各种对流换热过程的特征及其计算公式.ppt

合集下载

传热学第六章对流换热

传热学第六章对流换热

6个未知量::速度 u、v、w;温度 t;压力 p;对流 换热系数h
6个方程:换热微分方程式、能量微分方程、x、y、z 三个方向动量微分方程、连续性微分方程
1 能量微分方程 微元体的能量守恒: ——描述流体温度场 假设:(1)流体的热物性均为常量,流体不做功 (2)无化学反应等内热源 由导热进入微元体的热量Q1 +由对流进入微元 体的热量Q2 = 微元体中流体的焓增H
2t 2t 2t 微元体导热热量:Q1 x 2 y 2 z 2 dxdydzd
微元体对流换热收支情况:
在d时间内, 由 x处的截面热对流进入微元体的热量为
' Qx c tudydzd
在d时间内, 由 x dx处的截面热对流流出微元体的热量为
由连续性方程知此项为0
t t t Q2 c u v w dxdydzd x y z
在d时间内, 微元体中流体 温度改变了(t / ) d , 其焓增为
t H c dxdydzd
能量微分方程
t t t t 2t 2t 2t u v w 2+ 2 2 x y z c x y z
boundary layer)
由于粘性作用,流体流速在靠近壁面 处随离壁面的距离的减小而逐渐降低; 在贴壁处被滞止,处于无滑移状态。
流场可以划分为两个区:边界层区与主流区 边界层区:流体的粘性作用起主导作用
主流区:速度梯度为0,τ=0;可视为无粘性理想流体

u , 牛顿粘性定律 y
2)热边界层(Thermal boundary layer) 热边界层:当壁面与流体间有温差时,会产生温度梯度很大的 温度边界层 热边界层厚度t (温度边 界层):过余温度(t -tw ) 为来流过余温度(tf - tw ) 的99%处定义为t的外边 界

工程热力学与传热学 第四章对流换热

工程热力学与传热学  第四章对流换热

从公式可知,要计算热流量,温度及面积比较容易得到,
主要是如何求得对流换热系数α,这是研究对流换热的主要任
务之一。
确定α;
➢对流换热的任务 揭示α与其影响因素的内在关系;
增强换热的措施。
➢研究对流换热的方法 ➢ 分析法 ➢ 实验法
➢ 比拟法 ➢ 数值法
➢ 分析法:对描写某一类对流换热问题的偏微分方程及相应的定 解条件进行数学求解,从而获得速度场和温度场的分析解的方法。
➢关于速度边界层的几个要点
(1) 边界层厚度 与壁的定型尺寸L相比极小, << L
(2) 边界层内存在较大的速度梯度
(3) 边界层流态分层流与紊流;紊流边界层紧靠壁 面处仍有层流特征,粘性底层(层流底层)
(4) 流场可以划分为边界层区与主流区,主流区 的流体当作理想流体处理
热边界层
➢定义
当流体流过平板而平板的 温度tw与来流流体的温度t∞不相 等时,在壁面上方也能形成温 度发生显著变化的薄层,常称 0 为热边界层。
:流动边界层厚度 u 0.99u
t∞ u
δt δ
tw
x
l 如,空气外掠平
板u=10m/s:
x100mm 1.8mm; x200mm 2.5mm
➢速度边界层的形成及发展过程
紊流核心
临界距边离界xc层:从层流开始向紊流过渡的距离。其大小取决
于流体的物性、固体壁面的粗糙度等几何因素以及来流的稳定
相变换热:凝结、沸腾、升华、凝固、融化等
4、流体的物理性质
流体内部和流体与壁面间导热热阻小 c 单位体积流体能携带更多能量
有碍流体流动,不利于热对流
自然对流换热增强
体胀系数:
1
(

