2020年黑龙江省佳木斯市中考数学试卷
佳木斯市2020年中考数学试卷(I)卷

佳木斯市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列说法错误的()A . 相反数等于本身的数只有0B . 平方后等于本身的数只有0、1C . 立方后等于本身的数是-1、0、1D . 绝对值等于本身的数只有12. (2分) (2019九上·腾冲期末) 下列计算正确的是()A . a4+a4=2a4B . a2·a3=a6C . (a4)3=a7D . a6÷a2=a33. (2分)我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学记数法表示为()A . 1.37×109B . 1.37×107C . 1.37×108D . 1.37×10104. (2分) (2020八上·徐州期末) 在等腰三角形ABC中,∠A=80°.则∠B的度数不可能为()A . 20°B . 40°C . 50°D . 80°5. (2分)已知直角三角形的两条边长分别是方程x2-14x+48=0的两个根,则此三角形的第三边是()A . 6或8B . 10或2C . 10或8D . 26. (2分)(2017·资中模拟) 已知P1(x1 , y1),P2(x2 , y2)是一次函数y=﹣ x+2图象上的两点,下列判断中,正确的是()A . y1>y2B . y1<y2C . 当x1<x2时,y1<y2D . 当x1<x2时,y1>y27. (2分) 2014年11月份,某市区一周空气质量报告中某污染指数的数据是:61,75,61,63,50,63,61,则下列表述错误的是()A . 方差是44B . 众数是61C . 平均数是62D . 中位数是618. (2分)(2016·云南模拟) 已知抛物线y=﹣x2+2x﹣3,下列判断正确的是()A . 开口方向向上,y有最小值是﹣2B . 抛物线与x轴有两个交点C . 顶点坐标是(﹣1,﹣2)D . 当x<1时,y随x增大而增大二、填空题 (共10题;共11分)9. (2分)在学校舞蹈比赛中,10名学生参赛成绩统计如图,极差和中位数分别是________,________.10. (1分) (2016七下·吉安期中) 已知xy=﹣3,x+y=﹣4,则x2﹣xy+y2的值为________.11. (1分)函数y=中,自变量x的取值范围是________12. (1分)若∠1=33°30′,则∠1的补角等于________°.13. (1分)△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是________ .14. (1分)(2018·天水) 已知⊙O1的半径为3,⊙O2的半径为r,⊙O1与⊙O2只能画出两条不同的公共切线,且O1O2=5,则⊙O2的半径为r的取值范围是________.15. (1分) (2020九下·西安月考) 如图,和都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数在第一象限的图象经过点B,则和的面积之差为________.16. (1分)(2020·滨州) 如图,是正方形ABCD的内切圆,切点分别为E、F,G,H,ED与相交于点M,则sin∠MFG的值为________.17. (1分)一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是________.18. (1分)(2019·江岸模拟) ⊙O的内接正三角形的边长记为a3 ,⊙O的内接正方形的边长记为a4 ,则等于________.三、解答题 (共10题;共93分)19. (10分)(2018·无锡模拟)(1)计算:(2)先化简,再求值:,其中x= .20. (10分) (2019七下·河南期中) 已知 + =b+8.(1)求a的值;(2)求a2-b2的平方根.21. (8分)(2020·抚州模拟) 为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:请根据以上统计图中的信息解答下列问题.(1)植树3株的人数为________;(2)扇形统计图中植树为1株的扇形圆心角的度数为________;(3)该班同学植树株数的中位数是________(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果22. (5分)(2011·徐州) 小明骑自行车从家去学校,途经装有红、绿灯的三个路口.假设他在每个路口遇到红灯和绿灯的概率均为,则小明经过这三个路口时,恰有一次遇到红灯的概率是多少?请用树状图的方法加以说明.23. (5分)自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.24. (10分) (2020九上·柳州期末) 如图,已知 AB 为⊙O的直径, F为⊙O 上一点, AC 平分∠BAF 且交⊙O 于点 C ,过点C 作CD⊥AF 交AF 的延长线于点 D ,延长AB 、 DC 交于点 E ,连接 BC 、 CF .(1)求证: CD 是⊙O 的切线.(2)求证: .25. (5分)(2019·宜宾) 如图,为了测得某建筑物的高度,在C处用高为1米的测角仪,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度.(结果保留根号)26. (10分)如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F.若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.27. (10分)(2020·上虞模拟) 一个有进水管与出水管的容器,从某时刻开始的4min内只进水不出水,在随后的8min内既进水又出水,每分钟进水量和出水量是两个常数。
2020年黑龙江省佳木斯市中考数学试题及参考答案(word解析版)

2020年黑龙江省佳木斯市中考数学试题及参考答案与解析(考试时间120分钟;全卷共三道大题,总分120分)一、选择题(每题3分,满分30分)1.下列各运算中,计算正确的是()A.a2+2a2=3a4B.x8﹣x2=x6C.(x﹣y)2=x2﹣xy+y2D.(﹣3x2)3=﹣27x6 2.下列图标中是中心对称图形的是()A.B.C.D.3.如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最少是()A.2 B.3 C.4 D.54.一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则数据x是()A.1 B.2 C.0或1 D.1或25.已知2+是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是()A.0 B.1 C.﹣3 D.﹣16.如图,正方形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC,BD的交点恰好是坐标原点O,已知B(﹣1,1),则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣17.已知关于x的分式方程﹣4=的解为非正数,则k的取值范围是()A.k≤﹣12 B.k≥﹣12 C.k>﹣12 D.k<﹣128.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72 B.24 C.48 D.969.学校计划用200元钱购买A、B两种奖品,A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种10.如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值是a2;⑤当BE=a时,G是线段AD的中点.其中正确的结论是()A.①②③B.②④⑤C.①③④D.①④⑤二、填空题(每题3分,满分30分)11.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.14.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除了标号外都相同,从中随机摸出一个小球,是偶数的概率为.15.若关于x的一元一次不等式组的解是x>1,则a的取值范围是.16.如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB=°.17.小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为cm.18.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.19.在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a,连接AE,将△ABE沿AE折叠.若点B的对应点B′落在矩形ABCD的边上,则折痕的长为.20.如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过B点作直线EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1.以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作直线E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2,…,则点B2020的坐标.三、解答题(满分60分)21.(本题满分5分)先化简,再求值:(1﹣)÷,其中a=sin30°.22.(本题满分6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上.(1)将△ABC向下平移5个单位得到△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1逆时针旋转90°后得到的△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).23.(本题满分6分)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.(1)求a的值;(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.24.(本题满分7分)某公司工会组织全体员工参加跳绳比赛,工会主席统计了公司50名员工一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).