对流换热系数的的测定方法
对流给热系数测定实验报告

对流给热系数测定实验报告实验名称:对流换热系数的测量实验一、实验目的1.测量圆形水平直管外的水蒸气凝结换热系数α0和圆形水平直管内冷流体(空气或水)的强制对流换热系数αi2.观察水蒸汽在圆直水平管外壁上的冷凝状况。
3掌握热电阻测温方法。
4掌握计算机自动控制和流量调节的方法。
5了解涡轮流量传感器和智能流量积算仪的工作原理和使用方法。
6了解电动调节阀压力传感器和变频器的工作原理和使用方法。
7掌握化工原理实验软件库的使用。
二、实验装置流程图及实验流程简述2途经阀○6、阀○7由蒸汽分布管进入套管换热器的环隙通道,冷凝水蒸汽自蒸汽发生器○9.阀门○ 8号污水排入沟渠。
水从阀门流出○4或电动调节阀○5、12控制的旋涡气泵产生的空气依次经过阀○冷流体水或来自由变频器○13.10进入套管式热交换器、涡轮流量计的内管○ 水或空气流量调节阀○ 加热后排入下水道或通风口。
三、简述实验操作步骤及安全注意事项空气-蒸汽系统1.开启电源。
依次打开控制面板上的总电源、仪表电源。
1.调整手动调节阀○ 10以最大化空气量。
2.启动涡流空气泵○9、阀○8,排除套管环隙中积存的冷凝水,然后适当关小3.排蒸汽管道的冷凝水。
打开阀○8.注意阀门○ 8不能开得太大,否则会有严重的蒸汽泄漏。
阀门○6,蒸汽从蒸汽发生器○2沿保温管路流至阀○7;慢慢打开阀○7,4.调节蒸汽压力。
打开阀○蒸汽开始流入套管环空,并加热内管的外表面。
控制蒸汽压力稳定在0.02MPa,不超过0.05mpa,否则蒸汽不够用。
5.测量不同流量下的相应温度。
当巡检仪在控制面板上显示的11个温度、压力数据和智能流量积算仪显示的空气流量稳定时,记录所有温度、压力6,分别取最大空气流量的1/2及1/3,分别记录下相应流量下的流量数据。
然后再调节阀○稳定的温度和压力数据,使共有3个实验点。
7和阀门○ 6、关闭仪器电源和主电源。
6.实验结束后,关闭蒸汽阀○水~水蒸汽系统操作步骤和方法与空气-蒸汽系统基本相同,只是冷流体由空气变为冷水,并且仍然选择了三个实验点。
对流传热系数的测定实验报告

淅江丈禽化学实验报告课程名称:过程工程原理实验甲实验名称:对流传热系数的测定指导教师:___________________专业班级: _____________________ 姓名: ________________________ 学号: ________________________ 同组学生: _____________________实验日期: _____________________实验地点:目录一、实验目的和要求 (2)二、实验流程与装置 (2)三、实验容和原理 (3)1.间壁式传热基本原理 (3)2.空气流呈的测定 (5)3.空气在传热管对流传热系数。
的测定 (6)3. 1牛顿冷却定律法 (6)3. 2近似法 (6)3. 3简易Wilson图解法 (7)4.拟合实验准数方程式 (8)5.传热准数经验式 (8)四、操作方法与实验步骤 (9)五、实验数据处理 (10)1.原始数据: (10)2.数据处理 (10)六、实验结果 (13)七、实验思考 (14)、实验目的和要求1) 掌握空气在传热管对流传热系数的测定方法,了解影响传热系数的 因素和强化传热的途径; 2) 把测得的数据整理成=形式的准数方程,并与教材中公认经验式进行比较;3) 了解温度、加热功率、空气流量的自动控制原理和使用方法。
二、实验流程与装置本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板 流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显 示仪表等构成。
空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器, 与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3 和F4)排岀,冷凝水经排出阀(F5和F6)排入盛水杯。
空气山风机提供, 流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管 换热器管,热交换后从风机岀口排出。