对流换热课件

对流换热课件
速度场和温度场由对流换热微分方程组确定 ➢质量守恒方程 ➢动量守恒方程 ➢能量守恒方程
5-2 对流换热问题的数学描述
本节要求: • 掌握对流换热问题完整的数学描写:对流换热
微分方程组及定解条件; • 对流换热微分方程组:连续性方程+动量微分
方程+能量微分方程; • 熟悉能量微分方程的推导方法及思路:对微元
X方向热对流引起的净热量
ut
H x H xdx cp x dxdy
y向热对流引起的净热量 热对流引起的净热量
Hy
H ydy
cp
vt
y
dxdy
cp
ut
x
dxdy
cp
vt
y
dxdy
cp
t
u x
u
t x
t
v y
v
t y
dxdy
连续性方程 u v 0
x y
dτ时间内对流引起的净热量为
h (有碍流体流动、不利于 热对流)
自然对流换热增强
流体内各处温度不相等,各处的物性数值也不相同, 为处理方便起见,一般引入定性温度,将热物性作 为常数处理。
以单相强制对流换热为例
h f (u, l, ,, , cp )
5.1.2 对流换热现象的分类
对流换热:导热 + 热对流;壁面+流动
(2)第二类边界条件:已知任一瞬间对流换热过程 边界上的热流密度值
从理论上讲,4个方程配上相应的边界条件,可以
求解流体的u、v、p、t等4个未知量。但是,由于
它强烈的非线性性质(尽管已经用若干假设条件予 以简化),想在整个流场中求得它的分析解仍极其 困难。
直至l904年德国科学家普朗特提出了边界层理论, 并用这个理论对N—s方程进行了重要的简化,才使 粘性流体流动与换热问题的数学求解得到了根本的 改观。

化工原理第四章对流传热41页PPT

化工原理第四章对流传热41页PPT

Re
lu
普兰德数 (Prandtl number)
Pr c p
表示惯性力与粘性力之比, 是表征流动状态的准数
表示速度边界层和热边界层 相对厚度的一个参数,反映
与传热有关的流体物性
影响 较大的物性常数有:,, Cp ,。 (1)的影响 ; (2)的影响 Re ;
(3)Cp的影响 Cp 则单位体积流体的热容量大,
则较大; (4)的影响 Re 。
2020/3/29
3、流动型态 【层流】主要依靠热传导的方式传热。由于流体的
导热系数比金属的导热系数小得多,所以热阻大。
【湍流】由于质点充分混合且层流底层变薄,较大
2020/3/29
2、有效膜模型
(1)流体与固体壁面之间存在一个厚度为bt的虚拟 膜(流体层),称之为有效膜; (2)有效膜集中了传热过程的全部传热温差的以及 全部热阻,在有效膜之外无温差也无热阻存在(所 有的热量传递均产生在有效膜内); (3)在有效膜内,传热以热传导的方式进行。
2020/3/29
2020/3/29
二、对流传热速率方程 1、什么是模型法
【定义】把复杂问题简单化、摒弃次要的条件,抓 住主要的因素,对实际问题进行理想化处理,构建 理想化的物理模型,获得某一过程的有关规律。具 体方法为: (1)对过程进行合理的简化; (2)获得物理模型(构象); (3)对物理模型进行数学描述,获得有关规律。
过程的因素都归结到了当中。
2020/3/29
三、影响对流传热系数的因素
1、引起流动的原因 【自然对流】由于流体内部存在温差引起密度差形
成的液体内部环流,一般u较小,也较小。
【强制对流】在外力作用下引起的流动运动,一般u
较大,故较大。因此:

工程热力学和传热学16对流换热计算

工程热力学和传热学16对流换热计算

q
t 1 Rt
t
1
1 2

20 (20) 257.65W m 2 1 0.4 10-2 1 10 0.762 20
Q=Fq 100 80 10-4 257. =20:传热系数 k 1 1
C 和 m 的值见下表。
叉排或顺排、管间距不同时,C、m的选取
Nu C Re
m
排数的影响见教材P202
表16-2
第二节
自然对流换热
流体受壁面加热或冷却而引起的自然对流换热 与流体在壁面附近的由温度差异所形成的浮升力有 关。不均匀的温度场造成了不均匀的密度场,由此 产生的浮升力成为运动的动力。在热壁面上的空气 被加热而上浮,而未被加热的较冷空气因密度较大而 下沉。所以自然对流换热时,壁面附近的流体不像受 迫对流换热那样朝同一方向流动。一般情况下,不 均匀温度场仅发生在靠近换热壁面的薄层之内。在 贴壁处,流体温度等于壁面壁面温度tW,在离开壁 面的方向上逐步降低至周围环境温度。
后排管受前排管尾流的扰动作用对平均表面传热系数的影 响直到10排以上的管子才能消失。 这种情况下,先给出不考虑排数影响的关联式,再采用管 束排数的因素作为修正系数。 气体横掠10排以上管束的实验关联式为
Nu C Rem
式中:定性温度为 tr (tw tf )/ 2; 特征长度为 管外径d, Re 数中的流速采用整个管束中最窄截面处 的流速。 实验验证范围: Ref 2000 ~ 40000。
边界层的成长和脱体决定 了外掠圆 管换热的 特征 。
可采用以下分段幂次关联式:
; 式中:C及n的值见下表;定性温度为 (tw t )/ 2 特征长度为管外径; Re 数的特征速度为来流速度 u 。