求:(1)该公司员工一分钟跳绳的平均次数至少是多少.(2)该公司一名员工说:“我的跳绳成绩是我公司的中位数”请你给出该员工跳绳成绩的所在范围.(3)若该公司决定给每分钟跳绳不低于140个的员工购买纪念品,每个纪念品300元,则公司应拿出多少钱购买纪念品.25.(本题满分8分)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)26.(本题满分8分)以Rt△ABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点A 作AM⊥BC于M,延长MA交EG于点N.(1)如图①,若∠BAC=90°,AB=AC,易证:EN=GN;(2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.27.(本题满分10分)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.28.(本题满分10分)如图,在平面直角坐标系中,矩形ABCD的边AB长是x2﹣3x﹣18=0的根,连接BD,∠DBC=30°,并过点C作CN⊥BD,垂足为N,动点P从B点以每秒2个单位长度的速度沿BD方向匀速运动到D点为止;点M沿线段DA以每秒个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和MN,求△PMN的面积s与运动时间t的函数关系式;(3)在整个运动过程中,当△PMN是以PN为腰的等腰三角形时,直接写出点P的坐标.参考答案与解析一、选择题(每题3分,满分30分)1.下列各运算中,计算正确的是()A.a2+2a2=3a4B.x8﹣x2=x6C.(x﹣y)2=x2﹣xy+y2D.(﹣3x2)3=﹣27x6【思路分析】根据合并同类项法则,完全平方公式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.【解答过程】解:A、结果是3a2,故本选项不符合题意;B、x8和﹣x2不能合并,故本选项不符合题意;C、结果是x2﹣2xy+y2,故本选项不符合题意;D、结果是﹣27x6,故本选项符合题意;故选:D.2.下列图标中是中心对称图形的是()A.B.C.D.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答过程】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.是中心对称图形,故本选项符合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.3.如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最少是()A.2 B.3 C.4 D.5【思路分析】左视图底面有2个小正方体,主视图底面有2个小正方体,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答过程】解:左视图与主视图相同,可判断出底面最少有2个,第二层最少有1个小正方体,第三层最少有1个小正方体,则这个几何体的小立方块的个数最少是2+1+1=4个.故选:C.4.一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则数据x是()A.1 B.2 C.0或1 D.1或2【思路分析】根据众数的定义得出正整数x的值即可.【解答过程】解:∵一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,∴数据x是1或2.故选:D.5.已知2+是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是()A.0 B.1 C.﹣3 D.﹣1【思路分析】把x=2+代入方程就得到一个关于m的方程,就可以求出m的值.【解答过程】解:根据题意,得(2+)2﹣4×(2+)+m=0,解得m=1;故选:B.6.如图,正方形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC,BD的交点恰好是坐标原点O,已知B(﹣1,1),则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣1【思路分析】把B(﹣1,1)代入y=即可得到结论.【解答过程】解:∵点B在反比例函数y=的图象上,B(﹣1,1),∴1=,∴k=﹣1,故选:D.7.已知关于x的分式方程﹣4=的解为非正数,则k的取值范围是()A.k≤﹣12 B.k≥﹣12 C.k>﹣12 D.k<﹣12【思路分析】表示出分式方程的解,由解为非正数得出关于k的不等式,解出k的范围即可.【解答过程】解:方程﹣4=两边同时乘以(x﹣3)得:x﹣4(x﹣3)=﹣k,∴x﹣4x+12=﹣k,∴﹣3x=﹣k﹣12,∴x=+4,∵解为非正数,∴+4≤0,∴k≤﹣12.故选:A.8.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.72 B.24 C.48 D.96【思路分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.【解答过程】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积=.故选:C.9.学校计划用200元钱购买A、B两种奖品,A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种【思路分析】设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为非负整数可求出解.【解答过程】解:设购买了A种奖品x个,B种奖品y个,根据题意得:15x+25y=200,化简整理得:3x+5y=40,得y=8﹣x,∵x,y为非负整数,∴,,,∴有3种购买方案:方案1:购买了A种奖品0个,B种奖品8个;方案2:购买了A种奖品5个,B种奖品5个;方案3:购买了A种奖品10个,B种奖品2个.故选:B.10.如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值是a2;⑤当BE=a时,G是线段AD的中点.其中正确的结论是()A.①②③B.②④⑤C.①③④D.①④⑤【思路分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△FAE≌△EHC(SAS)即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE ≌△GCH(SAS)即可解决问题.④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.⑤正确.当BE=a时,设DG=x,则EG=x+a,利用勾股定理构建方程可得x=即可解决问题.【解答过程】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠FAE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△FAE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,当BE=a时,设DG=x,则EG=x+a,在Rt△AEG中,则有(x+a)2=(a﹣x)2+(a)2,解得x=,∴AG=GD,故⑤正确,故选:D.二、填空题(每题3分,满分30分)11.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:1180000=1.18×106,故答案为:1.18×106.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是.【思路分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答过程】解:由题意得2x﹣3>0,解得x>1.5.故答案为:x>1.5.13.如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.【思路分析】根据全等三角形的判定解答即可.【解答过程】解:∵Rt△ABC和Rt△EDF中,∴∠BAC=∠DEF=90°,∵BC∥DF,∴∠DFE=∠BCA,∴添加AB=ED,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(AAS),故答案为:AB=ED答案不唯一.14.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除了标号外都相同,从中随机摸出一个小球,是偶数的概率为.【思路分析】直接利用概率公式计算可得.【解答过程】解:∵盒子中共装有5个小球,其中标号为偶数的有2、4这2个小球,∴从中随机摸出一个小球,是偶数的概率为,故答案为:.15.若关于x的一元一次不等式组的解是x>1,则a的取值范围是.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大可得答案.【解答过程】解:解不等式x﹣1>0,得:x>1,解不等式2x﹣a>0,得:x>,∵不等式组的解集为x>1,∴≤1,解得a≤2,故答案为:a≤2.16.如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB=°.【思路分析】根据圆周角定理即可得到结论.【解答过程】解:∵AD是△ABC的外接圆⊙O的直径,∴点A,B,C,D在⊙O上,∵∠BCA=50°,∴∠ADB=∠BCA=50°,故答案为:50.17.小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为cm.【思路分析】先根据扇形的面积公式:S=l•R(l为弧长,R为扇形的半径)计算出扇形的弧长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,利用圆的周长公式计算出圆锥的底面半径.【解答过程】解:∵S=l•R,∴•l•15=150π,解得l=20π,设圆锥的底面半径为r,∴2π•r=20π,∴r=10(cm).故答案为:10.18.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.【思路分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到EG=AB=1,EG∥AB,推出四边形EGCD是平行四边形,得到ED=GC,于是得到EC+GC的最小值=EC+GD 的最小值,根据平移的性质得到点E在过点A且平行于BD的定直线上,作点D关于定直线的对称点M,连接CM交定直线于AE,解直角三角形即可得到结论.