元计算--国产有限元软件现状
有限元分析系统的发展现状与展望

有限元分析系统的发展现状与展望
一、简介
有限元分析是一种应用于结构分析和设计的计算机化方法,它是利用
变分原理计算工程结构的有限元分析程序。
它是结构设计的一种重要手段,在结构设计中,它可以帮助工程师更好地了解受力状况,更好地优化设计。
在结构分析过程中,有限元分析可以精确地模拟出复杂的结构问题,并有
效地估算出结构的受力性能。
本文将从发展现状和展望两方面对有限元分
析系统进行详细介绍。
二、发展现状
1、算法及程序的发展。
有限元分析的主要发展方向之一就是算法和
程序的发展。
在这方面,目前发展非常迅速,具有显著的改进。
例如,在
有限元分析算法方面,目前已经发展出了各种适用于不同工程问题的算法,如结构本构分析算法、局部应变算法、有限元空间算法等。
在有限元分析
程序方面,目前已经开发出稳定可靠、功能强大的程序,以解决复杂结构
分析问题。
2、计算机硬件的发展。
在近年来,计算机硬件得到了极大的发展,
大大提高了计算速度和计算精度。
在有限元分析中,计算机硬件的发展对
数值解决复杂工程问题具有重要意义,在解决实际工程问题方面带来了重
大改进。
有限元仿真软件在我国企业生产中的应用研究

有限元仿真软件在我国企业生产中的应用研究有限元仿真软件在我国企业生产中的应用研究随着科技的进步和计算机技术的发展,有限元仿真软件逐渐在我国企业生产中得到广泛应用。
有限元仿真软件是一种通过数学模型和计算机模拟的方法来研究和分析物体在受力作用下的应力和变形情况的工具。
它可以帮助企业进行产品设计、优化和改进,提高生产效率和产品质量。
本文将通过介绍有限元仿真软件的基本原理,探讨其在我国企业生产中的应用,以及存在的问题和发展趋势。
有限元仿真软件的基本原理是将复杂的物体分成许多小的有限元单元,通过离散化的方法建立数学模型。
然后,根据物体的材料特性、加载条件和边界条件等参数,利用数值方法求解模型,得到物体在受力作用下的应力和变形情况。
有限元仿真软件的核心算法包括离散化、解方程、求解器和后处理等。
经过多年的发展,有限元仿真软件已经具备了高精度、高效率和高可靠性的特点,广泛应用于航空航天、汽车、电子、能源等领域。
在我国企业生产中,有限元仿真软件主要应用于产品设计和性能分析。
首先,它可以帮助企业进行产品的结构设计。
通过建立物体的几何模型,设定材料属性和加载条件等参数,有限元仿真软件可以帮助设计师评估不同设计方案的强度和刚度等性能指标,指导设计优化。
其次,有限元仿真软件可以用于产品的性能分析。
企业可以根据产品的应力和变形情况,评估产品的可靠性和寿命,提前发现设计缺陷,避免事故发生。
此外,有限元仿真软件还可以用于产品仿真试验的验证,减少实验成本和时间。
通过与实验结果的比对,可以验证数值模型的准确性和可靠性。
然而,在我国企业生产中,有限元仿真软件还存在一些问题。
首先,软件的价格较高,对于中小型企业来说,使用成本较高。
其次,软件的使用门槛较高,需要具备一定的工程背景知识和计算机技术能力。
此外,有限元仿真软件的模型建立和参数设定需要相对准确的材料特性和加载条件等输入。
如果输入数据不准确,会导致计算结果的误差。
因此,企业需要进行准确的测试和实验,提供可靠的参数输入。
有限元分析系统的发展现状与展望

