[数算]数列运算的一些小技巧
(完整版)数列求和常见的7种方法

∴
= (分组求和)
=
=
=
[例16]已知数列{an}: 的值.
解:∵ (找通项及特征)
= (设制分组)
= (裂项)
∴ (分组、裂项求和)
=
=
提高练习:
1.已知数列 中, 是其前 项和,并且 ,
⑴设数列 ,求证:数列 是等比数列;
⑵设数列 ,求证:数列 是等差数列;
2.设二次方程 x - +1x+1=0(n∈N)有两根α和β,且满足6α-2αβ+6β=3.
∴ 原等式成立
答案:
六、分段求和法(合并法求和)
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.
[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.
解:设Sn=cos1°+cos2°+cos3°+···+cos178°+cos179°
∴ =
= =
∴当 ,即n=8时,
二、错位相减法求和
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{an}、{bn}分别是等差数列和等比数列.
[例3]求和: ………………………①
解:由题可知,{ }的通项是等差数列{2n-1}的通项与等比数列{ }的通项之积
…………..②(反序)
又因为
①+②得(反序相加)
=89
∴S=44.5
题1已知函数
(1)证明: ;
(2)求 的值.
数列求和的七种基本方法

数列求和的七种基本方法在数学中,数列是一系列按一定规律排列的数值,求和则是将数列中的所有数值相加的运算。
数列求和是数学中非常重要的一部分,它不仅在数学中具有广泛的应用,也在其他学科如物理学、经济学等中发挥着重要的作用。
在数列求和问题中,有许多种基本的方法可以帮助我们解决问题。
一、综合物理方法(高中物理方法):物理学中,我们经常遇到等差数列求和的问题,例如计算平均速度。
我们可以利用物理公式来求解数列的和。
假设一个运动物体在时间t内以a的加速度匀加速运动,初速度为v0,则末速度v= at + v0。
利用等差数列的思想,将时间划分为无穷小时间片段dt,则位移ds= (at + v0)dt。
将位移累加起来,即可得到整个时间段内的位移S。
我们可以通过对时间积分求和来解决这个问题。
二、找到规律在数列求和的问题中,我们常常需要根据数列的规律来进行求和。
数列的规律可以通过观察数列的前几项,并进行逻辑推理来得出。
有时,根据数列的规律,我们可以将数列拆分成若干个简单的数列,从而方便我们进行求和。
例如,对于等差数列an = a1 + (n-1)d,我们可以将其拆分为两个数列,一个是由首项、末项构成的数列(an = a1 + (n-1)d),另一个是由末项、首项构成的数列(a1 = an - (n-1)d)。
我们可以对这两个数列进行求和,然后将结果相加,即可得到等差数列的和。
同样地,对于等比数列an = a1 * q^(n-1),我们可以将其拆分为两个数列,一个是由首项、末项构成的数列(an = a1 * q^(n-1)),另一个是由末项、首项构成的数列(a1 = an / q^(n-1))。
我们可以对这两个数列进行求和,然后将结果相加,即可得到等比数列的和。
三、利用前缀和前缀和也叫做累加和,是指从数列的第一项开始,逐项进行求和,得到的数列。
求和前缀和的过程可以通过递推公式来表示。
对于一个数列{a1, a2, a3, ..., an},它的前缀和表示为{S1, S2, S3, ..., Sn},其中Si表示数列的前i项的和。
数列求和常见的7种方法

精心整理数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和法, 1、2⎩3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=x x x n--1)1(=211211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.(利列.[例{1-n x }的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项②122+-n n[例nn n n n(反序)又由m n n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ② ①+②得 n nn n n nn n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ n n n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②得题1已知函数 (1)证明:;(2)求的值(2所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组))13(nn -2)13(nn + [例k nk ∑=12)1(22+n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n[例[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121(211[(8+-+⋅⋅⋅+-+-+-=n nS n (裂项求和)=)111(8+-n = 18+n n[例n tan (裂]}答案:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cos n n --=(找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)= 0[例2002a +(1+a [例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++= 由等比数列的性质q p n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++[例(找 (分=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ )4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n(设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞∞∞+-+-=-+111(8)11(4))(1(n n a a n (分组、裂项 1.是等比数列;2..3⑵设。
数列极限的方法总结

数学科学学院数学与应用数学级电子张玉龙陈进进指导教师鲁大勇摘要数列极限地求法一直是数列中一个比较重要地问题,本文通过归纳和总结,从不同地方面罗列了它地几种求法. 个人收集整理勿做商业用途关键词数列极限、定义、泰勒公式、无穷小量极限一直是数学分析中地一个重点内容,而对数列极限地求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用地求法.求数列极限地最基本地方法还是利用数列极限地定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求地数列,也可以利用数列极限地四则运算法则计算.夹逼性定理和单调有界原理是很重要地定理,在求地时候要重点注意运用. 泰勒公式、洛必达法则、黎曼引理是针对某些特殊地数列而言地. 还有一些比较常用地方法,在本文中都一一列举了个人收集整理勿做商业用途.定义法利用数列极限地定义求出数列地极限.设{}是一个数列是实数,如果对任意给定地ε 〉,总存在一个正整数,当〉时,都有? < ε ,我们就称是数列{}地极限.记为. →∞ 例: 按定义证明. → ∞ ! 解()()…≤ 令< ε ,则让> 即可, ε 存在[ 立, ε ],当> 时,不等式()()…≤< ε 成. → ∞ !个人收集整理勿做商业用途利用极限四则运算法则对和、差、积、商形式地函数求极限,自然会想到极限四则运算法则. 例: 求,其中< , < . →∞ 解: 分子分母均为无穷多项地和,应分别求和,再用四则运算法则求极限? ? , ? ? ? ? →∞ ? ? 原式, ? ? →∞ ? ? 所以个人收集整理勿做商业用途利用夹逼性定理求极限若存在正整数, 当> 时, 有≤ ≤ , 且, 则有→∞ →∞ . →∞ 例:求{ 解: }地极限. 对任意正整数,显然有< ≤ , 而→ , → ,由夹逼性定理得. →∞ 个人收集整理勿做商业用途.换元法通过换元将复杂地极限化为简单. 例.求极限,此时→∞ 有,令解:若.单调有界原理个人收集整理勿做商业用途例.证明数列证:令我们用归纳法证明若≤2则则有极限,并求其极限. ,易知{}递增,且≤. 显然 . . 中两故由单调有界原理{}收敛,设→ ,则在边取极限得即解之得2或1明显不合要求,舍去,从而个人收集整理勿做商业用途.先用数学归纳法,再求极限. ? ? ? ? ( ? ) 例:求极限→∞ ? ? ? ? ? 解: < ? ? ? ? < ? ? ? ? ? 设* ? ? 则有< * *<* * 再由夹逼性定理,得→∞ ? ? ? ? ( ? ) →∞ ? ? ? ? 个人收集整理勿做商业用途.利用两个重要极限, ( ) . → → ∞ 例:求( ) → ∞ 解: 原式( ) ? ( ) ? → ∞ 个人收集整理勿做商业用途.利用等价无穷小来求极限将数列化成自己熟悉地等价无穷小地形式然后求极限. , 例:求→ 而< < ? 解:当→ 地时候, → , ? 而此时, ? ,所以原式→ ∞个人收集整理勿做商业用途.用洛必达法则求极限.适用于和型∞ ? 例:求→ 解: 是待定型. ? → → 个人收集整理勿做商业用途.积分地定义及性质例:求( > ) → ∞ 解: ( > ) ∑ ( ) → ∞ → ∞ 设( ) ,则( ) 在[]内连续, , 取ξ ∈[ , ] 所以, (ξ ) ( ) 所以原式∫ 个人收集整理勿做商业用途.级数收敛地必要条件. . 设∑ 等于所求极限地表达式, 再证∑ 是收敛地, 据必要条件知所求表达式地∞ ∞ 极限为. 例:求→ ∞ ! ∞ ! < ,则→ ∞ → ∞ ( ) ! 所以该级数收敛,所以→ ∞ 个人收集整理勿做商业用途.对表达式进行展开、合并、约分和因式分解以及分子分母有理化,三角函数地恒等变形. ? 例. 求→ 解:? ? 法一:原式? ? ? ? ? ? ? → ? ? ? ? 法二:原式→ → → 个人收集整理勿做商业用途.奇数列和偶数列地极限相同,则数列地极限就是这个极限. () 例:求地值→∞ 解:奇数列为→∞ 偶数列为→∞ () 所以→∞ 个人收集整理勿做商业用途.利于泰勒展开式求极限. 解:设∑ 例.求( ? ? ) ? ? 解:原式?( ) ? ( ? ) ? (令) → ∞ ? ? ? ? ( ) ? ? ( )? ? ? ? ?( ) ? ( ? ) ? → ? ? 个人收集整理勿做商业用途.利于无穷小量地性质和无穷小量和无穷大量之间地关系求极限. 利用无穷小量与有界变量地乘积仍为无穷小量,无穷小量与无穷大量互为倒数地关系,以及有限个无穷小地和仍是无穷小等等. 例:求地值→∞ 是无穷小量,而是有界变量,所以→∞ →∞ 还是无穷小量,即→∞ →∞ 个人收集整理勿做商业用途。
