航空发动机涡轮叶片

航空发动机涡轮叶片
航空发动机涡轮叶片

摘要

摘要

本论文着重论述了涡轮叶片的故障分析。首先引见了涡轮叶片的一些根本常识;对涡轮叶片的结构特点和工作特点进行了详尽的论述,为进一步分析涡轮叶片故障做铺垫。接着对涡轮叶片的系统故障与故障形式作了阐明,涡轮叶片的故障形式主要分为裂纹故障和折断两大类,通过图表的形式来阐述观点和得出结论;然后罗列出了一些实例(某型发动机和涡轮工作叶片裂纹故障、涡轮工作叶片折断故障)对叶片的故障作了详细剖析。最后通过分析和研究,举出了一些对故障的预防措施和排除故障的方法。

关键词:涡轮叶片论述,涡轮叶片故障及其故障类型,故障现象,故障原因,排除方法

ABSTRACT

ABSTRACT

This paper emphatically discusses the failure analysis of turbine blade.First introduced some basic knowledge of turbine blades;The structure characteristics and working characteristics of turbine blade were described in she wants,for the further analysis of turbine blade failure Then the failure and failure mode of turbine blades;Turbine blade failure form mainly divided into two major categories of crack fault and broken,Through the graph form to illustrate ideas and draw conclusions ;Then lists some examples(WJ5 swine and turbine engine blade crack fault,turbine blade folding section)has made the detailed analysis of the blade.Through the analysis and research,finally give the preventive measures for faults and troubleshooting methods.

Key words: The turbine blades is discussed,turbine blade fault and failure type,The fault phenomenon,fault caus,Elimination method

目录

目录

第1章涡轮叶片及其故障模式 (1)

1.1涡轮叶片的简述 (1)

1.1.1涡轮的工作叶片 (1)

1.1.2导向叶片 (2)

1.2涡轮叶片的故障类型 (3)

1.2.1涡轮叶片常见故障 (3)

第2章某型发动机以及涡轮工作叶片折断故障 (5)

2.1故障现象 (5)

2.2故障原因分析 (5)

2.2.1发动机分解检查 (5)

2.2.2理化分析 (6)

2.2.3台架动应力测试 (8)

2.2.4结构应力计算分析 (8)

2.3故障分析结论 (9)

2.4防止涡轮叶片断裂的措施 (9)

2.4.1发动机设计制造方面防止涡轮叶片折断的措施 (10)

2.4.2飞行使用中防止涡轮叶片断裂的措施 (10)

第3章涡轮工作叶片裂纹故障 (13)

3.1故障现象 (13)

3.2故障原因分析 (13)

3.2.1叶片叶尖裂纹状态 (14)

ABSTRACT

3.2.2裂纹形成及发展特征 (17)

3.3故障分析结论 (20)

3.4叶片纵向裂纹故障的修理方法 (20)

3.5排故措施与效果 (26)

第4章结束语 (28)

参考文献 (29)

谢辞 (30)

附录 (31)

外文文献 (33)

第1章涡轮叶片及其故障模式

第1章涡轮叶片及其故障模式

1.1涡轮叶片的简述

一般将转子叶片称作工作叶片,将静子叶片称作导向叶片。导向叶片位于工作叶片前方,在燃烧室中爆发的高温高压燃气流经导向器叶片时会被整流且在收敛管道中将局部压力能转换为动能,而后加速,最终产生一个角度而更加有效地撞击下一列转子叶片。转子叶片转动带动压气机部件工作,提供压气机进一步对气体做功的能量。

1.1.1涡轮的工作叶片

叶身与榫头属于工作叶片的两大部分。

(1)工作叶片的叶身

气动力较大是由于涡轮级中的转换能量较大,即折转较大,气流速度较大,故涡轮叶片叶型剖面曲率大,叶身厚,并且沿着叶高的截面变化也相对明显。在

电子科技大学成都学院本科毕业设计论文

叶尖部分(包括叶身顶端与上部)常常有一些特殊构造,如叶顶戴冠能提高刚性并建立阻尼,起减振作用,叶片叶尖有“切角”来达到修频效果等。

(2)榫头

涡轮工作叶片的榫头一般都是枞形的。因为这种榫头具有材料利用率高、重量轻、强度高、对热应力不敏感等优点,更适合于高温高负荷的工作条件。但它的缺点是:对加工精度要求高,成本高,榫槽内热应力大。

为了改善应力分布,在叶身和榫头之间设一段伸根,伸根上有冷却空气的进口。

由于涡轮工作温度高,所以材料选用耐高温的镍基合金,重量比较重。由于同样的原因,在涡轮叶片还要采取冷却措施,特别是第一级高压涡轮叶片通常是中空的,叶身内部是迷宫式的冷却空气通道,采用对流、气膜、冲击等冷却技术降低工作叶片温度。

1.1.2导向叶片

涡轮部件中温度最高和承受热冲击最猛烈的零件当属导向叶片,它对材料的要求为:

(1)在高温下有高的抗氧化和抗热腐蚀的能力,由于它工作温度很高,这一

第1章涡轮叶片及其故障模式

要求尤为突出。

(2)具有良好的抗热疲劳与抗热冲击的性能,以及足够的耐热强度。

(3)具有良好的铸造工艺性,特别是铸造的流动性能好。

目前,为了进一步提高涡轮转子与导向叶片的高温能力,发展涂层技术已成为重要举措之一,它既能防止基本的氧化腐蚀,又能很好的隔热。

1.2涡轮叶片的故障类型

1.2.1涡轮叶片常见故障

叶片的故障和故障类型因工作环境的不同而有所不同,常见的故障有:裂纹断裂,强度不足和高低疲劳损伤,相对前三种故障,高低疲劳损伤发生得最多。

(1)强度不足及其故障模式

叶片的强度不足故障是指叶片工作时某一部位或断面的应力超过材料的断裂应力而造成损伤。这种故障大部分是由于叶片设计时裕度不够,受叶片截面内部留有残缺隐患或瞬态冲击载荷所造成。比如工艺缺陷,叶片材质不好和环境影响等因素。强度不足的故障模式有:挠曲,形变,裂纹以及断裂等等。

(2)高周期疲劳损伤及其故障模式

叶片高周疲劳损伤即通常说的高循环应力疲劳损伤,其疲劳一方面取决于叶片的疲劳应力水平,叶片的应力循环次数。另一方面取决于叶片振动应力水平的高低,应力越高,循环次数越低。