注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2) 进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者 必学统一。
求空气和管壁面间对流换热系数

求空气和管壁面间对流换热系数对流换热是热工学中一个重要的研究对象,对流换热系数是描述流体和固体壁面之间换热效果的一个重要参数。
而在许多工程领域中,空气和管壁面间的对流换热系数更是备受关注。
本文将围绕这一主题展开讨论,探讨空气和管壁面间对流换热系数的相关影响因素和计算方法。
一、对流换热系数的定义对流换热系数是指单位面积上的传热功率与温差之比,通常用符号"h"表示。
在对流换热过程中,对流换热系数的大小直接影响着传热效果,因此对其的研究和计算具有重要意义。
二、空气和管壁面间对流换热系数的影响因素1. 管道材质管道的材质直接影响着管壁面的导热性能和表面粗糙度,从而影响对流换热系数的大小。
一般来说,导热性能好、表面粗糙度小的管道对流换热系数会较高。
2. 流体性质空气的流体性质,如密度、粘度和导热系数等,也会对空气和管壁面间对流换热系数产生影响。
这些性质与空气的温度、压力等因素密切相关,在对流换热系数的计算中需要综合考虑。
3. 流体流动状态流体的流动状态对对流换热系数有明显影响。
层流和湍流的流动状态下,对流换热系数的大小会有所不同。
在实际工程中需根据流体流动状态的不同进行对流换热系数的计算和分析。
4. 管道几何形状管道的几何形状也会对对流换热系数产生影响。
不同形状的管道在对流换热过程中,由于流体流动状态的差异,其对流换热系数也会有所不同。
在计算对流换热系数时需要考虑管道的几何形状。
5. 表面温度差表面温度差是影响空气和管壁面间对流换热系数的重要因素。
一般来说,温度差越大,对流换热系数也会相应增大。
在工程实践中需要合理控制表面温度差,以提高对流换热系数。
三、空气和管壁面间对流换热系数的计算方法对于空气和管壁面间对流换热系数的计算,通常采用经验公式或数值模拟的方法。
常用的经验公式包括Dittus-Boelter公式、Sieder-Tate 公式等,这些公式都是根据大量实验数据拟合得到的经验公式,适用范围较广。
实验8 空气横掠单管强迫对流换热系数测定实验

实验8 空气横掠单管强迫对流换热系数测定实验一、实验目的1. 测算空气横掠单管时的平均换热系数h 。
2. 测算空气横掠单管时的实验准则方程式13Re Pr nNu C =⋅⋅。
3. 学习对流换热实验的测量方法。
二、实验原理 1对流换热的定义对流换热是指在温差存在时,流动的流体与固体壁面之间的热量传递过程。
2、牛顿冷却公式根据牛顿冷却公式可以测算出平均换热系数h 。
即:h=)(f W t t A Q-Q A t=⋅∆ w/m 2·K (8-1)式中:Q — 空气横掠单管时总的换热量, W ; A — 空气横掠单管时单管的表面积,m2;w t — 空气横掠单管时单管壁温 ℃;f t — 空气横掠单管时来流空气温度 ℃;t ∆— 壁面温度与来流空气温度平均温差,℃;3、影响h 的因素1).对流的方式: 对流的方式有两种; (1)自然对流 (2)强迫对流 2).流动的情况:流动方式有两种;一种为雷诺数Re<2200的层流,另一种为Re>10000的紊流。
Re — 雷诺数, Re vud =, 雷诺数Re 的物理定义是在流体运动中惯性力对黏滞力比值的无量纲数。
上述公式中,d —外管径(m ),u —流体在实验测试段中的流速(m/s ),v —流体的运动粘度(㎡/s )。
3).物体的物理性质: Pr — 普朗特数,Pr=αν= cpμ/k 其中α为热扩散率, v 为运动粘度, μ为动力粘度;cp 为等压比热容;k 为热导率; 普朗特数的定义是:运动粘度与导温系数之比 4).换面的形状和位置 5).流体集体的改变 相变换热 :凝结与沸腾4、对流换热方程的一般表达方式强制对流:由外力(如:泵、风机、水压头)作用所产生的流动 强迫对流公式为(Re,Pr)Nu f =自然对流:流体因各部分温度不同而引起的密度差异所产生的流动。
自然对流公式为Nu=f (Gr ,Pr ) 1).Re=vul =雷诺数Re 的定义是在流体运动中惯性力对黏滞力比值的无量纲数Re=UL/ν 。
空气-水蒸气对流给热系数测定实验报告