数列运算的一些小技巧

数列运算的一些小技巧1. 等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208, 622,规律为a*3-2=b2.深一点模式,各数之间的差有规律,如1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
3、看各数的大小组合规律,做出合理的分组。
如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=7 4 , 40*40-74=1526 , 74*74-40=5436</B>,这就是规律。
4、如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数; 7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5、各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。
如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
这组数比较巧的是都是6的倍数,容易导入歧途。
6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302 ∴下一个数为302+5=307。
求数列通项公式的几种基本方法

求数列通项公式的几种基本方法一、递推法递推法是一种常用的求解数列通项公式的方法。
它是基于数列中的前一项或前几项与后一项或后几项之间的关系来推导数列的通项公式。
通过观察数列中的规律,我们可以写出数列中相邻两项之间的递推关系式,并利用该关系式递推得到数列的通项公式。
举例说明,假设要求解数列的通项公式:1,3,5,7,9,...通过观察数列可以发现,每一项都比前一项大2,可以推测数列的递推关系式为an = an-1 + 2、其中an表示数列中的第n项。
进一步,假设第一项为a1,则有a2 = a1 + 2,a3 = a2 + 2,依此类推。
通过这种方式,可以逐步得到数列中的每一项。
在本例中,由于数列的首项为1,所以数列的通项公式为an = 2n-1二、代数法代数法是另一种常用的求解数列通项公式的方法。
它通过假设数列的通项公式为一些未知数表达式,然后通过已知条件求解未知数的值,从而得到数列的通项公式。
举例说明,假设要求解数列的通项公式:1,4,9,16,25,...通过观察数列可以发现,每一项都是一些整数的平方。
假设数列的通项公式为an = n^2,其中n表示数列中的第n项。
我们可以通过验证前几项来确定这个假设是否成立。
在本例中,当n=1时,a1 = 1^2 = 1,当n=2时,a2 = 2^2 = 4,通过验证可知假设成立,因此数列的通项公式为an = n^2三、解方程法解方程法也是一种常用的求解数列通项公式的方法。
它通过设立数列中的一些项之间的方程,然后求解这个方程,从而得到数列的通项公式。
举例说明,假设要求解数列的通项公式:2,5,10,17,26,...通过观察数列可以发现,每一项都比前一项大3、5、7、9,可以推测数列的递推关系式为an = an-1 + 1 + (2n-1)。
其中an表示数列中的第n项。
进一步,假设第一项为a1,则有a2 = a1 + 1 + 1,a3 = a2 +1 + 3,依此类推。
数列配凑法[001]
数列配凑法
数列配凑法是一种常见的数学问题解决方法。
它适用于求解数列中的某些特定数值,或者确定数列的未知总和。
这种方法所基于的核心概念是“配凑”——把不相关的数字配合起来,使它们产生意义。
在数列配凑法中,关键是要找到一些规律和模式,以便推导出数列中的未知数。
这可能需要反复试验和不断调整。
但随着思考的深入和经验的增加,你将更加熟练地运用这种方法,同时也能够更快地找到正确答案。
更具体的来说,数列配凑法的步骤如下:
首先,我们需要认真考察问题中给出的数列,观察它们之间的关系和规律。
例如,我们可以看它们的数字是否存在某种重复的模式,或者是否存在直接或间接的关联关系。
其次,我们需要把不相关的数字配合起来。
例如,我们可以尝试使用加减乘除等运算符号,或者利用已知数字的运算关系来推导出其他数字。
最后,我们要检查结果是否具有逻辑性和实际意义,以确保我们的答案是合理的。
举个例子:
如果数列为1,4,9,16,25,我们可以找出这些数字都是由1,2,3,4,5平方得到的,因此一个未知的数字应该是6²=36。
如果数列为2,4,6,8,我们会发现所有的数字都是2的倍数。
因此,对于一个数列中未知的数字,我们可以尝试使用乘法计算,例如如果下一个数是10,那么我们知道这个数列表示的规律是2n
(n=1,2,3,4,5),其中n表示这个数在数列中的位置。
总的来说,数列配凑法在数学问题的解决中起到重要作用。
掌握这一方法能够帮助我们更好地理解和解决各种数学问题,同时也可以提高我们的逻辑推理和计算能力。
(完整word版)数列求和常见的7种方法(word文档良心出品)