叶片的高周疲劳断裂部位常位于叶片的最大应力截面,叶片的最大应力截面和振型相关。对于一阶弯曲振动,最大应力截面沿着叶尖向上移,其断口轨迹一般为一条直线。对于复合振型和扭曲振型,其最大应力截面亦因振型不同而不同。对于高阶振型,最大应力截面亦随阶次的增高沿着叶尖向上移,其断口轨迹是先平后翘。故研究叶片的断裂部位与断口轨迹,均能够判断叶片属于哪种振型的振动故障。叶片的高周疲劳大部分属于共振疲劳损伤,其排除方法通常是避开共振,即一是改变叶片的固有频率;二是改变激振频率。

高周疲劳故障模式一般表现为裂纹和断裂。

电子科技大学成都学院本科毕业设计论文

(3)低周疲劳损伤及故障模式

叶片低周疲劳损伤又称作大应变疲劳损伤。因应力水平较高,其损伤的疲劳循环次数较低,通常循环次数N<103。低周疲劳损伤大都由于叶片颤振现象或叶片气弹失稳现象所造成,因此也称作颤振故障,它主要在特定条件下由叶片弹性耦合与气动力特性所确定。

叶片低周疲劳损伤的断口特征通常也有三个区域,裂纹的形成区和扩展区交集在一块,疲劳弧线较粗糙,疲劳条带间距较大,表面粗糙。这与高周疲劳断口有显著的不同。

低周疲劳故障模式一般也表现为裂纹和断裂。

总而言之,叶片振动故障在航空发动机中被归类为具有极大危险程度且多发性的故障,其发作机理有时是较复杂的,排故方法亦是多样化的,是从事于发动机研究、设计、生产和维护者们必须注意的问题。

第2章 WJ5甲型发动机以及涡轮工作叶片折断故障

第2章 WJ5甲型发动机以及涡轮工作叶片折断故障

2.1故障现象

1991年5月30日,东方航空一架某型号飞机从厦门返回南昌。飞机滑入跑道请求起飞,这时右发转速102﹪,排气温度430-450℃,发动机参数无异常,收到起飞命令后,推油门过程中猛听一声闷响,右发转速急速下降,当即停车。

1991年11月24日,太原航空一架某型号发动机于太原空域油门由12°向22°推进时发出“咚”闷响,扭矩压力减为0,振动极其大,驾驶人员马上将油门由22°推向30°,扭矩压力恒定,温度屑信号灯变亮。立即使用人工顺桨停车,单发成功着陆。

1991年12月10日,吉林局某型号飞机在合肥正准备起飞。机械师将油门推到20°,这时右发的T4温度为260°,振动值0.6g,发动机的工作参数无异常。随即在把油门推到26°的一瞬间,右发突然发出“砰”的一声响,紧接着飞机振动剧烈。机组火速取消螺旋桨限动,关掉停车电门。这时排气温度640℃,飞机单发滑回停机坪。

1992年1月17日,在南京机场起飞滑行过程中的东方航空某型号飞机,左发某型号发动机忽然猛烈颤动,当即停车。

故障出现后,为确保飞机和人员安全,在没有查清故障原因以及落实排故措施的情形下,该型号飞机全部停飞。

2.2故障原因分析

2.2.1发动机分解检查

以上四台故障发动机在返会大修厂解剖检查时发现,某型号一级发动机涡轮工作叶片统统断开,其余三台各有1片一级涡轮工作叶片断开(见图2-1),四台发动机的第二和第三级涡轮工作叶片、各级导向叶片和他关联零件全都受到不同

电子科技大学成都学院本科毕业设计论文

程度地损伤。从故障现象大致可以断定四台发动机故障全是由一级涡轮工作叶片这一段造成的。

图2-1折断叶片

2.2.2理化分析

(1)断口分析

为了确定首断件,排除受害零件,对故障发动机所有断裂件展开断口分析。

经分析确认,四台发动机中各有1片一级涡轮工作叶片是疲劳断裂,剩下断裂件都是瞬间被动破坏。仔细观察这4片一级涡轮工作叶片的折断面,能够看到两个形貌不同的区域组成了断口(图2-2、3、4),即疲劳区和瞬断区,严重缺陷存在于每个疲劳区,每个叶片缺陷具体情况及工作时间见表2-1。

第2章 WJ5甲型发动机以及涡轮工作叶片折断故障

图2-2断口低倍放大全貌图2-3主疲劳扩散区形貌

需要阐明的是,在工艺过程中运用Sn-Bi合金定位后,叶片表面残留Sn、Bi 元素是导致Sn-Bi12WJ5AI910311号发动机叶片缺陷的形成的因素之一。合金于叶片的工作温度下呈液态,对叶片的材料—K405合金能产生致脆效果,因而其折断叶片的断口属于脆断;另外的全是冶金缺陷,这和铸造过程中的偶然因素息息相关,因在X光的检验盲区没有发现缺陷。同时疲劳条带在断口上清晰可见,这些疲劳条带全都起始于缺陷处。

经过断口分析能够确定,带有缺陷的一级涡轮工作叶片是四起故障的罪魁祸首。

(2)材质分析

电子科技大学成都学院本科毕业设计论文

一级涡轮工作叶片通过K405合金在真空条件下精铸而成,每熔批全都进行了力学性能以及化学成分检测,然后记录存档。通过检查故障件熔批的理化分析记录,其力学性能和化学成分符合验收技术标准,因而可以排出材料力学性能不达标造成故障的因素。

(3)过热分析

通过四台发动机故障叶片金相检测,没有发现γ′相聚集、长大、回溶现象,因此排出了金属过热造成故障的因素。

2.2.3台架动应力测试

为查明在发动机全转速范围内一级涡轮工作叶片是否有危险共振产生,展开了台架动应力测试,该试验运用电测法进行,试验结果显示:没有发现一级涡轮工作叶片在发动机全转速范围内存在危险的共振。

2.2.4结构应力计算分析

一级涡轮工作叶片为伸根结构、对分大圆弧齿带冠、叶身带7个径向冷却孔。为了避开冷却孔进气口,伸根设计成和中心线成32o50'的夹角,设一加强筋在叶身重心下方。

针对四起折断故障的断裂部位全都是伸根段,为查明强度设计的薄弱区域是否存在于申根段,运用大型的结构应力分析计算程序对伸根段展开了三维的有限元弹性应力分析。

计算状态:取最大载荷状态-起飞Ⅱ状态。

伸根段的工作温度:660℃。

660℃时材料的屈服极限:σ0.2=754MPa。

临界条件:依据叶片实际工作情况设计三种临界条件,三种临界条件在工作时均可能出现。

计算结果显示,三个大应力区存在于叶片申根段:

1区—第一隼齿齿底;

2区—伸根与下缘板转接段下部;

