指数与指数函数A
指数与指数函数知识点

指数与指数函数知识点数学中的指数与指数函数是非常重要且常见的概念。
在我们的日常生活中,指数和指数函数可以用来描述各种自然现象、科学问题以及经济趋势等。
本文将详细介绍指数与指数函数的定义、性质以及一些常见应用,以加深读者对这一概念的理解。
一、指数的定义和性质在数学中,指数是一种表示幂次方的数学运算。
指数是由两个数构成,其中一个为底数,另一个为指数。
底数表示要进行幂运算的数字,指数表示底数要乘以自身多少次。
例如,2的3次方即为2的指数为3的结果,即2x2x2=8。
指数函数是指数的一种特殊形式,即以常数为底数的幂函数。
指数函数的一般形式为y=a^x,其中a是底数,x是指数,y是指数函数的值。
指数函数的图像通常具有特定的特征,例如,当底数大于1时,指数函数呈现递增趋势;当底数在0和1之间时,指数函数呈现递减趋势。
指数有一些基本的性质。
首先,任何数的0次方都等于1,即a^0=1。
其次,任何非零数的负指数都是倒数,即a^(-n)=1/(a^n)。
此外,指数相乘等于底数不变指数相加,即a^m * a^n = a^(m+n)。
二、指数函数的应用指数函数在各个领域都有广泛的应用。
以下是指数函数在生活和科学中的一些常见应用:1. 经济增长:经济学家常常使用指数函数来描述一个国家或地区的经济增长趋势。
经济增长往往呈现指数增长的形式,即以固定的增长率逐渐增加。
指数函数可以帮助经济学家预测未来的经济趋势和制定相应的政策。
2. 生物衰变:在生物学的研究中,指数函数可以用来描述物种的衰变过程。
例如,放射性物质的衰变速度可以用指数函数进行建模。
指数函数的形式可以提供准确地描述和计算物种在特定时间内的衰减情况。
3. 自然增长:人口学家使用指数函数来研究人口的自然增长过程。
指数函数可以帮助人口学家了解一个地区的人口趋势和人口变化的因素,为政府提供人口规划和政策制定方面的参考。
4. 电子电路:在电子学中,指数函数可以用来描述电路中的电流和电压变化。
指数与指数函数知识点

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载指数与指数函数知识点地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容指数函数(一)整数指数幂1.整数指数幂概念:2.整数指数幂的运算性质:(1)(2)(3)其中,.3.的次方根的概念一般地,如果一个数的次方等于,那么这个数叫做的次方根,即:若,则叫做的次方根,例如:27的3次方根,的3次方根,32的5次方根,的5次方根.说明:①若是奇数,则的次方根记作;若则,若则;②若是偶数,且则的正的次方根记作,的负的次方根,记作:;(例如:8的平方根 16的4次方根)③若是偶数,且则没意义,即负数没有偶次方根;④ ∴;⑤式子叫根式,叫根指数,叫被开方数。
∴..4.的次方根的性质一般地,若是奇数,则;若是偶数,则.(二)分数指数幂1.分数指数幂:即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)对分数指数幂也适用,例如:若,则,,∴ .即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。
规定:(1)正数的正分数指数幂的意义是;(2)正数的负分数指数幂的意义是.2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用即说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用;(2)0的正分数指数幂等于0,0的负分数指数幂没意义。
二、指数函数1.指数函数定义:一般地,函数(且)叫做指数函数,其中是自变量,函数定义域是.2.指数函数在底数及这两种情况下的图象和性质:1.1 实数指数幂及其运算(一)(一)选择题1.下列正确的是( )A.a0=1 B. C.10-1=0.1 D.2.的值为( )A.±2B.2 C.-2 D.43.的值为( )A.B.C.D.4.化简的结果是( )A.a B.C.a2 D.a35.把下列根式化成分数指数幂的形式(其中a,b>0)(1)______;(2)=______;6.______.7.化简______.8.=______(三)解答题9.计算10.计算1.2 实数指数幂及其运算(二)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的) 1.下列说法正确的是(n∈N*)( )A.正数的n次方根是正数B.负数的n次方根是负数C.0的n次方根是0 D.是无理数2.函数的定义域为( )A.R B.[0,+∞)C.(0,+∞)D.(-∞,1] 3.可以简化为( )A.B.C.D.4.化简的结果是( )A.B.x2 C.x3 D.x4(二)填空题5.________,________________________.6.________.7.计算________.8.若a+a-1=3,则a2+a-2=______.10.