对流换热公式整理
对流换热计算式

关系式返回到上一层以下汇总了工程中最常见的几类对流换热问题的对流换热计算关系式,适用边界条件,已定准则的适用范围,特征尺寸与定性温度的选取方法。
一、掠过平板的强迫对流换热应注意区分层流和湍流两种流态 ( 一般忽略过渡流段 ) ,恒壁温与恒热流两种典型的边界条件,以及局部 Nu 数和平均 Nu 数。
沿平板强迫对流换热准则数关联式汇总注意:定性温度为边界层的平均温度,即。
二、管内强迫对流换热(1) 流动状况不同于外部流动的情形,无论层流或者湍流都存在流动入口段和充分发展段,两者的长度差别很大。
计算管内流动和换热时,速度必须取为截面平均速度。
(2) 换热状况管内热边界层也同样存在入口段和充分发展段,只有在流体的 Pr 数大致等于 1 的时候,两个边界层的入口段才重合。
理解并准确把握两种典型边界条件 ( 恒壁温与恒热流 ) 下流体截面平均温度的沿程变化规律,对管内对流换热计算有着特殊重要的意义。
(3) 准则数方程式要注意区分不同关联式所针对的边界条件,因为层流对边界条件的敏感程度明显高于湍流时。
还需要特别指出,绝大多数管内对流换热计算式 5f 对工程上的光滑管,如果遇到粗糙管,使用类比率关系式效果可能更好。
下表汇总了不同流态和边界条件下管内强迫对流换热计算最常用的一些准则数关联式。
(4) 非圆截面管道仅湍流可以用当量直径的概念处理非圆截面管道的对流换热问题。
层流时即使用当量直径的概念也无法将不同截面形状管道换热的计算式全部统一。
常热流层流,充分发展段,常壁温层流,充分发展段,充-充分发展段,气体,-充分发展段,液体,;紊流,充分发展段,紊流,粗糙管紊流,粗糙管三、绕流圆柱体的强迫对流换热流体绕圆柱体流动时,流动边界层与掠过平板时有很大的不同出现脱体流动和沿程局部 Nu 数发生大幅度升降变化的根本原因。
横掠单根圆管的对流换热计算式还被扩展到非圆管的情形。
关联式:定性温度为主流温度,定型尺寸为管外径,速度取管外流速最大值。
对流和辐射计算公式

1.热对流
热对流:是指由于流体的宏观运动使物体不同的流体相对位移而产生的热量传递现象。
特点:只能发生在流体中;必然伴随有微观粒子热运动产生的导热。
对流换热:流体与固体表面之间的热量传递。
对流换热公式如下:
()F t t Q f w -=α
式中,Q 为对流换热量,单位为W ;
w t 、f t 为壁面和流体的平均温度,单位为℃;
F 为对流换热面积,单位为m 2;
α为对流换热系数,单位为C m W ︒⋅2/。
2.热辐射
辐射:是指物体受到某种因素的激发而向外发射辐射能的现象。
热辐射:由于物体内部微观粒子的热运动(或者说由于物体自身的温度)而使物体向外发射辐射能的现象。
辐射换热:当物体之间存在温差时,以热辐射的方式进行能量交换的结果使高温物体失去热量,低温物体获得热量,这种热量传递称为辐射换热。
两物体辐射换热的公式如下:
44121100100n T T Q C F ⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦
式中,n C 为辐射系数;
1T 、2T 为两物体的温度;
1F 为辐射体的辐射表面积。
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
对流传热系数的计算公式

对流传热系数的计算公式
对流传热系数是热传导中的一种传热方式,常用于热交换器、冷却塔、加热器等传热设备的设计与计算中。
对于流体在壁面上的流动,其对流传热系数与流速、温度、粘度等变量密切相关。
在实际应用中,针对不同的流体与流动状态,可采用不同的计算公式。
下面列举几种常用的对流传热系数计算公式:
1. 自然对流传热系数公式:
h = 1.13 * (gβΔT)^1/4
其中,h为对流传热系数,g为重力加速度,β为热膨胀系数,ΔT为壁面温度与流体温度的差值。
2. 强制对流传热系数公式:
Nu = CRe^mPr^n
其中,Nu为努塞尔数,Re为雷诺数,Pr为普朗特数,C、m、n 为经验系数。
3. 线性对流传热系数公式:
h = kΔT
其中,k为比例常数,ΔT为温度差值。
需要注意的是,以上公式仅适用于理想条件下的流动状态,而实际应用中因存在多种不确定因素,其计算结果仅供参考,具体设计与计算仍需进行实际测试与验证。
- 1 -。
各种对流换热过程的特征及其计算公式