第2章 WJ5甲型发动机以及涡轮工作叶片折断故障

3区—伸根的加强筋上部。

三个大应力区于各种临界条件下的最大主应力见表2-2。

为检验计算的准确性,还进行了光弹实验。光弹试验结果与应力计算结果大体一致,因而验证了以上结果。

能够看出,于三种临界条件下,除开Ⅱ区在屈服极限附近外,Ⅰ、Ⅲ区局部应力均已高于屈服极限,Ⅰ区的弹性应力最大,然依据计算结果,Ⅰ区的应力梯度相对较大,因此,尽管在此区产生了疲劳裂纹,其扩展速度也相当缓慢,厂内的各种试车已验证了这一点,而Ⅱ区虽然应力水平低于Ⅰ区,然其应力梯度较小,故一旦产生裂纹便会迅速扩展,造成叶片折断,四起故障均属这种模式。

2.3故障分析结论

经过以上分析可得出下面的结论:

(1)一级涡轮工作叶片从伸根处疲劳断裂,断裂的叶片飞出后打坏后面的涡轮工作叶片和导向叶片,导致发动机失效。

(2)一级涡轮工作叶片疲劳断裂的根源是伸根处存在大应力区,并且在大应力区存在不应有的冶金铸造缺陷和工艺污染。正是这些在大应力区内的缺陷和污染成为疲劳源,并萌生裂纹,裂纹迅速扩展导致叶片折断。

2.4防止涡轮叶片断裂的措施

实况飞行中,引起涡轮叶片断裂的因素很多,从根本上讲是当作用在涡轮叶片的内部应力超过其材料强度极限时,就会破坏材料内部分子的结构,使涡轮叶片产生裂纹,进而断裂。为了防止涡轮叶片断裂,确保涡轮的安全工作,在发动

电子科技大学成都学院本科毕业设计论文

机设计制造、使用、维护等方面都有相应的措施,下面逐项分析。

2.4.1发动机设计制造方面防止涡轮叶片折断的措施

在发动机设计制造方面,主要是通过改进材料、工艺和冷却等措施尽可能提高涡轮叶片的强度,来防止涡轮叶片的断裂,主要措施有:

(1)采用高强度的耐热材料

目前,燃气涡轮发动机涡轮叶片通常采用镍基合金材料,因为镍基合金材料具有优越的耐热冲击和耐疲劳性能。今后,随着涡轮前温度进一步升高,已接近金属材料的极限,人们正在探索采用其他非金属材料制造涡轮叶片。

(2)改进叶片制造工艺

改进叶片的制造工艺,可用改变金属材料的晶格结构,从而提高叶片的强度,大大提高叶片的使用寿命。

此外,在涡轮叶片上进行涂层处理,通过热屏障涂层保护可使涡轮局部金属温度降低近150K。

(3)加强涡轮叶片的冷却

涡轮叶片冷却是通过来自压气机出口增压空气对涡轮叶片实施冷却。对涡轮叶片进行良好的冷却可以大大提高涡轮叶片所能承受的燃气温度。目前,经过特殊冷却的涡轮叶片可提高300摄氏度。但对涡轮叶片进行冷却必须是在确保涡轮叶片结构强度基础上进行的,所以技术难度很大。

2.4.2飞行使用中防止涡轮叶片断裂的措施

在飞行使用中,主要是严格遵守发动机的使用规定,防止涡轮叶片承受的负荷极限,主要应注意以下几点:

(1)注意监控EGT温度,防止发动机超温

实际飞行中,EGT温度是影响涡轮安全工作的最主要参数。所以,对EGT的重要性怎样强调都不过分,尤其在发动机启动、加速过程中或在高温、高原机场工作时应特别注意监控EGT温度,不允许EGT温度超过个发动机状态下的极限值。

(2)防止发动机超转

第2章 WJ5甲型发动机以及涡轮工作叶片折断故障

发动机超转时,一方面涡轮叶片离心力过大,涡轮叶片容易失效;同时,发动机处于超压状态,超出了发动机的强度,直接威胁发动机的安全工作。所以,发动机一般都有较完善的防超装置。

(3)发动机最大状态连续使用时间不超过规定

发动机在最大状态下工作时,由于涡轮叶片承受的负荷很大,叶片将发生一种叫“蠕变”的变形,叶片将逐渐伸长。所以应限制发动机最大状态连续使用时间不超过规定。

(4)发动机引气量不要过多

目前,大、中型民航机,发动机引气的主要目的是为空调、飞机发动机防冰等系统提供气源,其中主要是空调系统。所以,飞行中应防止空调引气量不要过大,否则将会引起EGT温度升高,使涡轮叶片的工作负荷加大。

(5)防止外来物进入发动机

外来物一旦进入发动机,由于发动机转动部件高速旋转,相对动能很大,一旦碰到叶片上将会产生极大的撞击力,足以损伤叶片。

总之,涡轮叶片断裂是涡轮最主要的故障,它不但会引起发动机振动加剧,更严重的是会打坏发动机部件,导致发动机着火等后果,进一步发展还将严重威胁飞行安全。所以,我们必须进一步分析涡轮的工作条件,防止涡轮叶片断裂的办法,确保涡轮的安全工作。以下是涡轮的工作条件。

首先,涡轮叶片承受很高的热负荷。为了提高发动机推力,需要尽可能提高涡轮前温度,炽热的燃气直接与涡轮叶片接触,涡轮叶片需要承受很高的热负荷。由于金属材料的强度随温度的升高而降低,所以,涡轮叶片在高温条件下工作,其材料强度显著降低。

其次,涡轮叶片承受巨大的离心力。要提高发动机推力,需要提高空气流量,所以必须确保较高的发动机转速。涡轮叶片在较高转速下旋转,叶片要承受巨大的离心力。对发动机而言,涡轮叶片承受的离心力与转速的平方成正比,转速越高,离心力越大。由于叶片承受巨大的离心力,其内部会产生很大的应力,叶片将被拉长。

最后,涡轮叶片承受燃气的交变力。发动机实际工作中,由于受到燃烧室各燃油喷嘴的喷油量不可能绝对均匀等情形的影响,涡轮前燃气温度和压力的分布

电子科技大学成都学院本科毕业设计论文

是不均匀的,进而造成燃气作用在涡轮叶片上的力各不相同。随着涡轮旋转,涡轮叶片将受到燃气周期性变化的交变力作用,这种交变力会使涡轮叶片发生振动,引起叶片内部产生附加应力,容易是叶片发生疲劳而失效。