【解答过程】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴EG=CD,EG∥CD,∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=AD=,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×CD=.故答案为:.19.在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a,连接AE,将△ABE沿AE 折叠.若点B的对应点B′落在矩形ABCD的边上,则折痕的长为.【知识考点】矩形的性质;PB:翻折变换(折叠问题).【思路分析】分两种情况:①当点B'落在AD边上时,证出△ABE是等腰直角三角形,得出AE =AB=;②当点B'落在CD边上时,证明△ADB'∽△B'CE,得出=,求出BE=a=,由勾股定理求出AE即可.【解答过程】解:分两种情况:①当点B'落在AD边上时,如图1所示:∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的AD边上,∴∠BAE=∠B'AE=∠BAD=45°,∴△ABE是等腰直角三角形,∴AB=BE=1,AE=AB=;②当点B'落在CD边上时,如图2所示:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的CD边上,∴∠B=∠AB'E=90°,AB'=AB=1,BE'=BE=a,∴CE=BC﹣BE=a﹣a=a,B'D==,在△ADB'和△B'CE中,∠B'AD=∠EB'C=90°﹣∠AB'D,∠D=∠C=90°,∴△ADB'∽△B'CE,∴=,即=,解得:a=,或a=0(舍去),∴BE=a=,∴AE===;综上所述,折痕的长为或;故答案为:或.【总结归纳】本题考查了翻折变换的性质、矩形的性质、等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质是解题的关键.20.如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过B点作直线EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1.以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作直线E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2,…,则点B2020的坐标.【知识考点】规律型:点的坐标;一次函数的性质;一次函数图象上点的坐标特征;相似三角形的判定与性质.【思路分析】由B坐标为(1,1)根据题意求得A1的坐标,进而得B1的坐标,继续求得B2,B3,B4,B5的坐标,根据这5点的坐标得出规律,再按规律得结果.【解答过程】解:∵点B坐标为(1,1),∴OA=AB=BC=CO=CO1=1,∵A1(2,3),∴A1O1=A1B1=B1C1=C1O2=3,∴B1(5,3),∴A2(8,9),∴A2O2=A2B2=B2C2=C2O3=9,∴B2(17,9),同理可得B4(53,27),B5(161,81),…由上可知,,∴当n=2020时,.故答案为:(2×32020﹣1,32020).【总结归纳】本题主要考查了一次函数的图象与性质,正方形的性质,等腰直角三角形的性质,规律变化,关键是求出前几个点的坐标得出规律.三、解答题(满分60分)21.(本题满分5分)先化简,再求值:(1﹣)÷,其中a=sin30°.【知识考点】分式的化简求值;特殊角的三角函数值.【思路分析】根据分式的运算法则即可求出答案,【解答过程】解:当a=sin30°时,所以a=原式=•=•==﹣1【总结归纳】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(本题满分6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上.(1)将△ABC向下平移5个单位得到△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1逆时针旋转90°后得到的△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).【知识考点】扇形面积的计算;作图﹣平移变换;作图﹣旋转变换.【思路分析】(1)依据△ABC向下平移5个单位,即可得到△A1B1C1,进而写出点A1的坐标;(2)依据△A1B1C1绕点C1逆时针旋转90°,即可得到的△A2B2C1,进而写出点A2的坐标;(3)依据扇形面积公式和三角形面积公式,即可得到△A1B1C1在旋转过程中扫过的面积.【解答过程】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标为(5,﹣3);(2)如图所示,△A2B2C1即为所求,点A2的坐标为(0,0);(3)如图,△A1B1C1在旋转过程中扫过的面积为:+=8π+6.【总结归纳】本题考查了利用平移变换和旋转变换作图、扇形面积的计算等,利用平移变换作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.(本题满分6分)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.(1)求a的值;(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.【知识考点】二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】(1)由y=﹣x2+(a+1)x﹣a,令y=0,即﹣x2+(a+1)x﹣a=0,可求出A、B坐标结合三角形的面积,解出a=﹣3;(2)根据题意P的纵坐标为±3,分别代入解析式即可求得横坐标,从而求得P的坐标.【解答过程】解:(1)∵y=﹣x2+(a+1)x﹣a,令x=0,则y=﹣a,∴C(0,﹣a),令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵S△ABC=6∴(1﹣a)(﹣a)=6解得:a=﹣3,(a=4舍去);(2)∵a=﹣3,∴C(0,3),∵S△ABP=S△ABC.∴P点的纵坐标为±3,把y=3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=3,解得x=0或x=﹣2,把y=﹣3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=﹣3,解得x=﹣1+或x=﹣1﹣,∴P点的坐标为(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).【总结归纳】本题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,二次函数的性质,求得交点坐标是解题的关键.24.(本题满分7分)某公司工会组织全体员工参加跳绳比赛,工会主席统计了公司50名员工一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).求:(1)该公司员工一分钟跳绳的平均次数至少是多少.(2)该公司一名员工说:“我的跳绳成绩是我公司的中位数”请你给出该员工跳绳成绩的所在范围.(3)若该公司决定给每分钟跳绳不低于140个的员工购买纪念品,每个纪念品300元,则公司应拿出多少钱购买纪念品.【知识考点】频数(率)分布直方图;中位数.【思路分析】(1)要求平均次数至少是多少,可每组都取最小值计算平均数即可;(2)找出中位数所在的成绩范围,(3)样本中获奖的有7人,求出费用即可.【解答过程】解:(1)该公司员工一分钟跳绳的平均数为:==100.8,答:该公司员工一分钟跳绳的平均次数至少是100.8个;(2)把50个数据从小到大排列后,处在中间位置的两个数都在100~120这个范围;(3)300×(5+2)=2100(元),答:公司应拿出2100元钱购买纪念品.【总结归纳】考查频数分布直方图的意义和制作方法,理解频数、频率、总数之间的关系是正确计算的前提.25.(本题满分8分)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)【知识考点】一次函数的应用.【思路分析】(1)利用待定系数法求一次函数解析式即可;(2)利用待定系数法分别求出BC与FG的解析式,再联立解答即可;(3)根据题意列式计算即可.【解答过程】解:(1)设ME的函数解析式为y=kx+b(k≠0),由ME经过(0,50),(3,200)可得:,解得,∴ME的解析式为y=50x+50;(2)设BC的函数解析式为y=mx+n,由BC经过(4,0),(6,200)可得:,解得,∴BC的函数解析式为y=100x﹣400;设FG的函数解析式为y=px+q,由FG经过(5,200),(9,0)可得:,解得,∴FG的函数解析式为y=﹣50x+450,解方程组得,同理可得x=7h,答:货车返回时与快递车图中相遇的时间h,7h;(3)(9﹣7)×50=100(km),答:两车最后一次相遇时离武汉的距离为100km.【总结归纳】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,相遇问题,读懂题目信息,理解两车的运动过程是解题的关键.26.(本题满分8分)以Rt△ABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点A 作AM⊥BC于M,延长MA交EG于点N.(1)如图①,若∠BAC=90°,AB=AC,易证:EN=GN;(2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.【知识考点】四边形综合题.【思路分析】(1)由等腰直角三角形的性质得出∠MAC=45°,证得∠EAN=∠NAG,由等腰三角形的性质得出结论;(2)如图1,2,证明方法相同,利用“AAS”证明△ABM和△EAP全等,根据全等三角形对应边相等可得EP=AM,同理可证GQ=AM,从而得到EP=GQ,再利用“AAS”证明△EPN和△GQN全等,根据全等三角形对应边相等可得EN=NG.【解答过程】解:(1)证明:∵∠BAC=90°,AB=AC,∴∠ACB=45°,∵AM⊥BC,∴∠MAC=45°,∴∠EAN=∠MAC=45°,同理∠NAG=45°,∴∠EAN=∠NAG,∵四边形ABDE和四边形ACFG为正方形,∴AE=AB=AC=AG,∴EN=GN.