9指数与指数函数
指数与指数函数知识点

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载指数与指数函数知识点地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容指数函数(一)整数指数幂1.整数指数幂概念:2.整数指数幂的运算性质:(1)(2)(3)其中,.3.的次方根的概念一般地,如果一个数的次方等于,那么这个数叫做的次方根,即:若,则叫做的次方根,例如:27的3次方根,的3次方根,32的5次方根,的5次方根.说明:①若是奇数,则的次方根记作;若则,若则;②若是偶数,且则的正的次方根记作,的负的次方根,记作:;(例如:8的平方根 16的4次方根)③若是偶数,且则没意义,即负数没有偶次方根;④ ∴;⑤式子叫根式,叫根指数,叫被开方数。
∴..4.的次方根的性质一般地,若是奇数,则;若是偶数,则.(二)分数指数幂1.分数指数幂:即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)对分数指数幂也适用,例如:若,则,,∴ .即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。
规定:(1)正数的正分数指数幂的意义是;(2)正数的负分数指数幂的意义是.2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用即说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用;(2)0的正分数指数幂等于0,0的负分数指数幂没意义。
二、指数函数1.指数函数定义:一般地,函数(且)叫做指数函数,其中是自变量,函数定义域是.2.指数函数在底数及这两种情况下的图象和性质:1.1 实数指数幂及其运算(一)(一)选择题1.下列正确的是( )A.a0=1 B. C.10-1=0.1 D.2.的值为( )A.±2B.2 C.-2 D.43.的值为( )A.B.C.D.4.化简的结果是( )A.a B.C.a2 D.a35.把下列根式化成分数指数幂的形式(其中a,b>0)(1)______;(2)=______;6.______.7.化简______.8.=______(三)解答题9.计算10.计算1.2 实数指数幂及其运算(二)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的) 1.下列说法正确的是(n∈N*)( )A.正数的n次方根是正数B.负数的n次方根是负数C.0的n次方根是0 D.是无理数2.函数的定义域为( )A.R B.[0,+∞)C.(0,+∞)D.(-∞,1] 3.可以简化为( )A.B.C.D.4.化简的结果是( )A.B.x2 C.x3 D.x4(二)填空题5.________,________________________.6.________.7.计算________.8.若a+a-1=3,则a2+a-2=______.10.若求的值.1.3 指数函数(一)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.一种细胞在分裂时由一个分裂成两个,两个分裂成四个,四个分裂成八个……每天分裂一次.现在将一个该细胞放入一个容器,发现经过10天就可充满整个容器,则当细胞分裂到充满容器一半时需要的天数是( ) A.5 B.9 C.6 D.82.下列函数中为指数函数的是( )A.y=2·3x B.y=-3x C.y=3-x D.y=1x3.若0.2m=3,则( )A.m>0 B.m<0 C.m=0 D.以上答案都不对4.函数f(x)=ax+1(其中a>0且a≠1)的图象一定经过点( )A.(0,1) B.(0,2) C.(0,3) D.(1,3)(二)填空题5.若函数f(x)是指数函数且f(3)=8,则f(x)=______.6.函数的定义域为______,值域为______.7.函数y=2x-1的图象一定不经过第______象限;若函数的图象不经过第一象限,则实数b的取值范围是______.8.若2m>4,则m的取值范围是______;若(0.1)t>1,则t的取值范围是______.9.指数函数y=(a2-1)x在R上是减函数,则实数a的取值范围是______.(三)解答题10.根据函数f(x)=2x的图象,画出下列函数的草图.(1)y=-2x (2)y=-2x+1 (3)y=2|x|11.求函数的定义域和值域.12.已知a>0且a≠1,函数f1(x)=,f2(x)=,若f1(x)<f2(x),求x 的取值范围.1.4 指数函数(二)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.若,则x的取值范围是( )A.(-∞,-3] B.(-∞,-3) C.[-3,+∞)D.R2.已知三个数M=0.32-0.32,P=0.32-3.2,Q=3.2-0.32,则它们的大小顺序是( )A.M<P<Q B.Q<M<P C.P<Q<M D.P<M<Q3.如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与0和1的大小关系是( )A.0<a<b<1<c<d B.0<b<a<1<d<cC.1<a<b<c<d D.0<a<b<1<d<c4.