所以了解涡轮的工作特点是我们预防和排除故障的前提和关键。

第3章涡轮工作叶片裂纹故障

第3章涡轮工作叶片裂纹故障

3.1故障现象

叶片裂纹问题在发动机涡轮叶片毛病中属于频发和恼火的问题,在某型号发动机大修过程中,其高压涡轮叶片裂纹统查结果中叶片裂纹过多叶片占叶片总量的5%-6%。表3-1给出了WP7和WP13两类发动机一级涡轮工作叶片裂纹统查表。

涡轮工作叶片叶身上的裂纹故障属于频发性的,这一点在统计表中清晰可见,这在各种发动机上都发生过,是一种严重的质量恶根,故障中通常有: 叶片过热过烧裂纹和叶片冶金缺陷所诱发的裂纹。

3.2故障原因分析

初期剖析,叶片所处的恶劣工作环境和性质是涡轮叶片产生裂纹故障的主要

电子科技大学成都学院本科毕业设计论文

决定因素:

(1)叶片处在高温、高转速的工作环境之中,承受很大的运转过程中的离心力和气动力作用,出现拉伸应力与弯曲应力。

(2)叶片受振动力是由于高速燃气流的脉冲作用。

(3)温度分布的不同导致了叶片上的温差应力。

(4)发动机启动或停车使叶片上的温度剧烈变化,进而造成叶片的热疲劳。

(5)叶片产生腐蚀是由于燃气中有杂质的存在。

3.2.1叶片叶尖裂纹状态

(1)叶尖裂纹故障的形貌分析

叶片叶尖裂纹展开着色显示和放大镜的观察和记录后,高压涡轮叶片叶尖裂纹的分布是叶背裂纹数量显然少于叶盆面,并且曲率半径嘴大处是叶盆裂纹的主要集中地。裂纹在通常情形下最短0.2mm,最长4.4mm。

研究对象取随机抽取的一片叶片,在扫描电镜的观察下,叶尖端面存在有明暗相间的磨损条带是清晰可见的(见图2-1),如图3-2,通过能谱分析(见图3-3、3-4),可以看到有氯、氧、碳元素存在,证明叶尖经历了相当复杂的热腐蚀过程。

第3章涡轮工作叶片裂纹故障

图3-1叶尖端面磨损形态图3-2磨损带的明暗区

图3-3暗区能谱分析图3-4明区能谱分析(2)叶尖裂纹的形态分析

依旧研究对象取这一片叶片,将其分解后,可以看到叶尖叶盆一侧存在一条裂纹,有三条裂纹存在于叶背一侧,用线切割将叶片按图2-5所示部位切下的目的为了确定在大裂纹周围是否还存在小裂纹制成金属试样,裂纹直线距离最长为3mm,最短为60μm,裂纹间距在250μm-1500μm范围内。有两次向上分叉发生于最长的裂纹1处,裂纹编码、布局以及直线的长度如图2-5所示。

电子科技大学成都学院本科毕业设计论文

图3-5叶片切片部位及裂纹分布示意图

在扫描电镜观察下发现,不管是大裂纹扩展路径均很平直而无分叉(图3-6和图3-7),端口较光滑(图3-8),穿晶发展的特征清晰可见,裂纹在定限度,氧化以及塑性变形累计损伤很大的情况下,分叉便会出现于裂纹(图3-9)。腐蚀产物存在于裂纹内部(图3-10)

图3-6平直无分叉大裂纹图3-7平直无分叉小裂纹

图3-8主裂纹开口段平直图3-9有两个分叉的主裂纹

航空发动机涡轮叶片

摘要 摘要 本论文着重论述了涡轮叶片的故障分析。首先引见了涡轮叶片的一些根本常识;对涡轮叶片的结构特点和工作特点进行了详尽的论述,为进一步分析涡轮叶片故障做铺垫。接着对涡轮叶片的系统故障与故障形式作了阐明,涡轮叶片的故障形式主要分为裂纹故障和折断两大类,通过图表的形式来阐述观点和得出结论;然后罗列出了一些实例(某型发动机和涡轮工作叶片裂纹故障、涡轮工作叶片折断故障)对叶片的故障作了详细剖析。最后通过分析和研究,举出了一些对故障的预防措施和排除故障的方法。 关键词:涡轮叶片论述,涡轮叶片故障及其故障类型,故障现象,故障原因,排除方法

ABSTRACT ABSTRACT This paper emphatically discusses the failure analysis of turbine blade.First introduced some basic knowledge of turbine blades;The structure characteristics and working characteristics of turbine blade were described in she wants,for the further analysis of turbine blade failure Then the failure and failure mode of turbine blades;Turbine blade failure form mainly divided into two major categories of crack fault and broken,Through the graph form to illustrate ideas and draw conclusions ;Then lists some examples(WJ5 swine and turbine engine blade crack fault,turbine blade folding section)has made the detailed analysis of the blade.Through the analysis and research,finally give the preventive measures for faults and troubleshooting methods. Key words: The turbine blades is discussed,turbine blade fault and failure type,The fault phenomenon,fault caus,Elimination method

航空发动机涡扇叶片及其成形工艺

航空发动机涡扇叶片及其成形工艺 涡扇发动机具有耗油率低、起飞动力大、噪音低和迎风面积大等特点。60年代中期,它只应用于客机和轰炸机,当时人们普遍认为,它很难在高速歼击机上应用。自70年代以来,带加力的高推比涡扇发动机的相继问世,使战斗机的性能提高到了一个新的水平,从而彻底改变了人们对涡扇发动机的偏见。90年代中期,又为第四代战斗机成功研制了推重比10带加力的涡扇发动机。与此同时,为满足发展巨型、远程运输机、宽机身客机的需要,国外先进的发动机厂家又研制成功了大推力、低耗油率、大流量比的涡扇发动机。时至今日,涡扇发动机已是应用数量最多、范围最广和最有发展前景的航空发动机。 风扇叶片是涡扇发动机最具代表性的重要零件,涡扇发动机的性能与它的发展密切相关。初期的风扇叶片材料为钛合金,具有实心、窄弦、带阻尼凸台结构。现今,风扇叶片在材料、结构方面已改进许多。为了增强刚性,防止振动或颤振,提高风扇叶片的气动效率,用宽弦结构代表了窄弦、带阻尼凸台结构;为了减轻重量,用夹芯或空心结构取代了实心结构;为了增大流量比,提高大推力涡扇发动机推进效率,风扇转子直径已增大到了3242mm,风扇叶尖速度已高达457m/s。而这些材料新、叶身长、叶弦宽、结构复杂的风扇叶片的成形工艺是非常复杂的。因此,风扇叶片的成形工艺始终是涡扇发动机的关键制造技术之一。 1早期风扇叶片 早期风扇叶片为大尺寸实心结构,为防止共振及颤振,它的叶身中部常带有一个阻尼凸台(又称减振凸台)。所有叶片的凸台连成一环状,既增强了刚性又改变了叶片固有频率,减小了叶根弯曲和扭转应力。阻尼凸台接合面喷涂有耐磨合金,当叶片振动时,接合面相互摩擦可起阻尼作用。阻尼凸台一般位于距叶根约整个叶片长度的50%~70%处。阻尼凸台的存在带来一系列问题,如:由于它的存在及它与叶身连接处的局部加厚,使流道面积减少约2%,使空气流量降低,造成气流压力损失,使压气机效率下降,发动机耗油率增加;增加了叶身重量,使叶片离心力负荷加大;使叶片制造工艺更加复杂。在有些风扇叶片上,为了增强抗外物撞击损伤能力,叶身上除了阻尼凸台以外,还有较厚的加强筋。 CFM56-3和CFM56-5发动机风扇转子直径约1700mm,风扇叶片长约600mm,由整体钛合金锻件经机械加工而成。风扇叶片毛坯先镦锻出叶根和阻尼凸台,经预锻成形,再精锻、切边。叶身成形可用数控铣、数控仿形磨、电解加工和抛光等工艺。随着叶片批量生产的增加,应尽量采用精锻法生产出钛合金风扇叶片的锻坯,以提高材料的利用率,减少机械加工工作量和提高风扇叶片的使用寿命。但生产这样大的风扇叶片精锻毛坯,需要使用昂贵的高精度的万吨级机械压力机或螺旋压力机,所需模具的尺寸大、精度也高。因此,精锻工序的成本很高。4钛合金宽弦无凸台空心风扇叶片5高韧性环氧复合材料风扇叶片