工程热力学和传热学16对流换热计算

工程热力学和传热学16对流换热计算

解: t 200 30 q裸管= 1700W m 2 1 1 10 q绝缘 t 50 30 200W m 2 1 1 10
4、尺寸为 100cm 80cm的大玻璃窗,玻璃厚 104cm, 0.762W (m K )。室 内空气与玻璃板的换热 系数 1=10W (m 2 K ),室外空气与玻璃板的 换热系数 2 =20W (m 2 K )。室内空气温度为 20C,室外大气温度为- 20C。试求通过该玻 璃窗的热流量Q和热流密度q。
tf1=20°C q
α1 tt
w1
α2 tf2=-20°C
tw2
1
1 2
1
教材P155 中( 13 - 8式) :k
1

1 是错误的。 2
1.火管锅炉炉胆的热流密度为48000W/m2,钢板 制成的炉胆厚度为20mm,试求其内外壁面的温差, 设:(1)炉胆两侧没有污垢;(2)在水的一侧积有1.5㎜ 厚的水垢;(3)在水的一侧积有1.5㎜,另一侧积有2 ㎜厚的烟灰。
2.蒸汽管的外径为108mm,管外包以λ=0.1W/(m·K)的绝热材料,蒸汽温度为 330℃(由于蒸汽与管壁间的对流热阻和管壁的导热热阻要比绝热材料的热阻小得多, 可略去不计,所以可近似地认为绝热层内壁的温度等于蒸汽的温度)。若要使绝热层外 壁面的温度不超过40℃,每米管长的热损失不超过ql=150W/m,试求绝热层的最小厚 度应为多少。 d 330 40 d (330 40) 2 0.1 1.215 解:qmin ln 2 =1.215 2 e d d1 150 d1 ln 2 d1 2 d2 1 d 2 d1 d1 e1.215 1 min= d1 0.108 =0.128m 2 2 2 解说:

知识点:层流状态的对流换热计算PPT讲解

知识点:层流状态的对流换热计算PPT讲解
Nu f 0.15Re f
0.3 Grf Pr w

0.25
(1)
利用上式可求出管道全程长度的平均换热系数。这个公 式适用于任何流体,并且也考虑了热流方向和自由流动的影 响。
知识点:层流状态的对流换热计算
上式是以流体的温度tf作为定性温度,以管子内径d作为 定型尺寸。对非圆形截面的流道,定型尺寸可采用当量直径 de。Prw是以壁面温度tw作定性温度的普朗特准则。 在管内作层流运动的流体为粘度较大的油类时,自然对 流被抑制,流动呈严格的层流状态。对于这种情况,式(1) 中的准则,此时求得的换热系数为层流时的最低值。 (2)当l/d <50时,对流换热系数可按式上式求出α 值 后再乘以管长修正系数ε f,其值可由表1查得。
知识点:层流状态的对流换热计算
雷诺数小于2300时流体在管内处于层流运动状态,由于 各部分之间换热靠导热方式,因此换热过程比较缓慢。在这 种情况下,自然对流的产生会造成流体的扰动,因而显著增 强了换热,这就使得在层流时,自由流动的影响不能忽略。 考虑到上述影响,流体在层流时放热的准则方程式具有 下列形式: (1)当l/d≥50,且(Gr.Pr)>8×105时
f w

0.14
(2)
层流的管长修正系数ε
l d
1 1.90 2 1.70 5 1.44 10 1.28 15 1.18
f
表1
30 1.05 40 1.02 50 l
20 1.13
f
知识点:层流状态的对流换热计算
(3)当(Gr.Pr)<8×105时,层流换热可以用下式计算
d Nu f 1.86Re f Prf l
1 3 1 3 1 3
式中 d─管子直径,m; l─管长,m。 上式不能用于很长的管子,当管道太长时,d/l将趋近 于零。(2)式的定性温度和定型尺寸同(1)式。μ w是以 壁面温度tw作定性温度的动力粘滞系数。 由于层流的对流换热系数的数值很小,所以绝大多数的 换热设备都不是按层流范围设计的,只有在少数应用粘性很 大的流体的设备中才能见到层流流动。