(2)如图1,∠BAC=90°时,(1)中结论成立.理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,∵四边形ABDE是正方形,∴AB=AE,∠BAE=90°,∴∠EAP+∠BAM=180°﹣90°=90°,∵AM⊥BC,∴∠ABM+∠BAM=90°,∴∠ABM=∠EAP,在△ABM和△EAP中,,∴△ABM≌△EAP(AAS),∴EP=AM,同理可得:GQ=AM,∴EP=GQ,在△EPN和△GQN中,,∴△EPN≌△GQN(AAS),∴EN=NG.如图2,∠BAC≠90°时,(1)中结论成立.理由:过点E作EP⊥AN交AN的延长线于P,过点G作GQ⊥AM于Q,∵四边形ABDE是正方形,∴AB=AE,∠BAE=90°,∴∠EAP+∠BAM=180°﹣90°=90°,∵AM⊥BC,∴∠ABM+∠BAM=90°,∴∠ABM=∠EAP,在△ABM和△EAP中,,∴△ABM≌△EAP(AAS),∴EP=AM,同理可得:GQ=AM,∴EP=GQ,在△EPN和△GQN中,,∴△EPN≌△GQN(AAS),∴EN=NG.【总结归纳】本题是四边形综合题,考查了正方形的性质,全等三角形的判定及性质,等腰三角形的性质,等腰直角三角形的性质等知识;正确作出辅助线,构造全等三角形,运用全等三角形的性质是解题的关键.27.(本题满分10分)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.【知识考点】二元一次方程组的应用;一元一次不等式组的应用.【思路分析】(1)根据“该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元”,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,根据总价=单价×数量结合投入资金不少于1160元又不多于1168元,即可得出关于x的一元一次不等式组,解之即可得出x 的取值范围,再结合x为正整数即可得出各购买方案;(3)设超市获得的利润为y元,根据总利润=每千克的利润×销售数量可得出y关于x的函数关系式,利用一次函数的性质可得出获得利润最多的方案,由总利润=每千克的利润×销售数量结合捐款后的利润率不低于20%,即可得出关于a的一元一次不等式,解之取其最大值即可得出结论.【解答过程】解:(1)依题意,得:,解得:.答:m的值为10,n的值为14.(2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,依题意,得:,解得:58≤x≤60.∵x为正整数,∴x=58,59,60,∴有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.(3)设超市获得的利润为y元,则y=(16﹣10)x+(18﹣14)(100﹣x)=2x+400.∵k=2>0,∴y随x的增大而增大,∴当x=60时,y取得最大值,最大值为2×60+400=520.依题意,得:(16﹣10﹣2a)×60+(18﹣14﹣a)×40≥(10×60+14×40)×20%,解得:a≤1.8.答:a的最大值为1.8.。
2020年黑龙江省佳木斯市中考数学试卷

∴ = = , ,
在 和 中, = = , = = ,
∴ ,
∴ ,即 ,
解得: ,或 = (舍去),
∴ ,
∴ ;
综上所述,折痕的长为 或 ;
如图,直线 的解析式为 = 与 轴交于点 ,与 轴交于点 ,以 为边作正方形 ,点 坐标为 .过点 作 交 于点 ,交 轴于点 ,过点 作 轴的垂线交 于点 ,以 为边作正方形 ,点 的坐标为 .过点 作 交 于 ,交 轴于点 ,过点 作 轴的垂线交 于点 .以 为边作正方形 .….则点 的坐标________.
【答案】
【考点】
列表法与树状图法
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个小球的标号之和大于 的情况,再利用概率公式即可求得答案.
【解答】
画树状图如图所示:
∵共有 种等可能的结果,摸出的两个小球的标号之和大于 的有 种结果,
∴摸出的两个小球的标号之和大于 的概率为 ,
∵ ,
∴ 时, 的面积的最大值为 .故④正确,
当 时,设 = ,则 = ,
在 中,则有 = ,
解得 ,
∴ = ,故⑤正确,
二、填空题(每题3分,满分30分)
信号的传播速度为 ,将数据 用科学记数法表示为________.
【答案】
【考点】
科学记数法--表示较大的数
【解析】
科学记数法的表示形式为 的形式,其中 , 为整数.确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.
A
【考点】
菱形的性质
【解析】
由菱形的性质得出 = = , = , ,则 = ,由直角三角形斜边上的中线性质得出 ,再由菱形的面积求出 = ,即可得出答案.
黑龙江省佳木斯市2020版中考数学试卷C卷

黑龙江省佳木斯市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019七上·九龙坡期中) 如图,数轴上,两点分别对应有理数,,则下列结论正确的是()A . a-b>0B . ab>0C . a+b>0D . |a|-|b|>02. (2分)如图所示,该几何体的左视图是()A .B .C .D .3. (2分)(2017·绍兴模拟) 在:0,﹣2,1,这四个数中,最小的数是()A .B . 1C . ﹣2D . 04. (2分) (2016九上·仙游期末) 观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个5. (2分)如图,已知∠ACB是⊙O的圆周角,∠ACB=50°,则圆心角∠AOB是()A . 40°B . 50°C . 80°D . 100°6. (2分)把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A . 线段可以比较大小B . 线段有两个端点C . 两点之间线段最短D . 过两点有且只有一条直线二、填空题 (共8题;共8分)7. (1分)已知x=3.2,y=6.8,则x2+2xy+y2=________.8. (1分) (2016八上·桂林期末) 不等式2+4x>1的解集是________.9. (1分)=________10. (1分) (2015八下·嵊州期中) 若已知一元二次方程两个根为2和3,请你写出一个符合条件的一元二次方程________.11. (1分) (2018九下·扬州模拟) 某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是________.12. (1分)如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,DE⊥AC于E,若AB=8,AC=12,则DE 的长为________.13. (1分) (2016九上·常熟期末) 两个相似三角形的面积比为4:9,那么它们对应中线的比为________.14. (1分) (2016八上·芦溪期中) 一艘轮船以20km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以30km/h的速度向东南方向航行,它们离开港口半小时后相距________km.三、解答题 (共12题;共93分)15. (5分) (2017·南岸模拟) 计算:整式的运算和分式的化简(1)(x+3)2﹣x(x+2);(2)÷( + )16. (5分)(2018·长春) 剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2 ,图案为“蝴蝶”的卡片记为B)17. (10分)已知反比例函数y=﹣.(1)写出这个函数的比例系数和自变量的取值范围;(2)求当x=﹣3时函数的值;(3)求当y=﹣2时自变量x的值.18. (5分) (2018八上·开平月考) 如图,CA=CD,∠BCE=∠ACD,BC=EC,求证:∠A=∠D.19. (10分)(2017·孝感模拟) 如图,已知四边形ABCD是矩形,对角线AC的垂直平分线交AD于点E,交BC于点F,连接AF,CE,解答下列问题:(1)求证:四边形AECF是菱形;(2)记AB=a,BF=b,若a,b是方程x2﹣2(m+1)x+m2+1=0的两根,问当m为何值时,菱形AECF的周长为8 .20. (6分) (2019七下·仁寿期中) 阅读下列解方程组的方法,然后解答问题:解方程组时,由于x、y的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法采解,那将是计算量大,且易出现运算错误,而采用下面的解法则比较简单:②-①得:3x+3y=3,所以x+y=1③③×14得:14x+14y=14④①-④得:y=2,从而得x=-1所以原方程组的解是(1)请你运用上述方法解方程组(2)请你直接写出方程组的解;(3)猜测关于x、y的方程组(m≠n)的解是什么?并用方程组的解加以验证。
2020年黑龙江省佳木斯市中考数学试卷 (1)

2020年黑龙江省佳木斯市中考数学试卷一、选择题(每题3分,满分30分)1. 下列各运算中,计算正确的是()A.x8÷x2=x4B.a2⋅2a2=2a4C.(−3x2)3=−9x6D.(x−y)2=x2−xy+y22. 下列图标中是中心对称图形的是()A. B. C. D.3. 如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最多是()A.7B.6C.9D.84. 一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则该组数据的平均数是()A.3.8或3.2B.3.6C.3.6或3.2D.3.6或3.45. 已知关于x的一元二次方程x2−(2k+1)x+k2+2k=0有两个实数根x1,x2,则实数k的取值范围是()A.k≤14B.k<14C.k≤14且k≠0 D.k>46. 如图,菱形ABCD的两个顶点A,C在反比例函数y=kx的图象上,对角线AC,BD的交点恰好是坐标原点O,已知B(−1, 1),∠ABC=120∘,则k的值是()A.4 B.5 C.2 D.37. 已知关于x的分式方程xx−2−4=k2−x的解为正数,则k的取值范围是()A.k>−8且k≠−2B.−8<k<0C.k<4且k≠−2D.k>−8且k≠28. 如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.8B.4C.6D.√139. 在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用完的情况下,有多少种购买方案()A.15种B.12种C.14种D.16种10. 