大修航空发动机涡轮叶片的检修技术正式样本

文件编号:TP-AR-L9234 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 大修航空发动机涡轮叶片的检修技术正式样本

大修航空发动机涡轮叶片的检修技 术正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 介绍了涡轮叶片的清洗、无损检测、叶型完整性 检测等预处理,以及包括表面损伤修理、叶顶修复、 热静压、喷丸强化及涂层修复等在内的先进修理技 术。 涡轮叶片的工作条件非常恶劣,因此,在性能先 进的航空发动机上,涡轮叶片都采用了性能优异但价 格十分昂贵的镍基和钴基高温合金材料以及复杂的制 造工艺,例如,定向凝固叶片和单晶叶片。在维修车 间采用先进的修理技术对存在缺陷和损伤的叶片进行 修复,延长其使用寿命,减少更换叶片,可获得可观

的经济收益。为了有效提高航空发动机的工作可靠性和经济性,涡轮叶片先进的修理技术日益受到发动机用户和修理单位的重视,并获得了广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术手段。 1.1清洗 由于涡轮叶片表面黏附有燃料燃烧后的沉积物以及涂层和(或)基体经过高温氧化腐蚀后所产生的热蚀层,一般统称为积炭。积炭致使涡轮效率下降,热蚀层会降低叶片的机械强度和叶片表面处理的工艺效果,同时积炭也掩盖了叶片表面的损伤,不便于检测。因此,叶片在进行检测和修理前,要清除积炭。

大修航空发动机涡轮叶片的检修技术示范文本

大修航空发动机涡轮叶片的检修技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大修航空发动机涡轮叶片的检修技术示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测 等预处理,以及包括表面损伤修理、叶顶修复、热静压、 喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的 航空发动机上,涡轮叶片都采用了性能优异但价格十分昂 贵的镍基和钴基高温合金材料以及复杂的制造工艺,例 如,定向凝固叶片和单晶叶片。在维修车间采用先进的修 理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿 命,减少更换叶片,可获得可观的经济收益。为了有效提 高航空发动机的工作可靠性和经济性,涡轮叶片先进的修 理技术日益受到发动机用户和修理单位的重视,并获得了

广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术手段。 1.1清洗 由于涡轮叶片表面黏附有燃料燃烧后的沉积物以及涂层和(或)基体经过高温氧化腐蚀后所产生的热蚀层,一般统称为积炭。积炭致使涡轮效率下降,热蚀层会降低叶片的机械强度和叶片表面处理的工艺效果,同时积炭也掩盖了叶片表面的损伤,不便于检测。因此,叶片在进行检测和修理前,要清除积炭。 1.2无损检测 在修理前,使用先进的检测仪器对叶片的叶型完整性

航空发动机作业第四章燃气涡轮

第四章燃气涡轮 1.航空燃气涡轮发动机中,涡轮有哪两种基本类型? 答:按流动的方向,燃气涡轮分为轴流式涡轮与径向式涡轮两类。 3.从截面翼型的厚薄、曲率、叶冠或凸台、榫头、材料、冷却的几个方面看,涡轮工作叶片与压气机工作叶片的区别有哪些? 答: 5.涡轮转子连接的基本要求是什么? 答: (一)盘与轴联接:足够刚度,强度,不削弱盘与轴,以便能传负荷;盘与轴在装配及工作时应可靠的定心;联接处高热阻,减少盘向轴传热。 (二)盘与盘联接:除了强度与刚性,可靠定心之外,还要考虑级数与联接部分较多对整个涡轮转子的影响(减小热应力,便于拆装,减小振动); (三)叶片与盘联接:要承受巨大的离心力、气体力和振动负荷,此外,还要求允许榫头自由膨胀,以减小热应力;另一方面,榫头传热要好。 7.列举枞树型榫头的优点。 答: (一)叶根与轮缘部分的材料利用合理,承力截面积大,承拉截面接近等强,因此这种榫头重量较轻; (二)榫头在轮缘所占的周向尺寸较小,因为在轮盘上可安装较多的叶片; (三)这种榫头可以有间隙地插入榫槽,允许榫头与轮缘受热后自由膨胀; (四)可以利用榫头的装配间隙通入冷却空气,对榫头和轮缘进行冷却; (五)拆装及更换叶片方便 9.涡轮机匣和压气机机匣相比的结构特点是什么? 答:压气机机匣通常是圆柱形或圆锥形壳体,有整体式、分半式和分段式机匣。 涡轮机机匣和压气机机匣相比还借前后安装边分别与燃烧室及喷管连接。另外涡轮的径向间隙沿圆周均匀,并且要尽量减少机匣与涡轮叶片的径向间隙。 11.涡轮冷却系统的冷却对象有哪些? 答:涡轮冷却系统的冷却对象有叶片榫头、涡轮盘、涡轮轴、涡轮叶片、第一级涡轮导向叶

