-3xy2 + -7x3 ×-3xy2
=6x2y4 -15x3y3 + 21x4y2
单项式与多项式相乘时,分两个阶段: ①按乘法分配律把乘积写成单项式与单项 式乘积的代数和的形式;
单项式乘以多项式
设长方形长为(a+b+c),宽为m, 则面积为;m(a+b+c)
这个长方形可分割为宽为m,长分别为a、b、c
的三个小长方形,它们的面积之和为ma+mb+mc
∴ m(a+b+c)=ma+mb+mc
m ma
mb
mc
a
b
c
m(a+b+c) = ma+mb+mc
单项式与多项式相乘的 法则:
用单项式分别去乘多项式的 每一项,再把所得的积相加。
用字母表示这一结论
a(b c) ab ac
思路:单×多
转化 分配律
单×单
例 计算: (1)(- 2a) • (2a 2 - 3a + 1)
= (- 2a) • 2a 2 +(- 2a) •( - 3a)+(- 2a) • 1
(乘法分配律)
= - 4a3+6a2 - 2a
单项式与多项式相乘公开课课件

乘法分配律的运用
乘法分配律是数学中的一个基本定律,它指出一个数乘以 两个数的和等于这个数分别乘以这两个数再求和。在单项 式与多项式相乘时,乘法分配律是非常重要的。
例如,单项式$a^3$与多项式$b + c$相乘时,可以运用 乘法分配律进行计算:$(a^3)(b+c) = a^3b + a^3c$。 这样可以简化计算过程,提高计算效率。
单项式与多项式相乘公开课课件
contents
目录
• 单项式与多项式简介 • 单项式与多项式相乘的法则 • 单项式与多项式相乘的运算实例 • 单项式与多项式相乘的注意事项 • 习题与解答
01
单项式与多项式简介
单项式的定义与性质
定义
单项式是只包含一个项的代数式 ,通常表示为数字、字母的积。
性质
单项式具有加法封闭性、乘法交 换律和结合律等基本性质。
单项式的几何意义
在数轴上,单项式可以表示一个点或一个单位长度。例如,$3x$表示在x轴上, 每移动一个单位长度,坐标增加3。
多项式的几何意义
多项式可以表示一条曲线或曲面。例如,$y = x^2$表示一个开口向上的抛物线 。
02
单项式与多项式相乘的法则
单项式乘以多项式的法则
单项式乘以多项式的运算法则,是将单项式中的每一个因子 与多项式中的每一个项分别相乘,然后将所得的积相加。
多项式的定义与性质
定义
多项式是由有限个单项式通过加法运 算组成的代数式,表示为$P(x) = a_n x^n + a_{n-1} x^{n-1} + cdots + a_1换律 和结合律等基本性质,还具有分配律 和幂的运算法则等特殊性质。
单项式与多项式的几何意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建湖县实验初中
已知:xy2=-6,求-xy(x3y7-3x2y5-y)
建湖县实验初中
提高练习:
1.判断题: (1)单项式乘以单项式,结果一定是单项式 ( ) (2)两个单项式相乘,积的次数是两个单项式次数的积 ( ) (3)单项式与多项式相乘的结果一定是一个多项式,其项数与因式中 的项数相同 ( )
8 x (2 x 5) 7 x (2 x 5)
2
2
2x
2x
3x
3x
16 x 40 x 14 x 35 x
3
2
3
2
3
x 03
75 x .
2
建湖县实验初中
若a=2,b=5,m=3,n=4,分别求下 列各式的值: (1) (a+b)(m+n) (2) a(m+n)+b(m+n) (3) am+an+bm+bn 从上面的计算中你发现什么?再 找一组看看
单项式与多项式相乘,就是依据乘法分配 律,用单项式乘多项式的每一项,再把所得的 积相加. 例1 计算: ⑴ (-3a) ·(-2a2-3a-2)
解:(-3a) ·(-2a2-3a-2) =6a3+9a2+6a
乘法43;(-3a) ·(-3a)+(-3a) ·(-2)
单项式乘多项式
建湖县实验初中
1、同底数幂的乘法:
a
m
n
a
mn
(m,n 均为正整数)
a
2、幂的乘方:a
m
n
n
mn
a
n
(m,n均为正整数)
n
3、积的乘方: ab
a
b
(n为正整数)
•单项式与单项式相乘: 把它们的系数、相同字母分
别相乘,对于只在一个单项式 里含有的字母,则连同它的指 数作为积的一个因式
建湖县实验初中
b
c
d
a
a
a
建湖县实验初中
b
c
d
a
建湖县实验初中
b
c
d
a
如果把它看成一个大长方形,那么它的边 长为__________,面积可表示为_________. a(b+c+d) b+c+d和a
建湖县实验初中
b
c
d
a
如果把它看成三个小长方形,那么它们的 ab ac ad 面积可分别表示为_____、_____、_____. 如果把它看成一个大长方形,那么它的 a(b+c+d) 面积可表示为_________.