函数y=2x-2-x( )A.在R上减函数B.在R上是增函数C.在(-∞,0)上是减函数,在(0,+∞)上是增函数D.无法判断其单调性(二)填空题5.函数y=3x+1-2的图象是由函数y=3x的图象沿x轴向______平移______个单位,再沿y轴向______平移______个单位得到的.6.函数f(x)=3x+5的值域是______.7.函数y=ax-1+1(其中a>0且a≠1)的图象必经过点______.8.若指数函数y=ax在区间[0,1]上的最大值和最小值的差为,则底数a =______.9.函数g(x)=x2-x的单调增区间是______,函数y=的单调增区间是______.(三)解答题10.函数f(x)是R上的奇函数,且当x≥0时,f(x)=2x-1,求x<0时函数的解析式.11.若关于x的方程|2x-1|=a有两个解,借助图象求a的取值范围.12.已知函数f(x)=22x-2x+1-3,其中x∈[0,1],求f(x)的值域.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。
指数与指数函数知识点

指数与指数函数知识点一、指数运算的基本性质1.任何数的0次方等于12.非零数的负指数等于该数的倒数。
3.相同底数的指数之间的乘方运算,底数保持不变,指数相加。
4.相同指数的指数之间的乘方运算,指数保持不变,底数相乘。
二、指数运算的规律1.法则1:a的m次方乘以a的n次方,等于a的m加n次方。
2.法则2:a的m次方除以a的n次方,等于a的m减n次方。
3.法则3:(a的m次方)的n次方,等于a的m乘n次方。
4.法则4:a的m次方的p次方,等于a的m乘p次方。
5.法则5:零的任何正次方都是0,零的0次方没有意义,规定为1三、指数函数的定义与性质指数函数的定义为:y=a^x,其中a>0且a≠1,a为底数,x为指数。
指数函数可以看作是以底数为底,自变量为指数的函数。
指数函数的性质如下:1.底数a大于1时,指数函数是递增的,即自变量x的增大,函数值y也增大。
2.底数a介于0和1之间时,指数函数是递减的,即自变量x的增大,函数值y也减小。
3.指数函数的图象都经过点(0,1),即当x=0时,y=14.指数函数的图象在直线x=0和y=0上均没有交点。
5.指数函数的图象没有水平渐近线,但有一条过点(0,0)的铅直渐近线。
指数函数常见的应用有:1.在金融领域中,指数函数可以用来描述货币的增长规律,例如复利计算。
2.在自然科学领域中,指数函数可以用来描述人口增长、病原体传播等现象。
3.在电路中,指数函数可以用来描述电容、电感等元件的充放电过程。
4.在计算机领域中,指数函数可以用来描述算法的时间复杂度、空间复杂度等特性。
总结:。
指数函数概念

指数函数概念指数函数是一种重要的数学函数,可以用来描述某种特定情况下量级增长的情况。
它由变量x和常数a共同决定,表达式可以写作f(x)=a^x 。
指数函数中a叫做指数,x叫做底数,当x为负值时,指数函数会产生一定的不同,变成f(x)=a^(-x) 。
指数函数的含义是指底数x的次方乘以指数a,因此指数函数又可以描述为:f(n)=a^n 。
在这里,n为正整数,表示底数的次方,a 为正实数,表示指数。
当n=0时,f(n)=a^0 一定是1,这是因为任何次方除0以外的任何正整数都可以写成乘方来求出,所以当n为0时,应该乘以1来结果f(n)为1。
从另一个角度来看,指数函数体现了一种指数与实际情况相关的增长速度,也就是如果每次乘以同一个值,则产生的增长速度越来越快。
另一方面,指数函数也可以用来表示某物的指数衰减,比如衰减的音量可以用f(x)=a^(-x)表示,其中a表示初始音量,而x为衰减次数,当x越大,衰减量就越大。
指数函数的应用广泛,它可以广泛应用于经济学,物理学,生物学等领域,可以更好地描述某一种以指数形式增长或者衰减的规律,比如对物体衰减的热量,物质散失指数衰减等情况。
指数函数也可以用来表示在某一种增长速率下,物质量的变化情况,以及在科学研究中与指数概念相关的情况,例如詹姆斯-库克公式也是通过指数函数表达的。
求解指数函数也是一个非常重要的数学技能。
首先,当指数和底数都是实数时,可以用求导的方法来求解,即求f(x)=ln(a)*a^x 。
同时,还可以采用求和的方法来解决求解指数函数,即用π函数求和的方式来求解。
总之,指数函数是一种重要的数学函数,可以用来描述特定情况下量级增长或衰减的情况,它有着广泛的应用,而且能够更好地描述某一种以指数形式增长或者衰减的规律,作为一门必修课程,认真学习指数函数的基础知识,并如实理解和掌握指数函数概念是非常有必要的。
高中数学复习教案:指数与指数函数