航空发动机基础知识

航空发动机基础知识 航空发动机基础知识 涡轮喷气发动机的诞生 涡轮喷气发动机的诞生 二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。但到了三十年代末,航空技术的发展使得这一组合达到了极限。螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。 这促生了全新的喷气发动机推进体系。喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。 早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,喷气

推进只是一个空想。1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。 涡轮喷气发动机的原理 涡轮喷气发动机的原理 涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。 涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。 工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。 压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。 随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。 高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

航 空 发 动 机 叶 片 涂 层

航空发动机叶片涂层技术 一.涡轮叶片是先进航空发动机核心关键之一 航空发动机被称为现代工业“皇冠上的明珠”,航空发动机是飞机的“心脏”,价值一般占到整架飞机的20%-25%。目前,能独立研制、生产航空发动机的国家只有美、英、法、俄、中5个。但是,无论“昆仑”、“秦岭”发动机、还是“太行”系列,我国航空发动机的水平距离这一领域的“珠穆朗玛”依然存在不小的差距。美、俄、英、法四个顶级“玩家”能够自主研发先进航空发动机。西方四国由于对未来战场与市场的担忧,在航空发动机核心技术上一直对中国实施禁运和封锁。技术难关有很多。本人认为涡轮叶片是先进航空发动机的核心技术之一。 随着航空航天工业的发展,对发动机的性能要求越来越高,要使发动机具有高的推重比和大的推动力,所采用的主要措施是提高涡轮进口温度。国外在20世纪90年代,要求涡轮前燃气进口温度达1850-1950K。美国在IHPTET计划中要求:在海平面标准大气条件下,航空燃气涡轮机的的涡轮进口温度高达2366K。涡轮进口温度的提高要求发动机零件必须具有更高的抗热冲击、耐高温腐蚀、抗热交变和复杂应力的能力。对于舰载机,由于在海洋高盐雾环境下长期服役,要求发动机的叶片的耐腐蚀性更高;常在沙漠上飞行的飞机,发动机的叶片要具有更好的耐磨蚀。 众所周知:镍基和钴基高温合金具有优异的高温力学和腐蚀性

能,广泛用于制造航空发动机和各类燃气轮机的涡轮叶片(blade and vane)。就材质来看:各国的高温合金型号虽各不相同,但就相近成分的高温合金来说,其性能相近(生产工艺方法不同有也造成性能有大的差异)。好的高温合金的使用温度也只有1073K左右,为达到前面所说的要求温度,采用的方法有二:一是制成空心的叶片。空心叶片自20世纪60年代中期出现以来,经历了对流冷却、冲击冷却、气膜冷却以及综合冷却的发展历程,使进气口温度高出叶片材料约300—500℃,内腔的走向复杂化和细致化。这一步的改进仍难满足需要,且英国发展计划将取消冷却。二是涂层,常进行多材质多层次涂层。 PVT公司研究表明:军用直升机上的发动机叶片采用涂层,在沙漠上飞行,寿命可提高3倍左右,不仅大大降低了制造发动机叶片的成本,同时也使飞机的维护时间延长了两倍。 二.涡轮叶片的涂层 高温合金的生产方法或晶形结构对产品的性能是有很大影响的,如图1所示,GE公司20年前开始采用单晶高温合金制作战机用发 Fig.1 Comparative preperties of polycrystal,columnar and single-crystal superallys

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.$ 6.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 7.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。8.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 9.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 < 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 10.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 11.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 12.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 13.| 14.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 15.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 16.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源;

(7)航空发动机叶片-15页文档资料

发动机叶片 一、发动机与飞机 1.发动机种类 1)涡轮喷气发动机(WP)WP5、WP6、WP7、……WP13 2)涡轮螺桨发动机(WJ)WJ5、WJ6、WJ7 3)涡轮风扇发动机(WS)WS9、WS10、WS11 4)涡轮轴发动机(WZ)WZ5、WZ6、WZ8、WZ9 5)活塞发动机(HS)HS5、HS6、HS9 2.发动机的结构与组成 燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1~5) 3. 工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡

轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 热力过程:用p-υ或T-S 图来表示发动机的热力过程: 4. 发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。如: 1) 军民用运输机、轰炸机、客机、装用WJ 、WS 、WP 类发 动机。 2) 强击机、歼击机、教练机、侦察机、装用WP 、WS 、HS 类发动机。 3) 军民用直升机装用WZ 类发动机。 二、 叶片 在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,

大修航空发动机涡轮叶片的检修技术通用版

解决方案编号:YTO-FS-PD367 大修航空发动机涡轮叶片的检修技术 通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

大修航空发动机涡轮叶片的检修技 术通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测等预处理,以及包括表面损伤修理、叶顶修复、热静压、喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的航空发动机上,涡轮叶片都采用了性能优异但价格十分昂贵的镍基和钴基高温合金材料以及复杂的制造工艺,例如,定向凝固叶片和单晶叶片。在维修车间采用先进的修理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿命,减少更换叶片,可获得可观的经济收益。为了有效提高航空发动机的工作可靠性和经济性,涡轮叶片先进的修理技术日益受到发动机用户和修理单位的重视,并获得了广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术

[整理]《航空发动机结构分析》思考题答案.

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2

2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子?

7航空发动机叶片

发动机叶片 一、 发动机与飞机 1. 发动机种类 1) 涡轮喷气发动机(WP )WP5、WP6、WP7、……WP13 2) 涡轮螺桨发动机(WJ )WJ5、WJ6、WJ7 3) 涡轮风扇发动机(WS )WS9、WS10、WS11 4) 涡轮轴发动机(WZ )WZ5、WZ6、WZ8、WZ9 5) 活塞发动机(HS )HS5、HS6、HS9 2. 发动机的结构与组成 燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1~5) 3. 发动机工作原理及热处理过程

工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 热力过程:用p-υ或T-S 图来表示发动机的热力过程: 4. 飞机与发动机 发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。如: 1) 军民用运输机、轰炸机、客机、装用WJ 、WS 、WP 类发 动机。 2) 强击机、歼击机、教练机、侦察机、装用WP 、WS 、HS 类发动机。 3) 军民用直升机装用WZ 类发动机。 二、 叶片 在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的 叶片完成对气体的

压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键,因此对其投入的人力、物力、财力都是比较大的,而且国内外发动机厂家正以最大的努力来提高叶片的性能,生产能力及质量满足需要。 1.叶片为什么一定要扭 在流道中,由于在不同的半径上,圆周速度是不同的,因此在不同的半径基元级中,气流的攻角相差极大,在叶尖、由于圆周速度最大,造成很大的正攻角,结果使叶型叶背产生严重的气流分离;在叶根,由于圆周速度最小,造成很大的负攻角,结果使叶型的叶盆产生严重的气流分离。因此,对于直叶片来说。除了最近中径处的一部分还能工作之外,其余部分都会产生严重的气流分离,也就是说,用直叶片工作的压气机或涡轮,其效率极其低劣的,甚至会达到根本无法运转的地步。 发动机叶片数量统计如下(以WJ6、WS11为例)表: 1.WJ6 压气机叶片数量见表1 表1 涡轮叶片数量见表2 表2