有限元分析系统的发展现状与展望作者:谢小丽来源:《电脑知识与技术》2016年第18期摘要:随着我国科技的飞速发展,人们更是在不断的创建更快速,更简便,规模更大的建筑物以及更加精密的设备。
但创建这些东西的时候,都需要工程师在设计的时候要精确的预测出产品的技术性能,动力强度,流场,磁场等等的技术参数进行分析和计算。
随着以计算机技术为基础不断发展起来的有限元分析方法,不仅逐渐的解决了一些工程计算上的一些复杂的分析计算,而且相关的研究人员更是研究了许多新技术来不断的为我国做出了不可估量的贡献。
关键词:有限元分析;现状;发展局势中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2016)18-0242-011 有限元分析系统的发展现状1)如今,在我们的生活中,从自行车到飞机,所有的设计都离不开有限元的系统分析计算。
随着科技的不断发展,以往的线性理论已经逐渐的不能满足现在的社会发展要求。
比如在建筑行业中,高层建筑的出现,工作人员就必须要考虑结构的大位移等等的几个非线性问题。
航天工程出现的高温部件存在的热应力问题,工作人员也必要考虑到材料的非线性问题。
所以现在我国的发展状况如果只是采用线性理论来解决问题,是远远不够的。
我们只能不断的发展更好的技术来解决现在的困境。
众所周知,非线性的计算的过程是非常复杂的,它一般会涉及许多复杂的数学问题以及一些运用技巧,相关的工作人员也很难在很短的时间掌握要点。
2)随着数值分析系统的不断改进和完善,尤其是计算机的运算速度上表现得尤其突出。
在现在的工程站上,想要求解一个包含10方程的模型时间只需要10分钟,而如果用手工的方式,则需要几周的时间才可以得出结果。
所以,我们在这方面做出的成绩还是比较优秀的。
3)现如今,CAD软件的无缝集成工艺已经成为我国有限元分析的另一个特点,也就是CAD软件的集成使用。
也就是说,在CAD软件造成零件的设计以后,再自动的生成有限元网络,然后进行分析计算。
有限元软件应用范围及发展趋势

有限元软件应用范围及发展趋势学号:姓名:学号:2009年10月有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元是那些集合在一起能够表示实际连续域的离散单元。
有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。
20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。
不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。
对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。
元计算发展与有限元法的发展现状

元计算发展与有限元法的发展现状
元计算科技有限公司是我国鲜有的掌握核心高端数值仿真技术的高科技公司,是中国最大的科学与工程计算平台软件提供商、中国最大的并行科学与工程计算软件提供商。
元计算科技发展有限公司成立于2009年11月,落户在中新天津生态城,在北京、武汉设有子公司。
元计算有限元语言是全球首次发明并且优于当前高级编程语言的智能化模型语言,处于独一无二的位置,它可以在数天甚至数小时内完成通常采用高级语言需要数年才能完成的编程工作。
公司以中国科学院数学与系统科学研究院有限元自动生成核心技术,通过自身不懈的努力与完善,对产品重新架构并设计形成一系列具有高度前瞻性和创造性的产品。
有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。
把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。
关注有限元的理论发展,采用最先进的算法技术,扩充软件的功能,提高软件性能以满足用户不断增长的需求,是CAE 软件开发商的主攻目标,也是其产品持续占有市场,求得生存和发展的根本之道。
有限元的发展历史现状及应用前景