第五节 指数与指数函数[考纲传真] 1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景,理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象.3.体会指数函数是一类重要的函数模型.1.根式n 次方根概念 如果x n =a ,那么x 叫作a 的n 次方根,其中n >1,n ∈N *表示 当n 是奇数时,a 的n 次方根x =na当n 是偶数时,正数的n 次方根x =±n a ;负数没有偶次方根0的任何次方根都是0,记作n0=0根式概念 式子n a 叫作根式,其中n 叫作根指数,a 叫作被开方数性质 (na )n =a当n 为奇数时,na n =a当n 为偶数时,na n=|a |=⎩⎨⎧a ,a ≥0-a ,a <02.(1)分数指数幂①正分数指数幂:a m n =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -m n =1a m n =1n a m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的运算性质 ①a r ·a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q );③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质y =a xa >10<a <1图象定义域 R 值域(0,+∞) 性质(0,1) 过定点当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1; x <0时,y >1在R 上是增函数在R 上是减函数[常用结论]指数函数的图象与底数大小的关系如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b .由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,且a ≠1)的图象越高,底数越大.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)4(-4)4=-4.( ) (2)(-1) 24=(-1) 12=-1. ( ) (3)函数y =2x-1是指数函数.( )(4)若a m <a n (a >0且a ≠1),则m <n . ( )[答案] (1)× (2)× (3)× (4)×2.化简[(-2)6]12-(-1)0的结果为( )A .-9B .7C .-10D .9 B [原式=(26) 12-1=8-1=7.]3.(教材改编)若函数f (x )=a x (a >0,且a ≠1)的图象经过点P ⎝ ⎛⎭⎪⎫2,12,则f (-1)等于( )A.22 B. 2 C.14D .4B [由题意知12=a 2,所以a =22,所以f (x )=⎝ ⎛⎭⎪⎫22x,所以f (-1)=⎝ ⎛⎭⎪⎫22-1= 2.]4.函数y =a x -a (a >0,且a ≠1)的图象可能是( )A B C DC [令y =a x -a =0,得x =1,即函数图象必过定点(1,0),符合条件的只有选项C.] 5.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. (1,2) [由题意知0<2-a <1, 解得1<a <2.]指数幂的化简与求值1.A.⎝ ⎛⎭⎪⎫n m 7=n 7m 17 B.12(-3)4=3-3 C.4x 3+y 3=(x +y )34 D.39=33D [39=(913)12=916=313=33,故选D.]2.若a >0,b >0,则化简=________.ab -1 [原式===ab -1.]3.化简-10(5-2)-1+3π0+59=________.-16 [原式=⎝⎛⎭⎪⎫82723+50012-105-2+3+59 =49+105-10(5+2)+3+59 =-16.]4.若x 12+x -12=3,则=________.25[由x 12+x -12=3得x +x -1+2=9. 所以x +x -1=7.同理由x +x -1=7可得x 2+x -2=47.x 32+x -32=(x 12+x -12)(x +x -1-1)=3×6=18. 所以[规律方法] 指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解题. 易错警示:运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.指数函数的图象及应用【例1】 (1)函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)已知函数f(x)=3+a2x-4的图象恒过定点P,则点P的坐标是________.(3)若曲线y=|3x-1|与直线y=k只有一个公共点,则实数k的取值范围为________.(1)D(2)(2,4)(3){0}∪[1,+∞)[(1)由f(x)=a x-b的图象可以观察出函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.(2)令2x-4=0得x=2,且f(2)=4,则点P的坐标为(2,4).(3)函数y=|3x-1|的图象是由函数y=3x的图象向下平移一个单位后,再把位于x轴下方的图象沿x轴翻折到x轴上方得到的,函数图象如图所示.当k=0或k≥1时,直线y=k与函数y=|3x-1|的图象有唯一的交点.][规律方法]指数函数图象应用的4个技巧(1)画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),.