航空发动机叶片CAD技术综述

航空发动机叶片CAD技术综述

pressure and high load conditions, but also with h i g h e f f i c i e n c y,s m a l l s i z e a n d l o w w e i g h t c h a r a c t e r i s t i c s. This paper introduces the major aero-engine blades CAD technology. Key Words:Aero-engine, Blades, CAD 1.引言 航空发动机是飞机的“心脏”。航空发动机研制技术复杂,投资巨大,周期长。各国航空发动机行业在突破航空发动机设计技术、材料科学技术和制造技术的同时,广泛采用CAD技术,大力推进产品的信息化。航空发动机叶片是航空燃气涡轮发动机中的关键零件,其中的高压涡轮叶片更是被誉为“现代制造业皇冠上的明珠”,不仅因为其单个产品上万美元的价值,更因其集中体现了各项性能设计要求之间的矛盾。航空发动机叶片属于功能和结构都比较复杂 的产品,既要工作在高温、高压和高负荷的条件下,又要具有高效率、小体积和低重量的特点。因此,航空发动机叶片设计问题受到行业内的重

点关注。 2.国外航空发动机CAD技术简介 2.1 GE公司 20世纪60年代后期开始了CAD技术在航空发动机研发中的应用,1980年建立了飞机发动机部门的CIMS,使生产率提高、成本降低。1985年,在发动机设计优化技术基础上,着手开发了一个用于设计优化、自动化集成优化的软件平台Engineous,将Engineous与自主研发的涡轮设计软件和非设计状态分析系统TDOD、压气机设计软件CUS等集成,在压气机和涡轮的国内已开始有关这方面的研究开发工作,但没形成系列化产品。2000年海尔集团与哈尔滨工业大学,共同组建机器人技术有限公司。2002年哈尔滨工业大学机器人研究所成功研制出智能吸尘机器人。浙江大学早在1996年之前就开始了智能吸尘机器人的研究,在路径规划算法、多传感器信息融合等技术领域取得了一定的成果。其他一些国内知名大学和自动化研究所等科研单位也陆续涉足吸尘机器人领域并先后制造出了自己的试验样机。2.2 RR公司 20世纪60年代中期,开始在叶片的设计中

航空发动机原理与构造知识点

航空发动机原理与构造知识点 1.热力系 2.热力学状态参数 3.热力学温标表示方法 4.滞止参数在流动中的变化规律 5.连续方程、伯努利方程 6.激波 7.燃气涡轮发动机分类及应用 8.燃气涡轮喷气发动机即使热机也是推进器 9.涡喷发动机结构、组成部件及工作原理 10.涡扇发动机结构、组成部件及工作原理 11.涡桨发动机结构、组成部件及工作原理 12.涡轴发动机结构、组成部件及工作原理 13.EPR、EGT、涡轮前燃气总温含义 14.喷气发动机热力循环(理想循环、实际循环) 15.最佳增压比、最经济增压比 16.热效率、推进效率、总效率 17.喷气发动机推力指标 18.发动机中各部件推力方向 19.喷气发动机经济指标 20.涡扇发动机中N1、涡扇发动机涵道比的定义 21.涡扇发动机的优缺点及质量附加原理 22.发动机的工作原理(涡喷、涡扇、涡轴和涡桨) 23.发动机各主要部件功用和原理,各部件热力过程和热力循环 24.进气道的分类及功用 25.总压恢复系数和冲压比的定义 26.超音速进气道三种类型 27.超音速进气道工作原理(参数变化) 28.离心式压气机组成部件 29.离心式压气机增压原理 30.离心式压气机优缺点 31.轴流式压气机组成部件 32.轴流式压气机优缺点 33.压气机叶片做成扭转的原因 34.压气机基元级速度三角形及基元级增压原理 35.扭速 36.多级轴流式压气机特点 37.喘振现象原因及防喘措施(原因) 38.轴流式压气机转子结构形式、优缺点 39.鼓盘式转子级间连接形式 40.叶片榫头类型、优缺点

41.减振凸台的作用以及优缺点 42.压气机级的流动损失 43.多级轴流压气机流程形式,机匣结构形式 44.压气机喘振现象、根本原因、机理过程 45.压气机防喘措施、防喘措施原理 46.燃烧室的功用和基本要求 47.余气系数、油气比、容热强度的定义 48.燃烧室出口温度分布要求 49.燃烧室分类及优缺点 50.环形燃烧室的分类及区别 51.燃烧室稳定燃烧的条件和如何实现 52.燃烧室分股进气作用 53.燃烧室的组成基本构件及功用 54.旋流器功用 55.涡轮的功用和特点(与压气机比较) 56.涡轮叶片的分类和结构 57.一级涡轮为何可以带动更多级压气机 58.提高涡轮前温度措施 59.带冠叶片优缺点 60.间歇控制定义、发动机在起动巡航、停车时间隙变化情况 61.如何实现涡轮主动间隙控制 62.涡轮叶片冷却方式 63.喷管功用 64.亚音速喷管工作原理(参数变化) 65.亚音速喷管三种工作状态(亚临界、临界和超临界)的判别 66.超音速喷管形状 67.发动机噪声源及解决措施 68.发动机的基本工作状态 69.发动机特性(定义、表述) 70.涡喷发动机稳态工作条件(4个)举例说明如何保持稳态工作 71.稳态下涡轮前温度随转速变化规律 72.剩余功率的定义 73.发动机加速的条件 74.联轴器的分类及作用 75.封严装置的作用、基本类型 76.双转子、三转子支承方案 77.中介支点、止推支点作用 78.封严件作用和主要类型 79.燃油系统功用和主要组件功用 80.燃油泵分类和特点 81.燃油喷嘴分类和特点 82.发动机控制系统分类 83.滑油系统功用、主要部件及分类,滑油性能指标 84.起动过程的定义

大修航空发动机涡轮叶片的检修技术详细版

文件编号:GD/FS-9175 (解决方案范本系列) 大修航空发动机涡轮叶片的检修技术详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

大修航空发动机涡轮叶片的检修技 术详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测等预处理,以及包括表面损伤修理、叶顶修复、热静压、喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的航空发动机上,涡轮叶片都采用了性能优异但价格十分昂贵的镍基和钴基高温合金材料以及复杂的制造工艺,例如,定向凝固叶片和单晶叶片。在维修车间采用先进的修理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿命,减少更换叶片,可获得可观的经济收益。为了有效提高航空发动机的工作可靠性