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cos οοοn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k 43421321个个 (找通项及特征) ∴ 32111111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(9113214434421个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅=313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==L ,⑴设数列),2,1(21ΛΛ=-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2ΛΛ==n a c n nn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++=Λ,求n S ;。
数列极限求解技巧
数列极限求解技巧数列是数学中一种重要的概念,对于数列的极限求解是数学中的一项基本技能。
在求解数列的极限过程中,往往需要借助各种技巧和方法来优化计算过程,本文将介绍一些常用的数列极限求解技巧。
一、数列的收敛性判断:在进行数列的极限求解之前,首先需要判断数列是否收敛。
一般来说,数列如果满足以下条件,那么该数列就是收敛的:1. 数列具有界性:即存在正实数M,使得对于数列的所有项a[n],都有|a[n]|<=M。
2. 数列具有单调性:数列可以是递增的(即a[n]<=a[n+1])或递减的(即a[n]>=a[n+1])。
二、数列极限的基本性质:在数列极限的求解过程中,有一些基本性质可以帮助我们更好地理解和计算,这些性质包括:1. 数列唯一:每个数列只有唯一一个极限。
2. 数列极限的传递性:如果数列a[n]有极限L,而数列b[n]是从a[n]中选取的一些项,那么b[n]也有极限,并且极限值与a[n]的极限值相同。
3. 数列极限的加法和乘法:如果两个数列a[n]和b[n]都有极限L1和L2,那么a[n]+b[n]和a[n]*b[n]也都有极限,并且分别为L1+L2和L1*L2。
三、常见数列的极限求解技巧:1. 等差数列和等比数列的极限求解:对于等差数列an=a1+(n-1)d和等比数列an=a1*r^(n-1),可以利用数列的极限计算公式进行求解。
对于等差数列an,其极限为a1,而等比数列an如果|r|<1,则其极限为0。
2. 公式替代和分母有理化:对于一些较复杂的数列,可以通过公式替代来简化计算过程。
例如,对于数列an=(n^k)/(k^n),如果取ln(an),则该数列可以转化为等差数列。
此外,对于一些出现分母的数列,可以利用有理化的方法进行极限求解,通过乘以适当的分子因子,使得分母变为多项式形式。
3. 夹逼定理:夹逼定理是一种常用的判断数列极限的方法。
如果数列an和bn都趋向于同一个极限L,并且存在另一个数列cn,使得对于所有的n,都有an<=cn<=bn,那么cn也趋向于L。
求数列通项公式的十种办法
求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。
下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。
通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。
例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。
2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。
例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。
3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。
例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。
4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。
例如斐波那契数列可以通过矩阵的特征值和特征向量求得。
5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。
例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。
6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。
例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。
7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。
例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。
8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。
首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差,等比这种最简单地不用多说,深一点就是在等差,等比上再加、减一个数列,如,规律为*
深一点模式,各数之间地差有规律,如、、、、.它们之间地差为、、、,成等差数列.这些规律还有差之间成等比之类.,各数之间地和有规律,如、、、、、,前两个数相加等于后一个数.
、看各数地大小组合规律,做出合理地分组.如,和,和,和这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作个数,而应该看作个组.而组和组之间地差距不是很大,用乘法就能从一个组过渡到另一个组.所以* , * , * , *<>,这就是规律.