各种对流换热过程的特征及其计算公式

各种对流换热过程的特征及其计算公式

多取截面平均流速。
定性温度:计算物性的定性温度多为截面
上流体的平均温度(或进出口截面平均温
度)。
1 ' " t f (t f t f ) 2
1。管内层流换热关联式
实际工程换热设备中,层流时的换热
常常处于入口段的范围。可采用下列齐德
-泰特公式:
Re f Pr f Nu f 1.86 l/d
状凝结理论
1 、凝结换热现象
蒸汽与低于饱和温度的壁面接触时,将汽化
潜热释放给固体壁面,并在壁面上形成凝结液的
过程,称凝结换热现象。有两种凝结形式。
2 、凝结换热的分类
根据凝结液与壁面浸润能力不同分两种
(1)膜状凝结
定义:凝结液体能很好地湿润壁面,并 能在壁面上均匀铺展成膜的凝结形式, 称膜状凝结。
du y 时, dy

0, t t s
求解上面方程可得: (1) 液膜厚度
4l l ( ts tw )x 2 g l r
1/ 4
ts tw 定性温度: t m 2
注意:r
按 ts 确定
(2) 局部表面传热系数
gr hx 4l ( t s t w )x
对流换热那样朝同一方向流动。
一般情况下,不均匀温度场仅发生在靠近换热壁面的薄层 之内。在贴壁处,流体温度等于壁面壁面温度tW,在离开壁面
的方向上逐步降低至周围环境温度。
定义: 由流体自身温度场的不均匀所引起的流动称为自然对流。 工程应用: 暖汽管道的散热 不用风扇强制冷却的电器元件的散热 事故条件下核反应堆的散热 产生原因: 不均匀温度场造成了不均匀密度场,浮升力成为运 动的动力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在热壁面上的空气被加热而上浮,而未被加热的较冷空气因密 度较大而下沉。所以自然对流换热时,壁面附近的流体不像受迫 对流换热那样朝同一方向流动。
一般情况下,不均匀温度场仅发生在靠近换热壁面的薄层之内。 在贴壁处,流体温度等于壁面壁面温度tW,在离开壁面 的方向上逐步降低至周围环境温度。
定义: 由流体自身温度场的不均匀所引起的流动称为自然对流。
Nu f
1.86
Re l
f
/
Pr f d
1/ 3 f 0.14
w
定性温度为流体平均温度 t f( 按w壁温
确定)tw,管内径为特征长度,管子处于
均匀壁温。
实验验证范围为: Prf 0.48 ~ 16700,
f 0.0044 ~ 9.75, w
Re f Prf
l/d
1/3 f
t,f 特征长度
实验验证范围:
Ref 104~1.2105,
Prf 0.7~120,
l / d 60。
此式适用与流体与壁面具有中等以下温差 场合。
❖ 一般在关联式中引进乘数
❖ 在有换热条件下,截面上的温度并不均匀, 导致速度分布发生畸变。 ( f /w)n或(Prf / Prw)n
来考虑不均匀物性场对换热的影响。
w
0.14
2。
2. 管内过渡状态时的准则方程 在Ref=2300-104范围内,流动为过渡状态 查看P198表16-1
3. 管内紊流时的准则方程
实用上使用最广的是迪贝斯-贝尔特公式:
Nu f 0.023Re0f.8 PrfnεlεRεt
加热流体时 n 0.4
冷却流体时 n 0.3
式中: 定性温度采用流体平均温度 为管内径。
层流
湍流
(3)特征速度及定性温度的确定
特征速度:计算Re数时用到的流速,一般 多取截面平均流速。
定性温度:计算物性的定性温度多为截面
上流体的平均温度(或进出口截面平均温
度)。
tf
1 2
(t
f
'
t f
")
1。管内层流换热关联式
实际工程换热设备中,层流时的换热
常常处于入口段的范围。可采用下列齐德 -泰特公式:
流体沿竖壁自然对流的流动性质和 局部表面传热系数的变化
从对流换热微分方程组出发,可以导出适用于自然对流换 热的准则方 程式 。 原则上自然对流换热准则方程式可写为:
式中Gr为格拉晓夫数 自然对流亦有层流与湍流之分,判别层流与湍流的准则数为Gr数
Gr格拉晓夫数是浮升力/粘滞力比值的一种度量。 Gr数的增大表明浮升力作用的相对增大。
第一节 受迫对流换热
一、流体沿平壁流动时的对流换热
1。当Rem<5×105(层流)、Prm=0.5-50时,空气、水和油等
Num
1
0.664Rem2
Prm
1 3
定性温度
tm
1 (t 2
f
tw)
定形尺寸为沿流动方向平壁的长度L
2。当Rem=5×105-107(紊流)、Prm=0.5—50时,空气、水 和油等
工程应用: 暖汽管道的散热 不用风扇强制冷却的电器元件的散热 事故条件下核反应堆的散热
产生原因: 不均匀温度场造成了不均匀密度场,浮升力成为运 动的动力。
在一般情况下,不均匀温度场仅发生在靠近换热壁面的薄层之内。 在贴壁处,流体温度等于壁面温度tw,在离开壁面的方向上逐步降 低,直至周围环境温 度t∞,如图5—26a所示。薄层内的速度分布 则有两头小中间大一块热竖壁的自然对流为例,其自下而上的 流动景象示出于下图a。 在壁的下部,流动刚开始形成,它是有规则的 层流;若壁面足够高,则上部流动会转变为湍 流。
不同的流动状态对换热具有决定性影响:层流 时,换热热阻完全取决了薄层的厚度。从换热 壁面下端开始,随着高度的增 加,层流薄层的 厚度也逐渐增加。局部表面传热系数也随 高度 增加而减小。
三、流体横掠圆管时的换热
1.流体横掠单管时的换热
外部流动:换热壁面上的流动边界层与热
边界层能自由发展,不会受到邻近壁面存 在的限制。
横掠单管:流体沿着垂直于管子轴线的方
向流过管子表面。流动具有边界层特征,还 会发生绕流脱体。
虽然局部表面传热系数变化比较复 杂,但从平均表面换热系数看,渐变规 律性很明显。 可采用以下分段幂次关联式:
Nu C Ren Pr1/3
式中:定性温度为 (tw t ) / 2; 特征长度为管外径; Re 数的特征速度为来流速度 u。
2、流体横掠圆管束时的换热
第二节 自然对流换热
流体受壁面加热或冷却而引起的自然对流换热 与流体在壁面 附近的由温度差异所形成的浮升力有关。不均匀的温度场造成 了不均匀的密度场,由此产生的浮升力成为运动的动力。
第十六章 各种对流换热过程的特征及其计算公式
本章要点: 1。着重掌握受迫、自然对流换热的基本原理和基本计算 2。着重掌握凝结、沸腾换热的基本概念及影响因素
本章难点:受迫、自然对流换热的分析计算 凝结、沸腾换热的分析解
本章主要内容:
第一节 受迫对流换热 第二节 自然对流换热 第三节 蒸汽凝结换热 第四节 液体沸腾换热
一、无限空间自然对流换热
换热面附近流体的运动状况只取决于换热面的形状、尺寸 和温度,而与空间围护壁面无关,因此称为无限空间自然对流 换热。
根据自然对流换热原则性准则方程,工程中广泛 使用的是下列形式的关联式:
Nu C(Gr Pr) n
定性温度:tm (tw t ) / 2
特征长度:竖平板、竖圆柱为高度H,横圆柱 为外径d
管内受迫对流换热实验关联式
管内受迫对流流动和换热的特征 (1)流动有层流和湍流之分
• 层流: Re 2300
• 过渡区: 2300 Re 10000
• 旺盛湍流: Re 10000
(2)入口段的热边界层薄,局部换热系数高。
层流入口段长度: l / d 0.05 Re Pr
湍流时:
l / d 60
定性N温u度m=(0.t0m3712R(etmf 0.8tw-8)50)Pr1/3
定形尺寸为沿流动方向平壁的长度L
二、流体在管道内换热
入口段的热边界层较薄,局部换热系数比充分发展段的高,且沿 着主流方向逐渐降低,逐渐靠近充分发展段,局部换热系数逐渐趋 于稳定。工程技术中常常利用入口段换热效果好这一特点来强化设 备的换热。
参数C、n的选取查看相关表格
二、有限空间自然对流换热
相关文档
最新文档