和经济性,涡轮叶片先进的修理技术日益受到发动机用户和修理单位的重视,并获得了广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术手段。 1.1清洗 由于涡轮叶片表面黏附有燃料燃烧后的沉积物以及涂层和(或)基体经过高温氧化腐蚀后所产生的热蚀层,一般统称为积炭。积炭致使涡轮效率下降,热蚀层会降低叶片的机械强度和叶片表面处理的工艺效果,同时积炭也掩盖了叶片表面的损伤,不便于检测。因此,叶片在进行检测和修理前,要清除积炭。 1.2无损检测

(完整版)航空发动机结构练习题库(一)

1.航空发动机研制和发展面临的特点不包括下列哪项()。 A.技术难度大 B.研制周期长 C.费用高 D.费用低 正确答案:D 试题解析:发动机研制开发耗费昂贵。 2.航空发动机设计要求包括()。 A.推重比低 B.耗油率高 C.维修性好 D.可操纵性差 正确答案:C 试题解析:航空发动机设计要求其推重比高、耗油率低、可操纵性好、维修性好。 3.下列哪种航空发动机不属于燃气涡轮发动机()。 A.活塞发动机 B.涡喷发动机 C.涡扇发动机 D.涡桨发动机 正确答案:A 试题解析:活塞发动机不属于燃气涡轮发动机,二者结构、原理不同。 4.燃气涡轮发动机的核心机由压气机、燃烧室和()组成。 A.进气道 B.涡轮 C.尾喷管 D.起落架 正确答案:B 试题解析:压气机、燃烧室和涡轮并称为核心机。 5.活塞发动机工作行程不包括()。 A.进气行程 B.压缩行程 C.膨胀行程 D.往返行程 正确答案:D 试题解析: 活塞发动机四个工作行程:进气、压缩、膨胀、排气。 6.燃气涡轮发动机的主要参数不包括下列哪项()。 A.推力 B.推重比 C.耗油率 D.造价 正确答案:D 试题解析:造价不是发动机性能参数。 7.对于现代涡扇发动机,常用()代表发动机推力。 A.低压涡轮出口总压与低压压气机进口总压之比

B.高压涡轮出口总压与压气机进口总压之比 C.高压涡轮出口总压与低压涡轮出口总压之比 D.低压涡轮出口总压与低压涡轮进口总压之比 正确答案:A 试题解析:低压涡轮出口总压与低压压气机进口总压之比用来表示涡扇发动机推力。 8.发动机的推进效率是()。 A.单位时间发动机产生的机械能与单位时间内发动机燃油完全燃烧时放出的热量之比。 B.发动机的推力与动能之比。 C.发动机推进功率与单位时间流过发动机空气的动能增量之比。 D.推进功率与单位时间内发动机加热量之比。 正确答案:C 试题解析:发动机的推进效率是发动机推进功率与单位时间流过发动机空气的动能增量之比。 9.航空燃气涡轮发动机是将()。 A.动能转变为热能的装置 B.热能转变为机械能的装置 C.动能转变为机械能的装置 D.势能转变为热能的装置 正确答案:B 试题解析:航空燃气涡轮发动机是将热能转变为机械能的装置。 10.航空燃气涡轮喷气发动机经济性的指标是()。 A.单位推力 B.燃油消耗率 C.涡轮前燃气总温 D.喷气速度 正确答案:B 试题解析:燃油消耗率是航空燃气涡轮喷气发动机经济性的指标。 11.气流马赫数()时,为超音速流动。 A.小于1 B.大于0 C.大于1 D.不等于1 正确答案:C 试题解析:气流马赫数大于1时,为超音速流动。 12.燃气涡轮喷气发动机产生推力的依据是()。 A.牛顿第二定律和牛顿第三定律 B.热力学第一定律和热力学第二定律 C.牛顿第一定律和付立叶定律 D.道尔顿定律和玻尔兹曼定律 正确答案:A 试题解析:燃气涡轮喷气发动机产生推力的依据是牛顿第二定律和牛顿第三定律。 13.燃气涡轮喷气发动机出口处的静温一定()大气温度。 A.低于 B.等于 C.高于

航空发动机涡轮冷却原理分析

龙源期刊网 https://www.360docs.net/doc/1b15750429.html, 航空发动机涡轮冷却原理分析 作者:张金璐 来源:《科技资讯》2018年第14期 摘要:燃气涡轮技术包括涡轮气动设计技术、传热分析,冷却技术、工艺材料技术和实 验技术等许多技术,它是一个高、新、精技术的综合体。本文介绍了航空发动机涡轮冷却控制系统及其故障检查方法,该系统功用实在接近发动机最大工作状态下,提供和撤销冷却涡轮用的附加空气流量,保证涡轮正常工作。 关键词:冷却控制附件冷却空气涡轮 中图分类号:V263.6 文献标识码:A 文章编号:1672-3791(2018)05(b)-0000-00 1 典型的冷却方式 目前燃气轮机采用的冷却而方式有对流冷却、冲击冷却、气膜冷却、气膜-对流冷却以及对流-冲击-气膜相结合的复合冷却方式,笔者就其中2种加以粗浅分析。 气膜冷却:冷却空气通过物体壁面上按一定方式分布的孔或缝隙流出,在高温燃气和物体壁面形成一层低温隔热气膜以减少高温燃气对物体的换热。这是一种在被冷却的涡轮叶片表面上排气的冷却系统,当温度大于1500-1600K时,涡轮叶片均采用气膜冷却。该冷却效果可达650℃以上,是现代涡轮高温部件的主要冷却方式。 对流冷却:冷却气流流过被冷却的物体表面时,通过对流换热,带走部分热量,使其降温的冷却方式。这是最简单的冷却方式,最大冷却效果可达250℃以上。 冲击冷却:又称为喷射冷却,是冷却气流垂直冲击被冷却物体表面的对流冷却,属于对流冷却的一个分支。冲击冷却比一般对流冷却效果高出好几倍。冲击冷却大多用来冷却受热最严重而冷却条件又差的领域。 2 涡轮冷却目的 提高涡轮前温度,以提高发动机性能。 在涡轮前温度给定的情况下,降低零件温度到允许的范围内,以保证这些零件具有必要的机械强度。 使零件内温度场均匀,以减小零件中的热应力,以涡轮盘为例,由于沿半径温度不均匀造成的热应力很大,可达1000-3000千克力/厘米2,甚至更大。

相关文档
最新文档