若求的值.1.3 指数函数(一)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.一种细胞在分裂时由一个分裂成两个,两个分裂成四个,四个分裂成八个……每天分裂一次.现在将一个该细胞放入一个容器,发现经过10天就可充满整个容器,则当细胞分裂到充满容器一半时需要的天数是( ) A.5 B.9 C.6 D.82.下列函数中为指数函数的是( )A.y=2·3x B.y=-3x C.y=3-x D.y=1x3.若0.2m=3,则( )A.m>0 B.m<0 C.m=0 D.以上答案都不对4.函数f(x)=ax+1(其中a>0且a≠1)的图象一定经过点( )A.(0,1) B.(0,2) C.(0,3) D.(1,3)(二)填空题5.若函数f(x)是指数函数且f(3)=8,则f(x)=______.6.函数的定义域为______,值域为______.7.函数y=2x-1的图象一定不经过第______象限;若函数的图象不经过第一象限,则实数b的取值范围是______.8.若2m>4,则m的取值范围是______;若(0.1)t>1,则t的取值范围是______.9.指数函数y=(a2-1)x在R上是减函数,则实数a的取值范围是______.(三)解答题10.根据函数f(x)=2x的图象,画出下列函数的草图.(1)y=-2x (2)y=-2x+1 (3)y=2|x|11.求函数的定义域和值域.12.已知a>0且a≠1,函数f1(x)=,f2(x)=,若f1(x)<f2(x),求x 的取值范围.1.4 指数函数(二)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.若,则x的取值范围是( )A.(-∞,-3] B.(-∞,-3) C.[-3,+∞)D.R2.已知三个数M=0.32-0.32,P=0.32-3.2,Q=3.2-0.32,则它们的大小顺序是( )A.M<P<Q B.Q<M<P C.P<Q<M D.P<M<Q3.如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与0和1的大小关系是( )A.0<a<b<1<c<d B.0<b<a<1<d<cC.1<a<b<c<d D.0<a<b<1<d<c4.函数y=2x-2-x( )A.在R上减函数B.在R上是增函数C.在(-∞,0)上是减函数,在(0,+∞)上是增函数D.无法判断其单调性(二)填空题5.函数y=3x+1-2的图象是由函数y=3x的图象沿x轴向______平移______个单位,再沿y轴向______平移______个单位得到的.6.函数f(x)=3x+5的值域是______.7.函数y=ax-1+1(其中a>0且a≠1)的图象必经过点______.8.若指数函数y=ax在区间[0,1]上的最大值和最小值的差为,则底数a =______.9.函数g(x)=x2-x的单调增区间是______,函数y=的单调增区间是______.(三)解答题10.函数f(x)是R上的奇函数,且当x≥0时,f(x)=2x-1,求x<0时函数的解析式.11.若关于x的方程|2x-1|=a有两个解,借助图象求a的取值范围.12.已知函数f(x)=22x-2x+1-3,其中x∈[0,1],求f(x)的值域.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。
指数与指数函数知识点

指数与指数函数知识点一、指数运算的基本性质1.任何数的0次方等于12.非零数的负指数等于该数的倒数。
3.相同底数的指数之间的乘方运算,底数保持不变,指数相加。
4.相同指数的指数之间的乘方运算,指数保持不变,底数相乘。
二、指数运算的规律1.法则1:a的m次方乘以a的n次方,等于a的m加n次方。
2.法则2:a的m次方除以a的n次方,等于a的m减n次方。
3.法则3:(a的m次方)的n次方,等于a的m乘n次方。
4.法则4:a的m次方的p次方,等于a的m乘p次方。
5.法则5:零的任何正次方都是0,零的0次方没有意义,规定为1三、指数函数的定义与性质指数函数的定义为:y=a^x,其中a>0且a≠1,a为底数,x为指数。
指数函数可以看作是以底数为底,自变量为指数的函数。
指数函数的性质如下:1.底数a大于1时,指数函数是递增的,即自变量x的增大,函数值y也增大。
2.底数a介于0和1之间时,指数函数是递减的,即自变量x的增大,函数值y也减小。
3.指数函数的图象都经过点(0,1),即当x=0时,y=14.指数函数的图象在直线x=0和y=0上均没有交点。
5.指数函数的图象没有水平渐近线,但有一条过点(0,0)的铅直渐近线。
指数函数常见的应用有:1.在金融领域中,指数函数可以用来描述货币的增长规律,例如复利计算。
2.在自然科学领域中,指数函数可以用来描述人口增长、病原体传播等现象。
3.在电路中,指数函数可以用来描述电容、电感等元件的充放电过程。
4.在计算机领域中,指数函数可以用来描述算法的时间复杂度、空间复杂度等特性。
总结:。
指数与指数函数

47 .