(2)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(3)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(4)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.(1)函数y=xa x|x|(a>1)的图象大致是()A B C D(2)函数f(x)=2|x-1|的图象是()A B C D(3)已知a >0,且a ≠1,若函数y =|a x -2|与y =3a 的图象有两个交点,则实数a 的取值范围是________.(1)B (2)B (3)⎝ ⎛⎭⎪⎫0,23 [(1)y =⎩⎨⎧a x ,x >0,-a x ,x <0,又a >1,故选B.(2)函数f (x )=2|x -1|的图象可由y =2|x |的图象向右平移1个单位得到,故选B. (3)①当0<a <1时,如图①,所以0<3a <2,即0<a <23; ②当a >1时,如图②,而y =3a >1不符合要求.图① 图②所以0<a <23.]指数函数的性质及应用►考法1 比较指数式的大小【例2】 已知a =343,b =925,c =12113,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <bA [因为a =343=923>925=b ,c =12113=1123>923=a ,所以c >a >b .故选A.] ►考法2 解简单的指数方程或不等式 【例3】 (1)设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x-7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)(2)已知实数a ≠1,函数f (x )=⎩⎨⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.(1)C (2)12 [(1)当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a-7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1,所以0≤a <1.故a 的取值范围是(-3,1).故选C.(2)当a <1时,41-a =21,解得a =12;当a >1时,代入不成立.故a 的值为12.]►考法3 与指数函数有关的函数的值域或最值问题【例4】 (1)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.(2)已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.(1)-32 (2)52[(1)当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得⎩⎨⎧a -1+b =-1,a 0+b =0,无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎨⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.(2)y =12(2x )2-3·2x +5.令t =2x ,由0≤x ≤2得1≤t ≤4,又y =12t 2-3t +5=12(t -3)2+12, ∴当t =1时,y 有最大值,最大值为52.] ►考法4 复合函数的单调性、值域或最值【例5】 函数f (x )=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调递减区间是________,值域是________.(-∞,1] ⎝ ⎛⎭⎪⎫14,+∞ [令u =-x 2+2x +1,则u =-(x -1)2+2.又y =⎝ ⎛⎭⎪⎫12u 在R 上是减函数,则函数f (x )=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调递减区间为函数u =-x 2+2x +1的增区间.由此函数f (x )的单调递减区间为(-∞,1].因为u ≤2,则f (x )≥⎝ ⎛⎭⎪⎫122=14,即函数f (x )的值域为⎣⎢⎡⎭⎪⎫14,+∞.] [规律方法]应用指数函数性质综合的常考题型及求解策略常考题型 求解策略比较幂值的大小 (1)能化成同底数的先化成同底数幂再利用单调性比较大小.(2)不能化成同底数的,一般引入“1”等中间量比较大小解简单指数不等式 先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致(1)(2019·信阳模拟)已知a =⎝ ⎛⎭⎪⎫35-12,b =⎝ ⎛⎭⎪⎫35-14,c =⎝ ⎛⎭⎪⎫32-34,则a ,b ,c 的大小关系是( )A .c <a <bB .a <b <cC .b <a <cD .c <b <a(2)(2019·长春模拟)函数y =4x +2x +1+1的值域为( ) A .(0,+∞) B .(1,+∞) C .[1,+∞) D .(-∞,+∞)(3)已知函数y =2-x 2+ax +1在区间(-∞,3)上单调递增,则a 的取值范围为________.(4)函数y =2-x 2+2x的值域为________.(1)D (2)B (3)[6,+∞) (4)(0,2] [(1)c =⎝ ⎛⎭⎪⎫32-34=⎝ ⎛⎭⎪⎫278-14,则⎝ ⎛⎭⎪⎫35-13>⎝ ⎛⎭⎪⎫35-14>⎝ ⎛⎭⎪⎫278-14,即a >b >c ,故选D. (2)y =4x +2x +1+1=(2x )2+2·2x +1, 令t =2x ,则t >0,∴y =t 2+2t +1=(t +1)2>1,故选B.(3)由题意知,函数u=-x2+ax+1在区间(-∞,3)上单调递增,则a2≥3,即a≥6.(4)-x2+2x=-(x-1)2+1≤1,则0<y≤2.即函数y=2-x2+2x的值域为(0,2].]。