建湖县实验初中
a
b
建湖县实验初中
m
你能从图中 得到这个结 论吗?
n
课时小结:
1、单项式与多项式相乘的实质是利用分配律把单项式 乘以多项式转化为单项式乘法 2.单项式与多项式相乘时,分三个阶段: ①按分配律把乘积写成单项式与单项式乘积的代数和的形式; ②按照单项式的乘法法则运算。 1. 计算时,要注意符号问题,多项式中每一项 ③再把所得的积相加. 都包括它前面的符号,单项式分别与多项式的 四点注意: 每一项相乘时,同号相乘得正,异号相乘得 负。 2.不要出现漏乘现象。 3.运算要有顺序:先乘方,再乘除,最后加 减。 4.对于混合运算,注意最后应合并同类项。
a
建湖县实验初中
快速抢答!
• 1.判断正误(如果不对应如何改正?) ( ) • (1)4a3· 2=8a6 2a
ab ab a (2)
2 3 3 5
b
8x y
7 2
(
(
)
)
(3)
2 x
2
3
2
xy
建湖县实验初中
b
c
d
a
a
a
如果把它看成三个小长方形,那么它们的 面积可分别表示为_____、_____、_____. ab ac ad
多项式
2.解不等式:
2 x x 1 3 x 2 x 2
2
2
2
x x
2
2
1
解:
x
2x 3 x 2x 2
2
x x
2
1
4 x 1
x 1 4
建湖县实验初中
计算:
(1 ) 0 . 5 ab (
2
2 3
ab
2
2 ab );
2 2
( 2 ) x ( x xy y ) y ( x xy y );
建湖县实验初中
小结与回顾
建湖县实验初中
布置作业
课本73页
习题1、 2、3
建湖县实验初中
建湖县实验初中
3a
人民广场
计算: ⑴ ⑵ ⑶ ⑷ 3x(x2-2x-1)-2x2(x-3) -6xy(x2-2xy-y2)+3xy(2x2-4xy+y2) x2-2x[2x2-3(x2-2x-3)] 2a(a2-3a-4)-a(2a2+6a-1)
建湖县实验初中
解方程: ⑴ 2x(x-1)-x(3x+2)=-x(x+2)-12 ⑵x2(3x+5)+5=x(-x2+4x2+5x)+x
4a
住宅用地 商业用地
建湖县实验初中
3a
人民广场
4a
解:长方形的 长为 (3a+2b)+(2ab),宽为4a,这 块地的面积为:
4a[(3a+2b)+(2a-b)] =4a(5a+b) =4a·5a+4a·b =20a2+4ab 答:这块地的面积 为20a2+4ab.
3a+2b
2a-b
住宅用地 商业用地
单项式乘单项式运算法则
建湖县实验初中
计算: ⑴ a (2a-3) ⑵ a2 (1-3a) 3x(x2-2x-1) ⑷ -2x2y(3x2-2x-3) (5)(2x2-3xy+4y2)(-2xy)
⑶
建湖县实验初中
例2:如图:
3a+2b
2a-b
一块长方形 地用来建造 住宅、广场、 商厦,求这 块地的面积.
2
( 3 ) 4 ab [ 2 a b ( ab ab ) 3 b ].
2 2
建湖县实验初中
求图中物体的体积.
解 :V V黄 V红 V蓝
2V 红 V 蓝
2 2x 2x (2x 5)
(3 x 2 x ) (3 x 2 2 x ) ( 2 x 5 )
a(b+c+d)
ab+ac+ad
建湖县实验初中
根据乘法的分配律
a(b+c+d)
ab+ ac+ad
a(b+c+d)
ab+ac+ad
建湖县实验初中
a(b+c+d)
ab+ac+ad
单项式乘多项式的运算法则 单项式与多项式相乘,就是依据乘法分 配律,用单项式乘多项式的每一项,再把所 得的积相加.
建湖县实验初中