空气-水蒸气对流给热系数测定实验报告本实验使用臭氧编码器,通过悬浮思路分析,利用不同的匀速度下不同的温度差分析空气-水蒸气的对流换热系数,帮助我们理解空气-水蒸汽对流的过程。
本文将对实验的设备、方法、结果及分析进行详细介绍。
一、实验设备1. 实验室气体混合系统2. 实验室压力传感器4. 实验室水蒸气浸润计6. 实验室数据采集器二、实验方法1. 设计实验2. 实验片段将实验室气体混合系统、压力传感器、温度传感器、水蒸气浸润计和湿度传感器等设备设置在实验室中,同时使用数据采集器对数据进行实时记录。
在实验中,我们首先设置了一个不同的温度差,然后观察它们在不同的匀速度下的换热系数。
通过计算,我们可以得到不同匀速下不同温度差的换热系数。
三、实验结果及分析通过实验结果和数据分析,我们得到不同温度差和匀速度下的换热系数。
1. 换热系数随着温度差的增加而增加我们可以看到,在温度差越大的情况下,热传导的能力也越强。
颗粒与颗粒之间的间距越小,热量间的转移就越快,因此换热系数也越高。
当温度差在一定的范围内,换热系数与温度差的平方成正比。
我们还可以看到,在匀速越大的情况下,换热系数也会越大。
当匀速越大时,颗粒间的热传导也会越快,从而使换热系数更大。
综合以上分析,我们可以得到空气-水蒸汽的对流换热系数与温度差和匀速度密切相关。
当温度差和匀速度越大时,换热系数也会越大。
同时,通过这些实验结果,我们可以更好地理解空气-水蒸汽对流的过程。
四、实验结论通过本次实验,我们可以得出以下结论:1. 空气-水蒸汽的对流换热系数与温度差成正比,当温度差越大时,换热系数也会越大。
因此,我们可以通过控制空气-水蒸汽的温度差和匀速度来控制其换热系数,从而更好地理解热传导过程。
对流给热系数的测定(数据处理)

实验三 对流给热系数的测定一、实验目的1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型;2、测定空气(或水)在圆直管内强制对流给热系数i α;3、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。
4、掌握热电阻测温的方法。
二、基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气或水,水蒸气冷凝放热以加热空气或水,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=αi A i (t w -t)m (1-1)式中: V ——被加热流体体积流量,m3/s ; Ρ——被加热流体密度,kg/m3; C P ——被加热流体平均比热,J/(kg ·℃);αi ——流体对内管内壁的对流给热系数,W/(m2·℃); t 1、t 2——被加热流体进、出口温度,℃;A i ——内管的外壁、内壁的传热面积,m2;(T -T W )m ——水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1-2)(t w -t)m ——内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w m w -----=- (1-3)式中:T 1、T 2——蒸汽进、出口温度,℃;T w1、T w2、t w1、t w2——外壁和内壁上进、出口温度,℃。
当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。
由式(1-3)可得:m w P i t t A t t C V )()(012--=ρα (1-4)若能测得被加热流体的V 、t 1、t 2,内管的换热面积A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1-4)算得实测的流体在管内的(平均)对流给热系数αi 。
对流换热系数的的测定方法

对流换热系数测定方法*****指导教师:罗*学号:SY*******对流换热系数测定方法一、前言具有初始温度T的物体,被突然置于有确定温度的流场中,该物体与流场构成一个非稳态的换热体系。
在这个非稳态换热体系中,包含着两个传热环节:一个是物体内部的导热;另一个是流体于物体边界的对流换热。
其中影响对流换热的关键参数就是对流换热系数。