高中数学指数运算与指数函数课件

(2)f (x)=2x2+x+1-1 2=1-2x+2 1, 因为 2x+1>1,所以 0<2x+2 1<2, 即-2<-2x+2 1<0, 所以-1<1-2x+2 1<1。 所以 f (x)的值域为(-1,1)。
(3)g(x)为偶函数。 由题意知 g(x)=f xx=22xx+ -11·x, 易知函数 g(x)的定义域为(-∞,0)∪(0,+∞), g(-x)=(-x)·22- -xx+ -11=(-x)·11-+22xx=x·22xx-+11=g(x), 所以函数 g(x)为偶函数。
(2)若 f (x)为奇函数,则 f (0)=0,即 a-20+2 1=0,解得 a=1。 此时 f (-x)=1-2-x2+1=1-12+·22xx=-1-2x+2 1=-f (x),故当 a=1 时,函数 f (x) 为奇函数。 (3)由(2)知 f (x)=1-2x+2 1,因为 2x+1>1,所以 0<2x+1 1<1, 所以 0<2x+2 1<2,所以-2<-2x+2 1<0,所以-1<1-2x+2 1<1,即-1<f (x)<1,所以 f (x)的值域为(-1,1)。
【解析】 因为 2x>0,所以 2x+1>1,即|y|>1,又因为曲线|y|=2x+1 与 直线 y=b 没有公共点,所以-1≤b≤1。
【答案】 [-1,1]
方法小结 (1)处理函数图象问题的策略 ①抓住特殊点:指数函数的图象过定点(0,1)。 ②巧用图象变换:函数图象的平移变换(左右平移、上下平移)。 ③利用函数的性质:奇偶性与单调性。
23-x 的图象。
答案 A
[解析] (2)
由题意得[f(x)-2]·[f(x)-a]=0,所以 f(x)=2 或 f(x)=a, 所以|3x-1|+1=2 或|3x-1|+1=a,所以|3x-1|=1 或|3x-1|=a-1, |3x-1|=1 有一个根,所以方程|3x-1|=a-1 有两个不同的实根, 函数 y=|3x-1|的图象如图所示,所以 0<a-1<1,所以 1<a<2.
指数与指数函数 (1)

函数一轮复习学案五(指数与指数函数)知识梳理一.指数的概念与分数指数幂1、根式的概念:一般地,如果一个数的n 次方等于)1(*N n n a ∈>且,那么这个数叫做a 的n 次方根。
也就是说,若a x n =,则x 叫做a 的n 次方根,其中*1N n n ∈>且。
式子n a 叫做根式,n 叫做根指数,a 叫做被开方数。
2、根式的性质:(1)当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示。
(2)当n 为偶数时,正数的n 次方根有两个,它们互为相反数,这时正数的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示。
正负两个n 次方根能够合写为)0(>±a a n 。
此时,负数没有n 次方根。
(3)()a a nn=;(4)当n 为奇数时,a a n n =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(a a a a a a n n(5)零的任何次方根都是零。
3、分数指数幂的意义: (1))1,,0(*>∈>=n N n m a a a n m nm 且,;(2))1,,0(1≥∈>=⨯-n N n m a aanm nm ,且4、指数的运算法则: (1)),,0(Q s Q r a aa a sr sr∈∈>=⋅+;(2))(Q s Q r a a a a sr sr∈∈>=÷-,,0 (3)()),,0(Q s Q r a a a rs sr∈∈>=;(4)()),,0(Q s Q r a a a ab sr r∈∈>⋅=二.指数函数的图像和性质1、指数函数的概念:一般地,函数)10(≠>=a a a y x且叫做指数函数,其中x 是自变量, 的定义域是R 。
3、深化:(1)指数函数的定义必须符合xa y =才能够,如函数xy 32⨯=不是指数函数。
指数式与指数函数

解析:因为
CLI
Cf(xK)=T
1 O2
x,f(x1+x2)=
ADD TITL
1 x1 2E
x2
=
1 2
x1
·1 2
x2
=f(x1)·f(x2),
所以①成立,②不成立;
感谢您的欣赏 显然函数
f(x)=
1 2
x
单调递减,即fxx11- -fx2x2<0,故③成立;
当 x1<0 时,f(x1)>1,fx1x1-1<0, 当 x1>0 时,答0<案f(x1:)<1①,f③x1x④1-⑤1<0,故④成立;
∴f(x1)-f(x2)<0,即 f(x1)<f(x2).