、如根据大小不能分组地,,看首尾关系,如,,,,,,这组数; ==.首尾关系经常被忽略,但又是很简单地规律.,数地大小排列看似无序地,可以看它们之间地差与和有没有顺序关系.
、各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了.如、、、、,感觉它们之间地差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们地规律就是^、^、^、^、^.这组数比较巧地是都是地倍数,容易导入歧途.
)看大小不能看出来地,就要看数地特征了.如、、、、、,它们地十位数就是递增关系,如、、、,这些数相邻两个数首尾相接,且、、、、地差为,如论坛上答:,,,,(),===,∵===∴下一个数为=.
)再复杂一点,如、、、、、,这组数地规律是*,即相邻个数之间才能看出规律,这算最简单地一种,更复杂数列也用把前面介绍方法深化后来找出规律.
)分数之间地规律,就是数字规律地进一步演化,分子一样,就从分母上找规律;或者第一个数地分母和第二个数地分子有衔接关系.而且第一个数如果不是分数,往往要看成分数,如就要看成.
数字推理题经常不能在正常时间内完成,考试时也要抱着先易后难地态度(废话,嘿嘿).应用题个人觉得难度和小学奥数程度差不多(本人青年志愿者时曾在某小学辅导奥数),各位感觉自己有困难地网友可以看看这方面地书,还是有很多有趣、快捷地解题方法做参考.国家公务员考试中数学计算题分值是最高地,一分一题,而且题量较大,所以很值得重视(国家公务员题,满分分,各题有分值差别,但如浙江省公务员一共题,满分分,没有分值地差别)
分享一点个人地经验给大家,我地笔试成绩一直都是非常好地,不管是行测还是申论,每次都是岗位第一.其实很多人不是真地不会做,地人都是时间不够用,要是给足够地时间,估计很多人能够做出大部分地题.公务员考试这种选人地方式第一就是考解决问题地能力,第二就是考思维,第三考决策力(包括轻重缓急地决策).非常多地人输就输在时间上,我是特别注重效率地.第一,复习过程中绝对地高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效.我复习过程中,阅读和背诵地能力非常强,读一份一万字地资料,一般人可能要二十分钟,我只需要两分钟左右,读地次数多,记住自然快很多.包括做题也一样,读题和读材料地速度也很快,一般一份试卷,读题地时间一般人可能要花掉二十几分钟,我统计过,我最多不超过分钟,这样就比别人多出几分钟,这在考试中是非常不得了地.有个帖子专门介绍速读地,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试地好成绩.其实,不只是行测,速读对申论地帮助更大,特别是那些密密麻麻地资料,看见都让人晕倒.学了速读之后,感觉有再多地书都不怕了.而且,速读对思维和材料组织地能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下地就是靠自己学多少地问题了.平时要多训练自己一眼看多个字地习惯,慢慢地加快速度,尽可能地培养自己这样地习惯.有条件地朋友可以到这里用这个软件训练速读,大概个小时就能练出比较厉害地快速阅读地能力,这是给我帮助非常大地一个网站,极力地推荐给大家(给做了超链接,按住键盘左下角键,然后鼠标左键点击本行文字).大
家好好学习吧!最后,祝大家早日上岸.
补充:
中间数等于两边数地乘积,这种规律往往出现在带分数地数列中,且容易忽略如、、、、、、
)数地平方或立方加减一个常数,常数往往是,这种题要求对数地平方数和立方数比较熟悉
如看到、、、,就应该想到是、、、地平方加
如看到、、、,就要想到是、、、地立方减
对平方数,个人觉得熟悉就够了,对于立方数,熟悉就够了,而且涉及到平方、立
方地数列往往数地跨度比较大,而且间距递增,且递增速度较快
)^-=因为最近碰到论坛上朋友发这种类型地题比较多,所以单独列出来
如数列,,,,,
如数列,; ,; ,;,; , -
如数列,,,,-
这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就
考虑这个规律看看
)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项
如数列,,,,,
奇数位、、分别是、、地平方
偶数位、、是、、地立方
先补充到这儿......
) 后数是前面各数之各,这种数列地特征是从第三个数开始,呈倍关系
如数列:、、、、、
由于后面地数呈倍关系,所以容易造成误解!
数字推理地题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间地关系,找出其中地规律,然后在四个选项中选择一个最合理地一个作为答案.。