对流换热系数是求解伴有表面对流换热的热传导问题的重要参数之一。
直接测定对流换热系数的方法分为稳态法与瞬态法。
稳态法对实验条件要求苛刻,实验周期长,误差大。
瞬态法由于实验周期短,误差小,近年来被广泛运用于对流换热系数测量实验,通常所说的瞬态法是通过瞬时提高来流温度或者壁面温度来达到温度阶跃,测量窄幅热色液晶显色时间,通过求解一维半无限大平板非稳态导热方程得到测量表面的对流换热系数。
实验中要达到温度的阶跃通常不容易实现,只能是近似阶跃,需要进行逐级阶跃或者指数函数进行修正。
这种处理方式可以近似解决入口温度非阶跃响应问题。
但是如果实验中存在涡流,采取突然提高来流温度的方法,并不能确定涡流温度随时间的变换曲线,对实验结果造成很大的误差。
为了解决上述问题,本文总结提出了一种测定对流换热系数的新方法,此方法是以传热学中非稳态导热求解法中的数学分析法集总参数分析法为基础设计的特定环境下的对流换热系数测定方法,本文全面分析了各因素对对流换热系数精度的影响并进行了定量分析此方法简便可靠在一般条件下误差不超过1.6%。
热传导热对流和热辐射一般情况下并不是独立存在的,热传导时常伴有表面对流换热。
本文研究的是零件内非等温场及其变形的研究的一部分内容,其中的热传递现象是导热对流系统,为了确定零件内的非等温场,表面对流换热系数h 是必需的参数之一,本文采用了实验法以求得此参数。
传统的实验法是以确定准则方程式的函数关系为主要内容,若采用传统的方法就显得过于复杂。
因此设计了这种以集总参数分析法为基础的对流换热系数的测定方法即把导热体看成集总体,使得导热体的温度T只是时间t的函数,对特定环境条件下对流换热系数的获得提供了一种方便有效的方法二、实验的理论分析2.1对流换热系数分析由牛顿冷却公式和傅里叶导热定律可知对流换热系数为:0|y w f T h T T y λ=∂=--∂ 其中,λ为流体的导热系数,w T 为导热体壁温,f T 为流体温度,0|y T f =∂∂为流体的温度梯度,由此式可知h 取决于流体的导热系数,温度差和贴壁流流体的温度梯度更准确地说h 取决于流体的物性和流动状况,另外,λ还受壁面形状位置,表面粗糙度等的影响。
北京理工大学对流传热系数测定实验

对流传热系数的测定陶虹 1120112863一、实验目的1、通过对传热系数a 准数关联系的测定,掌握实验方法,加深对流传热概念和影响因素的理解。
2、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4 中常数A 、m 的值。
3、加深对由实验确定经验公式的量纲分析法的理解4、得出得出单一流体下的总传热系数K 。
二、实验的基本原理1、对流传热系数a i 的测定以蒸汽为加热介质走外管,空气为冷却介质走内管。
对流传热系数a I 可以根据牛顿冷却定律,通过用实验来测定。
由牛顿冷却定律:)(M W i T T S Q a -=式中:ai ——管内流体对流传热系数,W/(m2.℃);Q —传热速率,W;S —内管传热面积,㎡;Tw ——壁面平均温度,℃;Tm ——定性温度,℃。
传热面积计算公式:S=πdL 定性温度:221T T T M += 上式中:d —管内径,m;L —传热管测量段的实际长度,m;T1,T2——冷流体的入口、出口温度,℃。
传热速率)(21,T T C V Q P M M S -=ρ式中:M S V ,—冷流体在套管内的平均体积流量,m3/s;M ρ—冷流体的密度,kg/m3;P C —冷流体的定压比热容,J/(kg.℃)。
2、对流传热系数ai 准数关联式的确定流体在管内做强制湍流,准数关联式的形式为:Nu=ARemPrn在本实验条件下在管内被加热的空气,普兰特数Pr 变化不大,可近似为常数,则关联式的形式可简化为:Nu=A ’Rem所以仅有A ’,m 两个参数。