如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45∘,点F在射线AM上,且AF=√2BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:①∠ECF=45∘;②△AEG的周长为(1+√22)a;③BE2+DG2=EG2;④△EAF的面积的最大值是18a2;⑤当BE=13a时,G是线段AD的中点.其中正确的结论是()A.②④⑤B.①②③C.①④⑤D.①③④ 二、填空题(每题3分,满分30分)5G 信号的传播速度为300000000m/s ,将数据300000000用科学记数法表示为________.在函数y =√x−2中,自变量x 的取值范围是________.如图,Rt △ABC 和Rt △EDF 中,∠B =∠D ,在不添加任何辅助线的情况下,请你添加一个条件________,使Rt △ABC 和Rt △EDF 全等.一个盒子中装有标号为1、2、3、4、5的五个小球,这些球除了标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于6的概率为________.若关于x 的一元一次不等式组{x −1>02x −a <0 有2个整数解,则a 的取值范围是________.如图,AD 是△ABC 的外接圆⊙O 的直径,若∠BAD =40∘,则∠ACB =________∘.小明在手工制作课上,用面积为150πcm 2,半径为15cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为 10 cm .如图,在边长为4的正方形ABCD 中,将△ABD 沿射线BD 平移,得到△EGF ,连接EC 、GC .求EC +GC 的最小值为________.在矩形ABCD 中,AB =1,BC =a ,点E 在边BC 上,且BE =35a ,连接AE ,将△ABE 沿AE 折叠.若点B 的对应点B ′落在矩形ABCD 的边上,则折痕的长为________.如图,直线AM 的解析式为y =x +1与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为(1, 1).过点B 作EO 1⊥MA 交MA 于点E ,交x 轴于点O 1,过点O 1作x 轴的垂线交MA 于点A 1,以O 1A 1为边作正方形O 1A 1B 1C 1,点B 1的坐标为(5, 3).过点B 1作E 1O 2⊥MA 交MA 于E 1,交x 轴于点O 2,过点O 2作x 轴的垂线交MA 于点A 2.以O 2A 2为边作正方形O 2A 2B 2C 2.….则点B 2020的坐标________.三、解答题(满分60分)先化简,再求值:(2−x−1x+1)÷x 2+6x+9x 2−1,其中x =3tan 30∘−3.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点A(5, 2)、B(5, 5)、C(1, 1)均在格点上.(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;(2)画出△A 1B 1C 1绕点C 1顺时针旋转90∘后得到的△A 2B 2C 1,并写出点A 2的坐标;(3)在(2)的条件下,求△A 1B 1C 1在旋转过程中扫过的面积(结果保留π).如图,已知二次函数y=−x2+bx+c的图象经过点A(−1, 0),B (3, 0),与y轴交于点C.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使∠PAB=∠ABC,若存在请直接写出点P的坐标.若不存在,请说明理由.为了提高学生体质,战胜疫情,某中学组织全校学生宅家一分钟跳绳比赛,全校跳绳平均成绩是每分钟99次,某班班长统计了全班50名学生一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).求:((1))该班一分钟跳绳的平均次数至少是多少,是否超过全校的平均次数;(2)该班的一个学生说:“我的跳绳成绩是我班的中位数”请你给出该生跳绳成绩的所在范围;(3)从该班中任选一人,其跳绳次数超过全校平均数的概率是多少.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)如图①,在Rt△ABC中,∠ACB=90∘,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是________.(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为正整数),求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.如图,在平面直角坐标系中,矩形ABCD的边AB长是x2−3x−18=0的根,连接BD,∠DBC=30∘,并过点C作CN⊥BD,垂足为N,动点P从B点以每秒2个单位长度的速度沿BD方向匀速运动到D点为止;点M沿线段DA以每秒√3个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=________;(2)连接PM和MN,求△PMN的面积s与运动时间t的函数关系式;(3)在整个运动过程中,当△PMN是以PN为腰的等腰三角形时,直接写出点P的坐标.参考答案与试题解析2020年黑龙江省佳木斯市中考数学试卷一、选择题(每题3分,满分30分)1.【答案】此题暂无答案【考点】整式较混合轻算【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】中心较称图腾【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】由三视正活断几何体【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】众数算三平最数【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】根体判展式【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】等三三程形写建质与判定菱都资性质反比射函可铜象上误的坐标特征【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】分式明程稀解【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】菱较严面积菱都资性质直使三碳形望边扩的中线【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】二元一因方程似应用【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】二次常数换最值勾体定展全根三烛形做给质与判定正方来的性稳【解析】此题暂无解析【解答】此题暂无解答二、填空题(每题3分,满分30分)【答案】此题暂无答案【考点】科学较盛法含-表项较大的数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数自变于的取旋范围【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】直角三角射全等从判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】列表法三树状图州【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元三次实等另组每整数解【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角形的常换圆与外心【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】扇形体积硫计算圆于凸计算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】轴明称月去最键路线问题正方来的性稳平水因性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相验极角家的锰质与判定矩来兴性质勾体定展翻折变换(折叠问题)【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】规律型:因字斯变化类一次常数图按上点入适标特点一次水体的性质相验极角家的锰质与判定规律型:三形的要化类规律型:点的坐较【解析】此题暂无解析【解答】此题暂无解答三、解答题(满分60分)【答案】此题暂无答案【考点】特殊角根三角函股值分式因化简优值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】作图三腔转变换作图验流似变换扇形体积硫计算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次使如综合题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】频数(率)分布直方水加水正均数中位数概水常式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】旋因末性质等腰于角三旋形三角形因位线十理【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一三一臂感等散组的应用二元一因方程似应用二元一水使程组种应用—鉴其他问题二元一正构程组的置用——移程问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】四边正形合题【解析】此题暂无解析【解答】此题暂无解答。
佳木斯市2020版中考数学试卷(I)卷