各种对流换热过程的特征及其计算公式对流换热是指热量通过传导和传导的方式从一个物体转移到另一个物体的过程。
在许多工程和自然现象中,对流换热都起着重要的作用。
下面是各种对流换热过程的特征及其计算公式。
1.强制对流换热:强制对流换热是指通过对流传热介质(如气体或液体)的外力驱动,使热量从一个物体转移到另一个物体的过程。
其特征包括:-较高的传热速率:由于外力使传热介质保持流动状态,因此强制对流传热速率较高。
-计算公式:Q=h*A*(Ts-T∞)其中,Q是传热速率,h是对流换热系数,A是传热面积,Ts是表面温度,T∞是流体温度。
2.自然对流换热:自然对流换热是指在没有外力驱动的情况下,通过自然气流或自然对流传热介质(如气体或液体)进行热量传输的过程。
其特征包括:-由温度差引起的自然循环:由于温度差异造成的密度差异,导致气体或液体在物体表面形成循环,从而传热。
-计算公式:Q=α*A*ΔT其中,Q是传热速率,α是自然对流换热系数,A是传热面积,ΔT 是温度差。
3.相变换热:相变换热是指物体在相变过程中吸收或释放的热量。
其特征包括:-温度保持不变:当物体处于相变过程中时,温度保持不变,热量主要用于相变过程。
-计算公式:Q=m*L其中,Q是传热速率,m是物体的质量,L是单位质量的相变潜热。
4.辐射换热:辐射换热是指通过电磁辐射传播热量的过程。
其特征包括:-不需要传热介质:辐射传热不需要传热介质,可以在真空中传递热量。
-计算公式:Q=ε*σ*A*(Th^4-Tc^4)其中,Q是传热速率,ε是辐射率,σ是斯特藩-玻尔兹曼常数,A 是物体表面积,Th和Tc分别是辐射物体和周围环境的温度。
总结:不同的对流换热过程具有不同的特征和计算公式。
在实际应用中,根据具体的情况选择适当的计算公式可以帮助我们准确计算和分析热量的传递过程。
要注意,实际的对流换热过程可能是多种换热方式的复合,需要综合考虑不同的换热方式。
第五章 对流换热概述

在x方向上流入的净热量
2t 2 dxdy y
u t ucptdy c p u dx t dx dy x x u t u t ucp tdy c p dy ut tdx udx dxdx x x x x u t u t c p t dxdy c p u dxdy c p dxdxdy x x x x
二、对流传热的基本公式 ( h 的确定方式)
q ht
W m2 Leabharlann qA hAt无滑移边界条件
W
t A y
y 0
令上两式相等则有
t Ah t A y
t h t y
y 0
则
y 0
§5-2
一、假设条件
对流换热问题的数学描述
为简化分析,对于常见影响对流换热问题的主要因素,做如 下假设: (1) 流动是二维的; (2) 流体为不可压缩的牛顿流体; (3) 流体物性为常数,无内热源; (4) 流速不高,忽略粘性耗散(摩擦损失) ; (5) 流体为连续性介质
v ~ 01 y
导数的数量级由因变量与自变量的数量级确定,所以
u ~ 01 x
a~02 的数量级为1,
这样可以对微分方程组进行简化(数量级一致)
u v 0 x y
1 1
2u 2u u u p u v 2 x y x x y 2
§5-3 边界层分析及边界层微分方程组
一.边界层的概念
1. 流动(速度)边界层: 靠近壁面处流体速度发生显著变化的薄层 边界层的厚度(boundary layer thickness): 达到主流速度的99%处至固体壁面的垂直距离
对流换热能量方程