则两边取对数得:'lg Re lg lg A m Nu +=显然,上式中是一个线性方程,通过实验测定并计算得出一系列的Nu 和Re,即可在双对数坐标系中描绘出Nu —Re 直线,然后进行线性回归即可得出m,lgA ’,继而确定准数关联式 雷诺数:μπρμρπμρd V V ddu 4d 4Re 2=== 则努塞尔数:λad Nu =上式中λμ,分别为空气的粘度、流体的热导率(在定性温度Tm 下查出)三、实验装置图附图:空气-水蒸气传热综合实验装置流程图1、普通套管换热器;2、内插有螺旋线圈的强化套管换热器;3、蒸汽发生器;4、旋涡气泵;5、旁路调节阀;6、孔板流量计;7、风机出口温度(冷流体入口温度)测试点;8、9空气支路控制阀;10、11、蒸汽支路控制阀;12、13、蒸汽放空口;14、蒸汽上升主管路;15、加水口;16、放水口;17、液位计;18、冷凝液回流口四、实验步骤:1、实验前准备,检查工作(1)向电加热釜中加水至液位计上端显示安全水位之上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对流换热系数测定方法
姓名:乔迈
指导教师:罗翔
学号:SY1004319
对流换热系数测定方法
一、前言
具有初始温度T的物体,被突然置于有确定温度的流场中,该物体与流场构成一个非稳态的换热体系。
在这个非稳态换热体系中,包含着两个传热环节:一个是物体内部的导热;另一个是流体于物体边界的对流换热。
其中影响对流换热的关键参数就是对流换热系数。
对流换热系数是求解伴有表面对流换热的热传导问题的重要参数之一。
直接测定对流换热系数的方法分为稳态法与瞬态法。
稳态法对实验条件要求苛刻,实验周期长,误差大。
瞬态法由于实验周期短,误差小,近年来被广泛运用于对流换热系数测量实验,通常所说的瞬态法是通过瞬时提高来流温度或者壁面温度来达到温度阶跃,测量窄幅热色液晶显色时间,通过求解一维半无限大平板非稳态导热方程得到测量表面的对流换热系数。
实验中要达到温度的阶跃通常不容易实现,只能是近似阶跃,需要进行逐级阶跃或者指数函数进行修正。
这种处理方式可以近似解决入口温度非阶跃响应问题。
但是如果实验中存在涡流,采取突然提高来流温度的方法,并不能确定涡流温度随时间的变换曲线,对实验结果造成很大的误差。
为了解决上述问题,本文总结提出了一种测定对流换热系数的新方
法,此方法是以传热学中非稳态导热求解法中的数学分析法集总参数分析法为基础设计的特定环境下的对流换热系数测定方法,本文全面分析了各因素对对流换热系数精度的影响并进行了定量分析此方法简便可靠在一般条件下误差不超过
1.6%。
热传导热对流和热辐射一般情况下并不是独立存在的,热传导时常伴有表面对流换热。
本文研究的是零件内非等温场及其变形的研究的一部分内容,其中的热传递现象是导热对流系统,为了确定零件内的非等温场,表面对流换热系数h 是必需的参数之一,本文采用了实验法以求得此参数。
传统的实验法是以确定准则方程式的函数关系为主要内容,若采用传统的方法就显得过于复杂。
因此设计了这种以集总参数分析法为基础的对流换热系数的测定方法即把导热体看成集总体,使得导热体的温度T 只是时间t 的函数,对特定环境条件下对流换热系数的获得提供了一种方便有效的方法
二、实验的理论分析
2.1对流换热系数分析
由牛顿冷却公式和傅里叶导热定律可知对流换热系数为:
0|y w f T h T T y λ
=∂=--∂ 其中,λ为流体的导热系数,w T 为导热体壁温,f T 为流体温度,0|y T f =∂∂为
流体的温度梯度,由此式可知h 取决于流体的导热系数,温度差和贴壁流流体的温度梯度更准确地说h 取决于流体的物性和流动状况,另外,λ还受壁面形状位置,表面粗糙度等的影响。
本实验流体是空气其温度压力和速度均为定值因此雷诺数Re ,普朗特数Pr 均为常量其努谢尔特数为:
Re Pr n n hL
Nu c λ==
其中L 为导热体的特征尺寸c ,n , m 均为可确定的常数,则:
Nu =Const
由以上分析可知对流换热系数在本实验中为定值可以用集总参数分析法进行求解。
2.2集总参数分析法 非稳态导热过程中当导热体的导热热阻L λ(λ为导热体的导热系数)远小于导热体与流体间的对流热阻1h 时,在同一瞬间导热体内各点的温度相差不大,因此可把全部物质看作一个处于平均温度下的集总体,亦即集总参数系统来分析。
该分析法通常称为集总参数分析法(Lumped Parameter Analysis)。
此时温度T 仅为时间t 的函数即T=f(t)。
应该注意只有当代表导热热阻和对流热阻之比的毕渥数0.1Bi hL =<时导热体才可看作集总体。
假设导热体的初始温度为T 0并在Bi<0.1的条件下被周围流体所冷却,导热体和流体接触的某一瞬间其能量平衡式为:
()f p dT hA T T Vc dt