佳木斯市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七下·中山期中) 121的平方根是()A .B . 11C .D .2. (2分)利用因式分解简便计算57×99+44×99-99正确的是()A . 99×(57+44)=99×101=9999B . 99×(57+44-1)=99×100=9900C . 99×(57+44+1)=99×102=10096D . 99×(57+44-99)=99×2=1983. (2分)(2018·泸州) 下列计算,结果等于a4的是()A . a+3aB . a5-aC . (a2)2D . a8÷a24. (2分)(2018·泸州) 如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A .B .C .D .5. (2分) (2018·泸州) 如图,直线a∥b,直线分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A . 50°B . 70°C . 80°D . 110°6. (2分)(2018·泸州) 某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A . 16,15B . 16,14C . 15,15D . 14,157. (2分)(2018·泸州) 如图,的对角线AC,BD相交于点O,是AB中点,且AE+EO=4,则的周长为()A . 20B . 16C . 12D . 88. (2分)(2018·泸州) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A . 9B . 6C . 4D . 39. (2分)(2018·泸州) 已知关于x的一元二次方程x2-2x+k-1=0有两个不相等的实数根,则实数的取值范围是()A . k≤2B . k≤0C . k<2D . k<010. (2分)(2018·泸州) 如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A .B .C .D .11. (2分)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y= 上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A . 3B . 2C .D .12. (2分)(2018·泸州) 已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为()A . 1或B . - 或C .D . 1二、填空题 (共4题;共4分)13. (1分) (2019·石景山模拟) 如果m2﹣m﹣3=0,那么代数式的值是________.14. (1分)(2011·泰州) 一个多项式与m2+m﹣2的和是m2﹣2m.这个多项式是________.15. (1分)把多项式2mx2﹣2m分解因式的结果是________.16. (1分) (2019·会宁模拟) 如图,作出边长为1的菱形ABCD,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1 ,使∠D1AC=60°,连接AC1 ,再以AC1为边作第三个菱形ACC2D2 ,使∠D2AC1=60°;…按此规律所作的第2019个菱形的边长为________.三、解答题 (共9题;共80分)17. (5分) (2017七下·洪泽期中) 因式分解;(1) 2a2﹣2;(2) m2﹣12mn+36n2 .18. (5分)(2018·泸州) 如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19. (5分)(2018·泸州) 化简:.20. (15分)(2018·泸州) 为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21. (10分)(2018·泸州) 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?22. (5分)(2018·泸州) 如图,甲建筑物AD,乙建筑物BC的水平距离为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).23. (10分)(2018·泸州) 一次函数y=kx+b的图象经过点A(-2,12),B(8,-3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数的图象相交于点C(x1 , y1),D(x2,y2),与轴交于点E,且CD=CE,求m的值.24. (10分) (2018·泸州) 如图,已知AB,CD是的直径,过点C作的切线交AB的延长线于点P,的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF·OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC= ,PB=4,求GH的长.25. (15分)(2018·泸州) 如图,已知二次函数的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1 , S2 ,若S1=4S2 ,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱周长取最大值时,求点G的坐标.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共9题;共80分)17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
黑龙江省佳木斯市2020版中考数学试卷A卷

黑龙江省佳木斯市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·福田模拟) -2相反数是()A .B . -2C . 2D . -2. (2分) (2018九上·杭州期末) Rt△ABC中,∠C=90°,sinA= ,则tanB的值是()A .B .C .D .3. (2分) (2016八上·长泰期中) 下列各式中,能用平方差公式分解因式的是()A . 4x2﹣4x+1B . ﹣a2+b2C . x2+y2D . ﹣x2﹣y24. (2分)在同一坐标系中,直线y=x+1与双曲线y=的交点个数为()A . 0个B . 1个C . 2个D . 不能确定5. (2分) (2016七上·太原期末) 为完成下列任务,最适合用普查的是()A . 了解全国七年级学生的视力情况B . 对乘坐高铁的乘客进行安检C . 了解一批电视机的使用寿命D . 检测汾河某段水域的水质情况6. (2分)下列结论:①一个三角形的3个外角的度数之比为2:3:4,则与之相应的3个内角度数之比为5:3:1;②在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°;④一个五边形最多有3个内角是直角;⑤两条直线被第三条直线所截,同位角的角平分线互相平行.其中正确结论有()A . 2个B . 3个C . 4个D . 5个7. (2分) (2019九上·滨湖期末) 用半径为5的半圆围成一个圆锥的侧面,则该圆锥的底面半径等于()A . 3B . 5C .D .8. (2分) (2015九上·海南期中) 下面命题正确的是()A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 等腰梯形的两个角一定相等C . 对角线互相垂直的四边形是菱形D . 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等9. (2分) (2017九上·河东期末) 如图,⊙O的半径为4,点P是⊙O外的一点,PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时,PA的长度为()A . 10B .C . 11D .10. (2分) (2020八下·合肥月考) 如图是一株美丽的“勾股树”,其中所有的四边形都是正方形,所有的三角形都是直三角形,若正方形的面积分别是9、25、1、9,则最大正方形的边长是()A . 12B . 44C .D . 无法确定二、填空题 (共8题;共10分)11. (1分)(2017·石家庄模拟) 27的立方根为________.12. (3分)指出下列各数是几位数:-1011是________位数.3 .2×108是________位数,6.0×105是________位数,13. (1分)在函数y= 中,自变量x的取值范围是________.14. (1分) (2019八下·泉港期中) 方程的解是________.15. (1分) (2019九上·南昌开学考) 如图,在一个与地面垂直的截面中建立直角坐标系(横坐标表示地面位移,纵坐标表示高度),一架无人机的飞行路线为y=ax2+bx+c(a≠0),在直角坐标系中x轴上的线段AB上的某点起飞,途经空中线段EF上的某点,最后在线段CD上的某点降落,其中A(﹣2,0)、B(﹣1,0)、C(3,0)、D (4,0)、E(0,3)、F(0,2),则下列结论正确的有________(填序号)⑴abc<0;⑵从起飞到当x≤1时无人机一直是上升的;⑶2≤a+b+c≤4.5;⑷最大飞行高度不超过4.16. (1分)(2019七下·卫辉期末) 如图,把一副三角板如图甲放置,其中,斜边,把三角板绕点顺时针旋转得到(如图乙).这时与相交于点,与相交于点,则的度数为________.17. (1分) (2019九上·江岸月考) 如图,将边长为6的正方形沿其对角线剪开,再把沿着方向平移,得到,当两个三角形重叠部分的面积为5时,则为________.18. (1分) (2016九上·武威期中) 如图,△ABC绕着点C顺时针旋转35°得到△A1B1C,若A1B1⊥AC,则∠A的度数是________.三、解答题 (共10题;共95分)19. (5分)(2017·滨海模拟) ﹣ +|﹣3|.20. (10分) (2017八下·诸城期中) 解下列不等式或不等式组,并把解集在数轴上表示出来:(1)﹣≥1;(2).21. (5分)(2020·南京模拟) 如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF,求证:△ABE≌△CDF.22. (5分)(2019·朝阳模拟) 如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和小于6的概率.23. (12分)(2018·潮南模拟) 某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3:4:5:8:2,又知此次调查中捐20元的人数为24人,(1)他们一共抽查了多少人?捐款数不少于20元的概率是多少?(2)这组数据的众数是________(元)、中位数是________(元);(3)若该校共有660名学生,请估算全校学生共捐款多少元?24. (10分)(2016·日照) 如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF 绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1) EA是∠QED的平分线;(2) EF2=BE2+DF2 .25. (15分) (2017七上·龙湖期末) 某班要买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价40元,乒乓球每盒10元,经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的9折优惠,现已知该班需买球拍6副,乒乓球若干盒(不小于6盒).