因此 f(x)在[0,+∞)上是增函数.
我们所要研究的函数都是将一次函数、二次函数、 反比例函数、指数函数等通过加减乘除或者复合而成的. f(x)= 3x+23-x可以看做 y=32x与 y=32-x相加而得到;也可通过 y=12t+1t , t=3x 复合而成.因此可利用复合函数的单调性判断 f(x)=3x+23-x的 单调区间.
m an,
1.分数指数
在运算过程中,
幂的定义揭示 要贯彻先化简后
了分数指数幂 运算的原则,并
与根式的关系, 且要注意运
因此
算的顺序. 2.利用指数函数的单调性可比较两个幂的 大小.当幂的底数、 指数都不同时,可选择中间量进行比较.
01
添加标题
在指数函数解析式中,必须时刻注意底 数 a>0 且 a≠1,对于
进行化简时,要先 a6b6
是以分数指数幂的
将根式化
形式给出的,则结果用分数指数幂的形式表示;
指数与指数函数

指数与指数函数指数与指数函数1.1 指数与指数幂的运算1) 根式的概念如果$x=a$,$a\in R$,$x\in R$,$n>1$,且$n\in N^+$,那么$x$叫做$a$的$n$次方根。
当$n$是奇数时,$a$的正的$n$次方根用符号$n\sqrt{a}$表示,负的$n$次方根用符号$-n\sqrt{a}$表示。
当$n$是偶数时,正数$a$的正的$n$次方根用符号$n\sqrt{a}$表示,负的$n$次方根用符号$-n\sqrt{a}$表示。
负数$a$没有$n$次方根。
式子$n\sqrt{a}$叫做根式,这里$n$叫做根指数,$a$叫做被开方数。
当$n$为奇数时,$a$为任意实数;当$n$为偶数时,$a\geq0$。
根式的性质:$(n\sqrt{a})^n=a$;当$n$为奇数时,$n\sqrt{a^n}=a$;当$n$为偶数时,$n\sqrt{a^2}=|a|$,即$\begin{cases}a&(a\geq0)\\-a&(a<0)\end{cases}$。
2) 分数指数幂的概念正数的正分数指数幂的意义是:$a^{m/n}=\sqrt[n]{a^m}$。
正数的负分数指数幂的意义是:$a^{-m/n}=\dfrac{1}{\sqrt[n]{a^m}}$。
正分数$a^{1/m}=\sqrt[m]{a}$,负分数指数幂没有意义。
注意口诀:底数取倒数,指数取相反数。
3) 分数指数幂的运算性质a^r\cdot a^s=a^{r+s}$($a>0,r,s\in R$)。
a^r)^s=a^{rs}$($a>0,r,s\in R$)。
ab)^r=a^rb^r$($a>0,b>0,r\in R$)。
例题精讲例1】求下列各式的值:1) $n(3-\pi)$($n>1$,且$n\in N^+$);2) $(x-y)^2$。
1) 当$n$为奇数时,$n\sqrt{3-\pi}=|\sqrt{3-\pi}|=\sqrt{3-\pi}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自学指南(9)——指数与指数函数
一、学习目标
1.掌握幂的运算,理解指数函数的概念、图像与性质,提高知识应用能力。
2.自主学习,合作交流,探究指数运算和指数函数运用的规律和方法。
3.激情投入,高效学习,养成扎实严谨的科学态度。
二、基础知识构建:
【学法指导】1.先仔细阅读教材必修一:P85-P94,再思考知识梳理所提问题,有针对性的二次阅读教材,构建知识体系,画出知识树;2.限时15分钟独立、规范完成探究部分,并总结规律方法。
1.(1)正整指数幂运算法则,,,。
规定:0a=,n
a-=。
(2)分数指数幂:根式的性质:
()n
n a=,n n a=。
分数指数幂定义为:
1
n
a=,
m
n
a=,
m
n
a
-
=。
(3)有理指数幂运算法则:,
,。
2.指数函数的图像和性质:(请填出右表)
3.请同学们对本节所学知识归纳总结后,画出知识树:
三、挑战极限:
挑战一:(参考案例)
1.下列关系中正确的是()
A
221
333
111
252
⎛⎫⎛⎫⎛⎫
<<
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
B.