方法总结
指数幂运算的一般原则
1.有括号的先算括号里的,无括号的先进行指数运算.
2.先乘除后加减,负指数幂化成正指数幂的倒数.
3.底数是负数的,先确定符号;底数是小数的,先化成分数.底数是带分数
的,先化成假分数.
4.若是根式,则化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运
为选项C.
考点三
指数函数的性质及应用
◉角度(一) 比较指数式的大小或解不等式
例3
(1)(2024·吉林白山模拟)已知 a =0.310.1, b =0.310.2, c =
0.320.1,则(
D )
A. a > b > c
B. b > a > c
C. c > b > a
D. c > a > b
由 y =0.31 x 单调递减可知0.310.1>0.310.2,即 a > b ;
即b<a<c.
C )
6.
2 −4
1
不等式 3
> 的解集为
27
−∞,1 ∪ 3,+∞
2 −4
1
由3
> =3-3,所以 x 2-4 x >-3,即
27
<1或 x >3.
.
− 1 − 3 >0,解得 x
7. 函数 y =
1
1
-
+1在区间[-3,2]上的值域是
4
2
因为 x ∈[-3,2],所以若令 t =
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 幂的运算
1. 指数与指数运算
指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a n n =)((注意a 必须使n a 有意义)。
2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质n 为奇数 n 为偶数注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。
即无论在轴的左侧还是右侧,底数按逆时针方向变大。
(二)对数与对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。
(2)几种常见对数2、对数的性质与运算法则(1)对数的性质(0,1a a >≠且):①1log 0a =,②lo g 1aa =,③lo g Na a N =,④lo g N a aN =。
指数与指数函数图像及性质(学生版)

指数与指数函数图像及性质【知识要点】 1.根式(1)如果a x n =,那么x 叫做a 的n 次方根.其中1>n ,且*∈N n 。
(2)如果a x n=,当n 为奇数时,n a x =;当n 为偶数时,n a x ±=()0>a .其中n a 叫做根式,n 叫做根指数,a 叫做被开方数. 其中1>n ,且*∈N n 。
(3)()()*∈>==N n n a a nnn ,1,00。
,||,a n a n ⎧=⎨⎩为奇数为偶数其中1>n ,且*∈N n 。
2.分数指数幂(1)正分数指数幂的定义: n m n m a a =()1,,,0>∈>*n N n m a (2)负分数指数幂的定义: nm nm aa1=-()1,,,0>∈>*n Nn m a(3) 要注意四点:①分数指数幂是根式的另一种表示形式; ②根式与分数指数幂可以进行互化; ③0的正分数指数幂等于0; ④0的负分数指数幂无意义。
(4)有理数指数幂的运算性质:①sr sra a a +=⋅()Q s r a ∈>,,0;② ()rs sra a =()Q s r a ∈>,,0;③()r r rb a ab =()Q r b a ∈>>,,0,0.3.无理数指数幂(1)无理数指数幂的值可以用有理数指数幂的值去逼近; (2)有理数指数幂的运算性质同样适用于无理数指数幂。
4.指数函数的概念:一般地,函数()0,1xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R 。
5.指数函数的图像与性质第一课时【典例精讲】题型一 根式、指数幂的化简与求值1.n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数,规定:1a a =;2. (1,)n a n n N +=>∈,||,a n a n ⎧=⎨⎩为奇数为偶数;3. 1(0,,,)n mnmn a a m n N ma-+=>∈且为既约分数,=a a αβαβ(). 【例1】计算下列各式的值.(1(2(3;(4)a b >.【变式1】 求下列各式的值:(1*1,n n N >∈且);(2【例2】计算)21313410.027256317--⎛⎫--+-+⎪⎝⎭【变式2】化简34的结果为( )A .5B .C .﹣D .﹣5【变式3】1332-⎛⎫ ⎪⎝⎭×76⎛⎫- ⎪⎝⎭0+148=________.题型二 根式、指数幂的条件求值 1. 0a >时,0;b a > 2. 0a ≠时, 01a =; 3. 若,r s a a =则r s =;4. 1111222222()(0,0)a a b b a b a b ±+=±>>; 5. 