(1)当购买乒乓球多少盒时,按两家的优惠方式付款一样多?(2)当购买乒乓球20盒时,那家商店购买比较合算?(3)当购买乒乓球40盒时,那家商店购买比较合算?26. (10分)(2020·宿州模拟) 如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数的图象在第四象限的相交于点P,并且PA⊥y轴于点A,已知A (0,﹣6),且S△CAP=18.(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.27. (13分)观察下列等式:=1﹣, = ﹣, = ﹣,将以上三个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣ =1﹣ = .(1)猜想并写出: =________.(2)直接写出下列各式的计算结果:① + + +…+ =________;② + + +…+ =________.(3)计算:| ﹣1|+| ﹣|+…+| ﹣ |+| ﹣ |;(4)探究并计算: + + +…+ .28. (10分) (2016八上·鞍山期末) 如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABCM的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共95分)19-1、20-1、20-2、21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、27-4、第11 页共12 页28-1、28-2、第12 页共12 页。
黑龙江省佳木斯市2020版中考数学试卷B卷

黑龙江省佳木斯市2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)从﹣3,﹣1,1,5,6五个数中任取两个数相乘,若所得积中的最大值为a,最小值为b,则的值为()A . ﹣B . ﹣2C . ﹣D . ﹣102. (2分)(2018·河南模拟) 右图是由6个小正方体搭建而成的几何体,它的俯视图是()A .B .C .D .3. (2分)下列各式计算正确的是()A . 2+b=2bB . -=C . (2a2)3=8a5D . a6÷a4=a24. (2分) (2018七上·大庆期中) 对于图中标记的各角,下列条件能够推理得到a∥b的是()A . ∠1=∠2B . ∠2=∠4C . ∠3=∠4D . ∠1+∠4=180°5. (2分)剪纸是中国的民间艺术.剪纸方法很多,如图是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):如图所示的四副图案,不能用上述方法剪出的是()A .B .C .D .6. (2分)(2016·黔东南) 小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小丽需要购买3个商品A和2个商品B,则她要花费()A . 64元B . 65元C . 66元D . 67元二、填空题 (共8题;共8分)7. (1分) (2018七上·宁波期中) ________.8. (1分) (2019七上·萧山月考) “x的与y的差”用代数式可以表示为 ________.9. (1分) (2019八下·乌兰浩特期中) 已知,则 =________10. (1分)关于x的方程kx2﹣4x﹣ =0有实数根,则k的取值范围是________.11. (1分) (2016八上·海盐期中) 等腰直角三角形ABC中,∠BAC=90°,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为________ cm.12. (1分)(2019·包河模拟) 菱形中,,,点是对角线所在直线上一点,且,直线交直线于点,则 ________13. (1分) (2018九上·开封期中) 如图,在⊙O中,=,∠AOB与∠COD的关系是________.14. (1分) (2017八下·濮阳期中) 如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE=________.三、解答题 (共12题;共116分)15. (15分)去括号:(1)-(3a2-4b-5ab+2b2);(2)-3(2m-3n-m2);(3) 3x+[4y-(7z+3)].16. (5分) (2017九上·汉阳期中) 如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.17. (5分) (2018九上·建平期末) 在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.18. (5分)如图,已知正比例函数y=x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为24,求点P的坐标.19. (10分)(2019·兰坪模拟) 某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?20. (13分)(2013·海南) 如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O对称的△A2B2C2;(3)点C1的坐标是________;点C2的坐标是________;过C、C1、C2三点的圆的圆弧的长是________(保留π).21. (10分) (2016九上·广饶期中) 如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度i=1:,斜坡BD的长是50米,在山坡的坡底B处测得铁架顶端A的仰角为45°,在山坡的坡顶D处测得铁架顶端A的仰角为60°.(1)求小山的高度;(2)求铁架的高度.(≈1.73,精确到0.1米)22. (1分)(2019·滨城模拟) 某校篮球班21名同学的身高如下表:身高/cm180185187190201人数/名46542则该校篮球班21名同学身高的中位数是________cm.23. (12分)(2018·伊春) 某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为________件,图中d值为________.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?24. (10分)(2019·徽县模拟) 如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.(1)求证:四边形DEBC是平行四边形;(2)若BD=9,求DH的长.25. (20分)(2017·新泰模拟) 如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y= x2+bx+c经过点B,且顶点在直线x= 上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x 轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.26. (10分)(2020·蔡甸模拟) 在锐角△ABC中,边BC长为18,高AD长为12(1)如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;(2)设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共8题;共8分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共12题;共116分)15-1、15-2、15-3、16-1、17-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每题 3 分,满分 30 分) 1.(3 分)下列各运算中,计算正确的是 (
A. a2 2a2 = 2a4
) B. x8 ÷ x2 = x4
C. (x − y)2 = x2 − xy + y2
D. (−3x2 )3 = −9x6
2.(3 分)下列图标中是中心对称图形的是 ( )
三、解答题(满分 60 分)
21.(5
分)先化简,再求值:
(2
−
x x
− 1) +1
÷
x2
+ 6x + x2 −1
9
,其= 中 x
3 tan 30° − 3 .
22.(6 分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐
标系中, ∆ABC 的三个顶点 A(5, 2) 、 B(5,5) 、 C(1,1) 均在格点上.
(1)求 ME 的函数解析式; (2)求快递车第二次往返过程中,与货车相遇的时间. (3)求两车最后一次相遇时离武汉的距离.(直接写出答案) 26.(8 分)如图①,在 Rt∆ABC 中,∠ACB =90° , AC = BC ,点 D 、 E 分别在 AC 、 BC 边 上, DC = EC ,连接 DE 、 AE 、 BD ,点 M 、 N 、 P 分别是 AE 、 BD 、 AB 的中点,连 接 PM 、 PN 、 MN . (1) BE 与 MN 的数量关系是 . (2)将 ∆DEC 绕点 C 逆时针旋转到图②和图③的位置,判断 BE 与 MN 有怎样的数量关系? 写出你的猜想,并利用图②或图③进行证明.
23.(6 分)如图,已知二次函数 y =−x2 + bx + c 的图象经过点 A(−1, 0) , B (3, 0) ,与 y 轴 交于点 C . (1)求抛物线的解析式; (2)抛物线上是否存在点 P ,使 ∠PAB = ∠ABC ,若存在请直接写出点 P 的坐标.若不存 在,请说明理由.
24.(7 分)为了提高学生体质,战胜疫情,某中学组织全校学生宅家一分钟跳绳比赛,全 校跳绳平均成绩是每分钟 99 次,某班班长统计了全班 50 名学生一分钟跳绳成绩,列出的频 数分布直方图如图所示,(每个小组包括左端点,不包括右端点). 求:(1)该班一分钟跳绳的平均次数至少是多少,是否超过全校的平均次数; (2)该班的一个学生说:“我的跳绳成绩是我班的中位数”请你给出该生跳绳成绩的所在范 围; (3)从该班中任选一人,其跳绳次数超过全校平均数的概率是多少.