有限元的发展历史现状及应用前景有限元方法是一种数值计算方法,主要用于求解连续介质的力学问题。
它通过将连续介质离散成有限数量的元素,并基于一定的数学方法和力学理论,将问题转化为求解代数方程组的问题。
有限元方法在解决复杂工程问题、优化设计和预测结构性能等方面具有广泛的应用。
有限元方法的历史可以追溯到19世纪末的工程力学中。
当时,许多工程问题的解决都要依赖于解析方法,但对于复杂的几何形状和边界条件来说,解析方法无法有效地求解。
1956年,美国工程师D.R. Courtney提出了有限元方法的一般形式。
此后,有限元方法得到了快速发展,成为计算力学领域的重要工具。
有限元方法的原理是将连续介质离散成有限数量的元素,如三角形单元或四边形单元,并将元素之间的关系用数学公式表达出来。
通过构建系统方程组,根据边界条件,可以求解出未知变量的数值解。
有限元方法通过近似处理和插值方法,能够在不同的几何形状和边界条件下求解力学问题。
有限元方法的应用非常广泛。
在工程领域中,有限元方法在结构力学、热传导、流体力学等方面得到了广泛应用。
在建筑工程中,有限元方法可以用于分析建筑结构的强度和刚度,评估结构的安全性。
在航空航天领域,有限元方法可以用于分析飞机部件的应力分布和疲劳寿命,优化结构设计。
在汽车工业中,有限元方法可用于分析汽车部件的刚度和强度,提高车辆的安全性和性能。
此外,在地震工程、电力工程、化工工程等领域,有限元方法也发挥着重要的作用。
未来,有限元方法的应用前景非常广阔。
随着计算机技术和数值算法的不断发展,有限元方法的计算效率将进一步提高,可以求解更加复杂和大规模的问题。
有限元方法在模拟和解决多物理场耦合问题方面也将得到更多的应用。
例如,结构-流体耦合问题、热-结构耦合问题等。
此外,随着材料科学和生物医学工程的发展,有限元方法还将应用于材料力学、生物力学等领域。
总之,有限元方法作为一种求解力学问题的数值计算方法,在工程领域具有重要的地位和广泛的应用。
(完整版)国内外主要有限元分析软件比较

有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。
它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。
有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司。
常见软件有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。
目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。
软件对比ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。
ABAQUS专注结构分析目前没有流体模块。
MSC是比较老的一款软件目前更新速度比较慢。
ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。
结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析1.在世界范围内的知名度两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。
ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。
ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。
有限元的发展历史现状及应用前景

有限元的发展历史现状及应用前景有限元分析的发展趋势“有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。
有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。
近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:增加产品和工程的可靠性;在产品的设计阶段发现潜在的问题经过分析计算,采用优化设计方案,降低原材料成本缩短产品投向市场的时间模拟试验方案,减少试验次数,从而减少试验经费国际上早在60年代初就开始投入大量的人力和物力开发有限元分析程序,但真正的CAE软件是诞生于70年代初期,而近15年则是CAE软件商品化的发展阶段,CAE开发商为满足市场需求和适应计算机硬、软件技术的迅速发展,在大力推销其软件产品的同时,对软件的功能、性能,用户界面和前、后处理能力,都进行了大幅度的改进与扩充。
这就使得目前市场上知名的CAE软件,在功能、性能、易用性、可靠性以及对运行环境的适应性方面,基本上满足了用户的当前需求,从而帮助用户解决了成千上万个工程实际问题,同时也为科学技术的发展和工程应用做出了不可磨灭的贡献。
目前流行的CAE分析软件主要有NASTRAN、 ADINA 、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。
MSC-NASTRAN软件因为和NASA的特殊关系,在航空航天领域有着很高的地位,它以最早期的主要用于航空航天方面的线性有限元分析系统为基础,兼并了PDA公司的PATRAN,又在以冲击、接触为特长的DYNA3D的基础上组织开发了DYTRAN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元计算---国产有限元软件现状
5.1、不成规模,各自为战
具体表现为用户占有率少,国际几大软件市场占有率达 90%以上,国内软件公司普遍规模小,没有实力对国内行业标准进行规范,形成一个各自为战的
局面。
5.2、功能单一,领域狭窄
国内软件往往针对一个行业或较为单一功能进行深入研究,注重于实用性。
在许多行业领域,国产软件仍然是个盲区,其市场全部为国外软件所占领。
5.3、扩展性差,移植性差
由于软件架构设计的差异,导致了我国绝大部分科学计算软件可扩展性差
甚至不具备可扩展性,在操作系统平面方面,往往也仅依赖于某种平台,因此难以适应广泛的移植行要求。
绝大部分科学计算软件均难以给客户提供一个简单的脚本类的二次开发环境。