11112222()()(0,0)a b a b a b a b +-=->>. 【例3】已知11223a a-+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++【变式1】已知,a b 是方程2640x x -+=的两根,且0,a b >>的值.【变式2】已知12,9,x y xy +==且x y <,求11221122x y x y-+的值.【变式3】已知11223a a -+=,求33221122a aa a----的值.【变式4】(1)已知122+=xa,求xx xx a a a a --++33;(2)已知a x=+-13,求6322--+-x ax a .【例4】计算下列各式的值:(1)246347625---+-;(2)()2x 3442<--+-x x x ;(3)12121751531311++-+++++++n n ;(4)()54 2222233=++--xxxx x 其中.【变式5】化简或计算出下列各式:(1)121316324(1243)27162(8)--+-+-;(2)化简65312121132ab b a b a ---⎪⎪⎭⎫ ⎝⎛;(3【课堂练习】1. 若()0442-+-a a 有意义,则a 的取值范围是()A.2≥aB.42<≤a 或4>aC. 2≠aD. 4≠a 2. 下列表述中正确的是() A.()()()273336263=-=-=- B.32213421313a a a a a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅=⋅ C.无理数指数幂na (n 是无理数)不是一个确定的实数 D.()()()⎩⎨⎧≤-≥=00a a a a a nn3. 已知0>a ,则的值2313123131⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+--a a a a 为 ()A.3232-+aa B.4 C. 3232--aa D. 4-4. 计算:()=-+-0430625.0833416π ______.【思维拓展】1.化简⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+-----2141811613212121212121的结果是 ( )A.13212121--⎪⎪⎭⎫ ⎝⎛-B.132121--⎪⎪⎭⎫ ⎝⎛- C.32121-- D.⎪⎪⎭⎫ ⎝⎛--3212121第二课时题型三 指数函数的概念【例1】已知函数()2()33x f x a a a =-+是指数函数,求实数a 的值。
指数与指数函数

指数与指数函数指数与指数函数1.1 指数与指数幂的运算1) 根式的概念如果$x=a$,$a\in R$,$x\in R$,$n>1$,且$n\in N^+$,那么$x$叫做$a$的$n$次方根。
当$n$是奇数时,$a$的正的$n$次方根用符号$n\sqrt{a}$表示,负的$n$次方根用符号$-n\sqrt{a}$表示。
当$n$是偶数时,正数$a$的正的$n$次方根用符号$n\sqrt{a}$表示,负的$n$次方根用符号$-n\sqrt{a}$表示。
负数$a$没有$n$次方根。
式子$n\sqrt{a}$叫做根式,这里$n$叫做根指数,$a$叫做被开方数。
当$n$为奇数时,$a$为任意实数;当$n$为偶数时,$a\geq0$。
根式的性质:$(n\sqrt{a})^n=a$;当$n$为奇数时,$n\sqrt{a^n}=a$;当$n$为偶数时,$n\sqrt{a^2}=|a|$,即$\begin{cases}a&(a\geq0)\\-a&(a<0)\end{cases}$。
2) 分数指数幂的概念正数的正分数指数幂的意义是:$a^{m/n}=\sqrt[n]{a^m}$。
正数的负分数指数幂的意义是:$a^{-m/n}=\dfrac{1}{\sqrt[n]{a^m}}$。
正分数$a^{1/m}=\sqrt[m]{a}$,负分数指数幂没有意义。
注意口诀:底数取倒数,指数取相反数。
3) 分数指数幂的运算性质a^r\cdot a^s=a^{r+s}$($a>0,r,s\in R$)。
a^r)^s=a^{rs}$($a>0,r,s\in R$)。
ab)^r=a^rb^r$($a>0,b>0,r\in R$)。
例题精讲例1】求下列各式的值:1) $n(3-\pi)$($n>1$,且$n\in N^+$);2) $(x-y)^2$。
1) 当$n$为奇数时,$n\sqrt{3-\pi}=|\sqrt{3-\pi}|=\sqrt{3-\pi}$。
指数与指数函数ppt课件

2.已知函数 f (x)=ax-2+2(a>0 且 a≠1)的图象恒过定点 A,则点 A 的坐标为( B )
A.(0,1)
B.(2,3)
C.(3,2)
D.(2,2)
【解析】 ∵a0=1,∴当 x=2 时,y=3,∴图象过点(2,3).故选 B.