A.3.6
B.3.8 或 3.2
C.3.6 或 3.4
D.3.6 或 3.2
【解答】解:从小到大排列的数据: x ,3,4,4, 5(x 为正整数),唯一的众数是 4,
为. 12.(3 分)在函数 y = 1 中,自变量 x 的取值范围是 .
x−2 13.(3 分)如图, Rt∆ABC 和 Rt∆EDF 中, ∠B =∠D ,在不添加任何辅助线的情况下,请
你添加一个条件 ,使 Rt∆ABC 和 Rt∆EDF 全等.
14.(3 分)一个盒子中装有标号为 1、2、3、4、5 的五个小球,这些球除了标号外都相同, 从中随机摸出两个小球,则摸出的小球标号之和大于 6 的概率为 .
B.15 种
C.16 种
D.14 种
10.(3 分)如图,正方形 ABCD 的边长为 a ,点 E 在边 AB 上运动(不与点 A , B 重合),
∠DAM = 45° ,点 F 在射线 AM 上,且 AF = 2BE ,CF 与 AD 相交于点 G ,连接 EC 、EF 、
EG .则下列结论:
① ∠ECF =45° ; ② ∆AEG 的周长为 (1 + 2 )a ;
第 3 页(共 31 页)
19.(3 分)在矩形 ABCD 中, AB = 1 , BC = a ,点 E 在边 BC 上,且 BE = 3 a ,连接 AE , 5
将 ∆ABE 沿 AE 折叠.若点 B 的对应点 B′ 落在矩形 ABCD 的边上,则折痕的长为 . 20.(3 分)如图,直线 AM 的解析式为 y= x + 1与 x 轴交于点 M ,与 y 轴交于点 A ,以 OA 为边作正方形 ABCO ,点 B 坐标为 (1,1) .过点 B 作 EO1 ⊥ MA 交 MA 于点 E ,交 x 轴于点 O1 , 过点 O1 作 x 轴的垂线交 MA 于点 A1 ,以 O1 A1 为边作正方形 O1 A1B1C1 ,点 B1 的坐标为 (5,3) .过 点 B1 作 E1O2 ⊥ MA 交 MA 于 E1 ,交 x 轴于点 O2 ,过点 O2 作 x 轴的垂线交 MA 于点 A2 .以 O2 A2 为边作正方形 O2 A2 B2C2 . … .则点 B2020 的坐标 .
C.3.6 或 3.4
D.3.6 或 3.2
5.(3 分)已知关于 x 的一元二次方程 x2 − (2k + 1)x + k 2 + 2k = 0 有两个实数根 x1 , x2 ,则实
数 k 的取值范围是 ( )
A. k < 1 4
B. k„ 1 4
C. k > 4
D. k„ 1 且 k ≠ 0 4
)
x−2
2−x
A. −8 < k < 0
B. k > −8 且 k ≠ −2 C. k > −8 且 k ≠ 2 D. k < 4 且 k ≠ −2
8.(3 分)如图,菱形 ABCD 的对角线 AC 、 BD 相交于点 O ,过点 D 作 DH ⊥ AB 于点 H ,
连接 OH ,若 OA = 6 , S菱形ABCD = 48 ,则 OH 的长为 (
D. (−3x2 )3 = −9x6
【解答】解: A 、 a2 2a2 = 2a4 ,正确; B 、 x8 ÷ x2 = x6 ,故此选项错误; C 、 (x − y)2 =x2 − 2xy + y2 ,故此选项错误;
D 、 (−3x2 )3 = −27x6 ,故此选项错误; 故选: A . 2.(3 分)下列图标中是中心对称图形的是 ( )
第 7 页(共 31 页)
第 8 页(共 31 页)
2020 年黑龙江省佳木斯市中考数学试卷
参考答案与试题解析
一、选择题(每题 3 分,满分 30 分) 1.(3 分)下列各运算中,计算正确的是 (
A. a2 2a2 = 2a4
) B. x8 ÷ x2 = x4
C. (x − y)2 = x2 − xy + y2
第 6 页(共 31 页)
27.(10 分)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、 乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克 m 元,售价每千克 16 元;乙种蔬 菜进价每千克 n 元,售价每千克 18 元. (1)该超市购进甲种蔬菜 15 千克和乙种蔬菜 20 千克需要 430 元;购进甲种蔬菜 10 千克和 乙种蔬菜 8 千克需要 212 元,求 m , n 的值. (2)该超市决定每天购进甲、乙两种蔬菜共 100 千克,且投入资金不少于 1160 元又不多于 1168 元,设购买甲种蔬菜 x 千克 (x 为正整数),求有哪几种购买方案. (3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出 2a 元,乙种蔬菜每千克捐出 a 元给当地福利院,若要保证捐款后的利润率不低于 20% ,求 a 的最大值. 28.(10 分)如图,在平面直角坐标系中,矩形 ABCD 的边 AB 长是 x2 − 3x −18 = 0 的根,连 接 BD , ∠DBC =30° ,并过点 C 作 CN ⊥ BD ,垂足为 N ,动点 P 从 B 点以每秒 2 个单位长 度的速度沿 BD 方向匀速运动到 D 点为止;点 M 沿线段 DA 以每秒 3 个单位长度的速度由 点 D 向点 A 匀速运动,到点 A 为止,点 P 与点 M 同时出发,设运动时间为 t 秒 (t > 0) . (1)线段 CN = ; (2)连接 PM 和 MN ,求 ∆PMN 的面积 s 与运动时间 t 的函数关系式; (3)在整个运动过程中,当 ∆PMN 是以 PN 为腰的等腰三角形时,直接写出点 P 的坐标.
15.(3
分)若关于
x
的一元一次不等式组
x −1 2x −
> a
0 <
0
有
2
个整数解,则
a
的取值范围是
.
16.(3 分)如图, AD 是 ∆ABC 的外接圆 O 的直径,若 ∠BAD =40° ,则 ∠ACB = ° .
17.(3 分)小明在手工制作课上,用面积为150π cm2 ,半径为15cm 的扇形卡纸,围成一个 圆锥侧面,则这个圆锥的底面半径为 cm . 18.(3 分)如图,在边长为 4 的正方形 ABCD 中,将 ∆ABD 沿射线 BD 平移,得到 ∆EGF , 连接 EC 、 GC .求 EC + GC 的最小值为 .
(1)将 ∆ABC 向左平移 5 个单位得到△ A1B1C1 ,并写出点 A1 的坐标;
(2)画出△ A1B1C1 绕点 C1 顺时针旋转 90° 后得到的△ A2 B2C1 ,并写出点 A2 的坐标;
(3)在(2)的条件下,求△ A1B1C1 在旋转过程中扫过的面积(结果保留 π ) .
第 4 页(共 31 页)
2 ③ BE2 + DG2 = EG2 ; ④ ∆EAF 的面积的最大值是 1 a2 ;
8 ⑤当 BE = 1 a 时, G 是线段 AD 的中点.
3 其中正确的结论是 ( )
第 2 页(共 31 页)
A.①②③
B.②④⑤
C.①③④
D.①④⑤
二、填空题(每题 3 分,满分 30 分)