122
333
111
225
⎛⎫⎛⎫⎛⎫
<<
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
C.
221
333
111
522
⎛⎫⎛⎫⎛⎫
<<
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
D.
212
333
111
522
⎛⎫⎛⎫⎛⎫
<<
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
2.当x>0时,函数()()
21x
f x a
=-的值总大于1,则实数a的取值范围是()
A.1<|a|<2
B.|a|<1
C.|a|>2
D.|a|<2
3.右图是指数函数①y=x a,②y=x b,③y=x c,④y=x d的图像,
则a,b,c,d与1的关系是( )
(A).a<b<1<d<c (B).b<a<1<d<c (C).1<a<b<c<d (D).a<b<1<c<d
4.若曲线21
x
y=+与直线y=b没有公共点,则b的取值范围是
挑战二:(参考案例)化简下列各式
(1)344
3327
⋅⋅(2)
4
3
6
3
8
125
a
b
⎛⎫
⎪
⎝⎭
(3)
21
32
11
1
136
2
5
15
46
x y
x y x y
-
-
-
⎛⎫
⎛⎫
-- ⎪
⎪
⎝⎭⎝⎭
挑战三:(参考案例)
已知函数
||
1
()2
2
x
x
f x=-.(1)若()2
f x=,求x的值;(2)若2(2)()0
t f t m f t
+≥对于[12]
t∈,恒成立,求实数m的取值范围.
四、我的学习总结:
(1)我对知识的总结
(2)我对数学思想及方法的总结
指数函数定义
图像
性质
④
③
②
①y
o x
知识树:我的疑问:
我的收获与发现:
超越梦想(9)指数与指数函数(限时40分钟)
1.函数y=x
a 在[]0,1上的最大值与最小值之和为3,则a= ( ) (A).
12
(B).2 (C).4 (D).
14
2.把函数y=f(x)的图像向左、向下分别平移2个单位,得到函数 y=2x 的图像,则f(x)=( )
(A)2
2
2x ++ (B)2
2
2x +- (C)2
2
2x -+ (D) 2
2
2x --
3.函数f(x)=2
31
2
x x -+的单调减区间是( )
(A) [0,+∞) (B) (3,]2
-∞ (C) [3,)2
+∞ (D) (,)-∞+∞
4.函数1
22x
y =
-的值域是( )
(A ).1(,)2-∞-(0,)+∞ (B ).(,0)(0,)-∞+∞ (C ).(,2)(0)-∞-+∞ (D ).1
(,)(2,)2
-∞-+∞
5.已知()(0x f x a a =>且12121),,2x x a x x f α+⎛⎫
≠<=
⎪
⎝⎭,12()()2f x f x β+=,则,αβ的大小关是( ) (A ) αβ< (B ) αβ= (C )αβ> (D )不能确定 6.当a 0≠时,函数y=ax+b 和y=ax b 的图像只可能是图中的( )
(A ) (B ) (C ) (D ) 7.已知,x y R ∈,且232
3,x
y
y
x
--+≤+则,x y 满足( )
(A) x y +0≥ (B)0x y +≤ (C)0x y -≥ (D)0x y -≤ 8.5
1(0,1)x y a
a a +=+>≠恒过定点 ;
9.f(x)=2x ,使f(x)>f(2x)成立的x 的集合是 ; 10.103,104,x
y
==则1210x y
-= ;
11.函数1
12x y -⎛⎫
= ⎪
⎝⎭
的单调减区间是 ;
(*)12.已知()f x 为定义在(-1,1)上的奇函数,当()0,1x ∈时,()2
41
x
x
f x =
+
(1)求()f x 在(-1,1)上的解析式;2)判断并证明函数()f x 在(0,1)上的单调性
(**)13.已知函数()f x 满足()2
1log 1a a
f x x a x ⎛⎫=
- ⎪-⎝⎭
,其中a>o 且1a ≠, (1)判断函数()f x 的单调性;(2)当()f x 的定义域为()1,1x ∈-时,()()2110f m f m -+-<求实数m 的取值范围。