3.化简4 16x4y8(x<0,y<0)=__-__2_x_y_2 _. 【解析】 4 16x4y8=|2xy2|,又 x<0,y<0,∴原式=-2xy2.
第二章 函数
第五节 指数与指数函数
课前双基巩固
——整合知识 夯实基础
『知识聚焦』 1.根式的概念及性质 (1)如果xn=a,那么____x___叫做a的n次方根. (2)式子n a叫做根式,这里n叫做根指数,a叫做被开方数. (3)根式的性质 ①(n a)n=a(a使n a有意义.负数没有偶次方根). ②当n为奇数时,n an=___a____; 当n为偶数时,n an=____|_a_| __=a-,aa,≥a0<,0.
(2)令 g(x)=ax2-4x+3,则 f (x)=13g(x),由于 f (x)有最大值 3,所以 g(x)应有最小值 a>0,
-1,因此必有3a- a 4=-1, 解得 a=1,即当 f (x)有最大值 3 时,a 的值等于 1. (3)由指数函数的性质知,要使 f (x)的值域为(0,+∞), 应使 y=ax2-4x+3 的值域为 R, 因此只能 a=0(因为若 a≠0,则 y=ax2-4x+3 为二次函数,其值域不可能为 R).
C.(1+a)a>(1+b)b
D.(1-a)a>(1-b)b
【解析】
(1)把
b
化简为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数与指数函数学完本节你可以:1、了解指函数模型的实际背景.2、理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3、理解指数函数的概念,理解指数函数的单调性,并运用指数函数的性质解题. 知识点总结: 根与幂的运算 1.根式(1)n 次方根的定义:若x n=a ,则x 叫做a 的n 次方根,其中n >1,且n ∈N +,式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. (2)n 次方根的性质:①一个数a 的奇次方根只有一个,即na (n 为奇数,a ∈R).②一个正数a 的偶次方根有两个,即±na (n 为非零偶数),0的偶次方根为0,负数没有偶次方根. (3)两个重要公式①n a n = (n 为偶数);②(na )n= a (n >1,且n ∈N +)(注意a 必须使na 有意义). (4)有理指数幂的运算性质①a r a s= (a >0,r ,s ∈Q); ②(a r )s = (a >0,r ,s ∈Q); ③(ab )r = (a >0,b >0,r ∈Q). ④pa-= (0a ≠)= (0,0m n >>) ⑥nma = (0,0m n >>) (5)无理指数幂一般地,无理指数幂a α(a >0,α是无理数)是一个确定的实数,有理指数幂的运算法则同(),0,,0a a a n a a a ⎧⎪⎪≥⎧⎨⎪=⎨⎪-<⎪⎪⎩⎩为奇数样适用于无理指数幂.指数函数的图象和性质注:1.指数函数图象的三个关键点画指数函数图象时应抓住图象上的三个关键点:(1,a ),(0,1),(-1,1a).2.不同底指数函数的比较. 在第一象限图象从下至上底数依次变大. 考点分析:考点一 指数式的化简与求值例1. 计算下列各式(式中字母都是正数)211511336622(1)(2)(6)(3);a b a b a b -÷- 31884(2)().m n解析:2115211115110336632623622(1)(2)(6)(3)[2(6)(3)]44a b a b a b a bab a ++++-÷-=⨯-÷-==331128833388443(2)()()()m m n m n m n n--==•=【答案】(1)4a (2)23m n变式训练1(1)计算下列各式:⑴⑵111344213243(,0)6a a b a b a b ---⎛⎫- ⎪⎝⎭>-. 解析:⑴ 5=;⑵ 111344111121442333213243226a a b a b ab a b -⎛⎫⎛⎫+----- ⎪ ⎪⎝⎭⎝⎭--⎛⎫- ⎪⎝⎭==-. (2)写出使下列等式成立的x 的取值范围5)5()25)(5(2+-=--x x x x解析: ∵22(5)(25)(5)(5)55x x x x x x --=-+=-+∴55(5)5x x x x -+=-+成立的充要条件是 50x +=或5055x x x +>⎧⎨-=-⎩,即5x =-或550x x >-⎧⎨-≤⎩ ∴x 的取值范围是[]55-,【答案】 []55-,考点二 指数函数的图像性质例2. 