对流换热能量方程一、概述对流换热是指通过流体的运动将热量从高温区域传递到低温区域的过程。
对流换热能量方程是描述这一过程的数学表达式。
本文将详细介绍对流换热能量方程的含义、推导过程和应用。
二、对流换热能量方程含义对流换热能量方程描述了在某一时刻,单位时间内通过流体的运动传递到单位面积上的热量。
它可以表示为:q = hA(Ts - Tf)其中,q是单位时间内通过单位面积传递的热量,h是对流换热系数,A是传热面积,Ts和Tf分别是固体表面温度和流体温度。
三、对流换热系数对于不同的情况,对流换热系数也会有所不同。
例如,在自然对流中,h通常非常小;而在强制对流中,h则会比较大。
此外,在液态介质中和气态介质中,h也会有很大差别。
四、推导过程为了得到上述公式,我们需要做出以下假设:1. 流体速度与距离无关;2. 流体温度与距离无关;3. 流体是定常的。
在这些假设下,我们可以通过质量守恒和能量守恒来推导出对流换热能量方程。
首先,考虑单位时间内通过单位面积的热量传递。
根据热传导定律,这个值可以表示为:q = -k(dT/dx)其中,k是热导率,dT/dx是温度梯度。
但是,在对流换热中,温度梯度并不是一个固定值,因为它随着流体的运动而发生变化。
因此,我们需要将上述公式进行修正。
假设在距离x处的流体速度为v(x),温度为T(x),则单位时间内通过单位面积的热量传递可以表示为:q = -k(dT/dx) + pvCp(Ts - T)其中,p是密度,Cp是比热容,Ts是固体表面温度。
第一项表示由于温度梯度引起的传热;第二项表示由于流体运动引起的传热。
接下来,我们需要确定对流换热系数h。
根据牛顿冷却定律:q = hA(Ts - Tf)我们可以将上述公式中的q和Ts替换成上述修正后的公式,得到:h = pvCp(v/x)最终,我们将上述公式代入修正后的热传导定律中,即可得到对流换热能量方程。
五、应用对流换热能量方程在工程领域中有着广泛的应用。
流体无相变时的对流换热

Nu = c Re Pr 令 Re = const C ′ = c Re n
n m
lg Nu = lg C ′ + m ln Pr m可求,同理使 Pr = const
Nu lg 0.4 = lg C + n lg Re Pr C, n可得
Nu = 0.023 Re 0.8 Pr 0.4 (管内紊流)
如:强制对流换热和自然对流换热,虽然都是对流换热现象, 但它们不是同类现象。点场和温度场也不是同类现象。 两个物理现象相似时,其有关的物理量场分别相似。 重要性质:彼此相似的现象,它们的同名准则必定相等。
换热微分方程式:α = − 现象a: 现象b:
λ ∂t
∆t ∂y
y =0
α′ = − α ′′ = −
Pe′ = Pe′′ --贝克利准则
uL νuL Pe = = = Pr⋅ Re a νa 对于自然对流,则须
(Pr⋅ Re)′ = (Pr⋅ Re)′′
Gr ′ = Gr ′′
--格拉晓夫准则
βg∆tL3 Gr = ν2
几个准则的物理意义: 雷诺准则:反映流体的惯性力与粘滞力之比的相对大小。 格拉晓夫准则:反映流体的浮升力与惯性力的相对大小。 普朗特准则:反映流体的动量传递能力与能量传递能力的相对 大小。 努谢尔特准则:反映实际热量传递与导热分子扩散量传递的比 较;Nu越大,则换热越强。 Bi和Nu的区别: 1、λ不同。前者为固体,后者为流体 2、物理意义不同。 αL 公式Nu =
λ
3.相似准则之间的关系 Nu = f (Re, Pr) 紊流强制对象: 过渡区: Nu = f (Re, Pr, Gr ) 自然对流:
Nu = f (Pr,Gr )
其中:
各种对流换热过程的特征及其计算公式