ρ-=- 其中A 为与流体接触的导热体面积,ρ为导热体密度,V 为导热体体积Cp 为导热体比热,引入过余温度f T T θ=-,则dT d θ=,代入上式得:
p d hA dt Vc θθρ⎛⎫=- ⎪ ⎪⎝⎭
此式代表了导热体温度与时间的关系,假设V 、A 、h 、ρ、c p 均为已知的定值,自t =0时的0θθ=至t=t 时的θθ=,对上式进行积分得:
0ln p hA t Vc θθρ⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭
即:
0ln f f p T T hA t T T Vc ρ⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ 0ln f p f T T Vc h T T At ρ⎛⎫-=- ⎪ ⎪-⎝⎭ (1)
三、实验装置和实验过程
本实验测定一个边长为20.1 mm 的纯铜制正方体试件的温度随时间的变化,试件的五个面绝热一个面直接接触流体。
实验装置如图1。
该实验的测量过程如下:
将恒温箱的温度设置在20℃并使其保温3s 以保持箱内流体温度的均匀性,将试件加热到80℃左右迅速放入恒温箱中的隔热盒,观察温度传感器示值当其达到50℃时开始计时,每隔1℃记下时间,直到其达到24℃时结束。
考虑到对流换热系数与壁面的位置有关实验中选取了4个不同的位置进行测量。
4实验结果及其分析
4.1实验结果
根据实验结果由式(1)可得整个测量过程中的对流换热系数见表1,20.01℃时测量间隔为1℃所得各表面对流换热系数见图2
根据实验结果0.0030.1
==<即符合集总参数分析法条件。
Bi hLλ
4.2误差分析
1、测温传感器的测温精度为±0.05℃由此引起的误差为:
1p T f
Vc h T At T T ρ∆=-∆- 0001()()
p T f f Vc h T At T T T T ρ∆=-∆-- 这两项误差分别不超过±0.38 2/(.)W m k ,±0.01 2/(.)W m k 。
2、 控温装置的测温精度为±0.2℃,温度波动幅度为±0.5℃,温度均匀度为±2℃。
测量过程中每次恒温状态下的流体温度均用测温传感器进行测量,多次测量表明验位置的温度波动幅度为±0.1℃此项误差为
0()()f p f T f f f Vc T T h T At T T T T ρ-∆=-∆--
其最大值不超过±0.662/(.)W m k 。
3、计时用秒表的精度为±0.5 s 其引起的误差
20ln f p t f T T Vc h t T T At ρ⎛⎫-∆=-∆ ⎪ ⎪-⎝⎭
其最大值不超过0.032/(.)W m k 。
4、试件的尺寸精度为±0.03 mm 其引起的误差为
0ln f p L f T T c h L T T t ρ⎛⎫-∆=-∆ ⎪ ⎪-⎝⎭
其最大值不超过±0.09 2/(.)W m k 。
5、试件的表面粗糙度对对流换热系数的影响,对参数λ的恒定值,假设热辐射以及隔热不完全引起的误差均可忽略不计,对所有误差进行数据处理所得对流换热系数相对误差在1.2~1.6%之间。
上述实验装置测量的是自然对流换热系数,对装置进行改装后,如加上进出口装置,就可以测量强迫对流换热系数。
五、结论
1、本方法的测量对象应满足Bi<0.1;
2、本文所采用的方法测得的对流换热系数可控制在1.2~1.6%之间,该方法为测定特定环境条件下的对流换热系数提供了简便可靠有效的方法。
瞬态实验方案的特点之一就是不必等待换热过程的热平衡,即在换热的过程中测量所需数据,避免了冗长的等待时间,由于试验周期短,有时热损失的处理也较为简单。
由于实验设备不需达到热平衡状态,所以在实验设备中也就省略了稳态试验设备中的冷却装置,使设备的结构得到了简化。
另外,对实验材料的耐温要求也降低了,试件不必长时间的承受高温,因此给高气温实验也带来了方便。
对于瞬态试验,人们关心的是温度的测量,而不像稳态试验那样,即关心温度的测量又关心热流密度的测量。
由于温度的测量都是瞬态的册来那个,因此对测量传感器的响应时间提出了更高的要求,瞬态过程越短,要求越高;同时在实验中,如何保证实际的边界条件与理论模型相一致,这也是瞬态试验中的一个难点,必须通过一定的实验技术措施给予满足,否则,将引起较大的实验误差,且这种误差较难给出定量分析,这也是瞬态试验的缺点之一。