如图的曲线C 1、C 2、C 3、C 4是指数函数xy a =的图象,而12,,3,2a π⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭,则图象C 1、C 2、C 3、C 4对应的函数的底数依次是________、________、________、________. 【答案】22 12π 3 【解析】由底数变化引起指数函数图象的变化规律可知,C 2的底数<C 1的底数<C 4的底数<C 3的底数. 变式训练2(1)设()|31|xf x =-,c <b <a 且()()()f c f a f b >>,则下列关系式中一定成立的是( )A .33c b <B .33c b >C .332c a +>D .332c a+< 【答案】D(2)为了得到函数935xy =⨯+的图象,可以把函数3xy =的图象( )A .向左平移9个单位长度,再向上平移5个单位长度B .向右平移9个单位长度,再向下平移5个单位长度C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度 【答案】C【解析】注意先将函数935xy =⨯+转化为235x y +=+,再利用图象的平移规律进行判断.∵293535xx y +=⨯+=+,∴把函数3x y =的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935xy =⨯+的图象,故选C . 考点三 利用指数函数解不等式及比较大小 例3(1)判断下列各数的大小关系:(1)1.8a与1.8a+1; (2)24-231(),3,()331(3)22.5,(2.5)0, 2.51()2(4)23(0,1)a a a a >≠与 【思路点拨】利用指数函数的性质去比较大小。
【答案】(1)1.8a<1.8a+1(2)2-24311()<()<333 (3) 2.50 2.51()<(2.5)<22(4)当a>1时,23a a <,当0<a<1时,23a a >【解析】(1)因为底数1.8>1,所以函数y=1.8x为单调增函数,又因为a<a+1,所以1.8a <1.8a+1.(2)因为44133-⎛⎫= ⎪⎝⎭,又13x y ⎛⎫= ⎪⎝⎭是减函数,所以-42-23111()<()<333⎛⎫ ⎪⎝⎭,即2-24311()<()<333. (3)因为 2.521>, 2.5112⎛⎫< ⎪⎝⎭,所以 2.50 2.51()<(2.5)<22(4)当a>1时,23a a <,当0<a<1时,23a a >.例3(2)如果215x x aa +-≤(0a >,且1a ≠),求x 的取值范围.【答案】当01a <<时,6x ≥-;当1a >时,6x ≤- 【解析】(1)当01a <<时,由于215x x aa +-≤,215x x ∴+≥-,解得6x ≥-.(2)当1a >时,由于215x x aa +-≤,215x x ∴+≤-,解得6x ≤-.综上所述,x 的取值范围是:当01a <<时,6x ≥-;当1a >时,6x ≤-.变式训练3(1)利用函数的性质比较122,133,166【答案】133>122>166 【解析】122=31136662(2)8== 12112366633(3)9=== 作出8,9,6xxxy y y ===的图象知 986xxxy y y =>=>=所以133>122>166(2)比较1.5-0.2, 1.30.7, 132()3的大小.【答案】7.02.0313.15.1)32(<<- 【解析】先比较31512.02.0)32()32()23(5.1与==--的大小.由于底数32∈(0,1), ∴ x y )32(=在R 上是减函数,∵ 05131>>, ∴ 1)32()32()32(005131=<<<,再考虑指数函数y=1.3x, 由于 1.3>1, 所以y=1.3x在R 上为增函数 1.30.7>1.30=1, ∴7.02.0313.15.1)32(<<-. 考点四 指数函数的综合应用 例4(1)求函数2323x x y -+-=的单调区间及值域.【答案】3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减. 14(0,3]【解析】[1]复合函数——分解为:u=-x 2+3x-2, y=3u;[2]利用复合函数单调性判断方法求单调区间; [3]求值域.