1/ 4
球:
gr hS 0.826 d( t t ) s w l
2 l 3 l
1/ 4
横管与竖管的对流换热系数之比:
hH l 0.77 hV d
14
2
膜层中凝结液的流动状态
凝结液体流动也分层流和湍流,并且其判断依据 仍然时Re,
Re
第一节 受迫对流换热
一、流体沿平壁流动时的对流换热
1。当Rem<5×105(层流)、Prm=0.5-50时,空气、水和油等
Nu m 0.664 Re Prm
定性温度
1 t m (t f t w ) 2
2 m
1
1
3
定形尺寸为沿流动方向平壁的长度L 2。当Rem=5×105-107(紊流)、Prm=0.5—50时,空气、水和油等 Num=(0.037Rem0.8-850)Pr1/3 定性温度
定性温度:tm (tw t ) / 2
特征长度:竖平板、竖圆柱为高度H,横圆柱为 外径d
参数C、n的选取查看相关表格
二、有限空间自然对流换热
流体在夹层两侧壁温不等的空间内进行对流换热时
为有限空间自然对流换热。
讨论如图所示的竖的和水平的两种封闭夹层的自然对流换热 。
夹层内流体的流动,主要取决于以夹层厚度δ为特征长度的Gr数
gr hV 1.13 l l( t s t w )
2 l 3 l 1/ 4
(4)当是水平圆管及球表面上的层流膜状凝结时, 其平均表面传热系数为:
水平管:
gr hH 0.729 d( t t ) s w l
2 l 3 l
多取截面平均流速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/2 1/3 , 0.664 Re1 x Pr x
(0.6<Pr<60)
/5 1/3 恒热流: Nu x 0.0308 Re 4 Pr x x
3 1 0.14
Pr f Prw
) 0.25 _________。
1.3 过渡流: Nu 格尼林斯基公式: f
Pr f 修正:①温差(加热或冷却): Pr w
f Tf 或 或 T w w
k
0.7
l d ②入口段(短管 l/d<60): 或 c l 1 d l
d 列齐德-泰特公式:__ Nu 1.86 Re Pr l f ________ w ( f 8 )(Re - 1000)Pr f d = 1 + ct 1 + 12.7 f 8(Pr f 2 3 - 1) l
③弯管:
d 气体:c R 1 1.77 R
d 液体: c R 1 10 .3 R
3
④非圆管:当量径:de = 4Ac/P 2.外部流: 2.1 平板:
1/3 2.1.1 层流: Nu x 0.332 Re 1x/ 2 Pr x /5 1/3 2.1.2 湍流: Nu x 0.0296 Re 4 Pr x x
对流换热公式
一、强制对流换热
l l 粘性流体强制流: Nu f l , Re, Pr l , Re, Pe 或 Nu f 0 0 l/d>60,短管 1.内部流(管内流,(长管 l/d&s-Boelter 公式:_ Nu 0.023 Re 0.8 Pr n _, 条件:__气体≤50℃,水≤20~40℃,油类≤10℃。 Re=104-1.2×105_, 定性温度为:流体平均温度,定性尺寸为:管内径。 ②温差大:修正或 米海耶夫公式:_ Nu f 0.021 Re 0f.8 Pr f0.43 ( 1.2 层流
温度:流体与管壁的平均温度, 长度:管外径
s1 p Pr f 0.25 ) ( ) Prw s2
2.2 管簇 Nu c Re n Pr m (
S1,S2 为间距,各常数见表 3.5, P159 管排修正系数 εz, εz 的值见表 3.6,P160
二、自然对流换热:
l 粘性流体自由流动: Nu f Fr , , Pr 或 Nu l 0 l f Gr , Pr l 0
2.2 管外流 2.2.1 单管:
1/3 Nu c Re n Prx
c,n 取值:圆管见表 3.3,非圆管见表 3.4, P158
0.62 Re1 / 2 Pr 1 / 3 Re 5 / 8 4 / 5 或:邱吉尔-朋斯登公式: Nu 0.3 [1 ( ) ] 2 / 3 1/ 4 282000 [1 (0.4 / Pr) ]
空气,水平: Nu 0.212Grd Pr
Nu 0.061Grd Pr
1/ 4
(1×104<Grd<4.6×105) (Grd>4.6×105)
1/ 3
1.无限空间:
Nu cGr Pr ,
n
Gr Pr 区分层流、湍流,c,n 取值见 P161,表 3.7 2.有限空间: n H Nu cGrd Pr ( ) m 1/ 4 H 空气,竖立: Nu 0.197Grd Pr ( ) 1 / 9 (8.6×103<Grd<2.9×105)