设u=-x 2+3x-2, y=3u,其中y=3u为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增,u=-x 2+3x-2在3[,)2x ∈+∞上单减,则2323xx y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.又u=-x 2+3x-22311()244x =--+≤, 2323x x y -+-=的值域为14(0,3].例4(2)设a 是实数,()221x f x a =-+ (x ∈R) (1)试证明对于任意()af x 为增函数; (2)试确定a 值,使()f x 为奇函数.解析:(1)设1212x x R x x ∈<,,且 则()()1212222121x x f x f x a a ⎛⎫⎛⎫-=--- ⎪ ⎪++⎝⎭⎝⎭ =12212212+-+x x=)12)(12()22(22121++-x x x x 由于指数函数2x y =在R 上是增函数,且12x x <,所以2122x x <即12220x x -<又由20x >得1210x +>,2210x +> 所以()()120f x f x -< 即()()12f x f x <因为此结论与a 取值无关,所以对于a 取任意实数,f (x )为增函数. (2)若f (x )为奇函数,则()()f x f x -=-即22()2121x x a a --=--++ 变形得:2222(21)221x x x x a -⋅=++⋅+=12)12(2++xx 解得1a =所以当1a =时,()f x 为奇函数.变式训练4(1) 已知函数2()()1x x af x a a a -=--,其中0a >,1a ≠. ⑴判断函数()f x 的奇偶性;⑵判断函数()f x 的单调性,并证明.解析:2()()()1x x af x a a f x a --=-=--,∴()f x 为奇函数 ⑵法一:若1a >,则210a ->,有201aa >-,又101a <<,且1()x x a a -=,∴x a -单调递减 ,∴x a --单调递增 ∵x a 单调递增,∴x x a a --单调递增,由201a a >-可知2()1x x aa a a ---单调递增若01a <<,则210a -<,有201aa <-,又11a>,且1()x x a a -=,∴x a -单调递增,∴x a --单调递减 ∴x a 单调递减,∴x x a a --单调递减,由201a a <-可知2()1x x aa a a ---单调递增综上,不论01a << 还是1a >,()f x 在R 上为增函数. 法二:设12x x <,则2211212()()()1x x x x af x f x a a a a a ---=--+-若1a >,有210x x a a ->,120x x a a --->,且210a ->, ∴21()()f x f x >,∴()f x 为增函数若01a <<,有210x x a a -<,120x x a a ---<,且210a -<, ∴21()()f x f x >,∴()f x 为增函数【答案】增函数(2) 已知函数()x f x b a =(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B(3,24).(1)求()f x ;(2)若不等式1123xxm ⎛⎫⎛⎫+≥ ⎪ ⎪⎝⎭⎝⎭在()1x ∈-∞,时恒成立,求实数m 的取值范围.解析:把A (1,6),B(3,24)代入()x f x b a =,得3624.abb a =⎧⎨=⋅⎩ 结合2003a a a b =⎧>≠⎨=⎩且,解得: ∴()32x f x =.(2)要使1123xxm ⎛⎫⎛⎫+≥ ⎪ ⎪⎝⎭⎝⎭在(-∞,1]上恒成立,只需保证函数1123xxy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在(-∞,1]上的最小值不小于m 即可.∵函数1123xx y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在(-∞,1]上为减函数,∴当1x =时,1123x xy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭有最小值56.∴只需56m ≤即可. 【答案】56m ≤家庭作业1.下列个函数中,是指数函数的是( )A.(3)x y =-B.3x y =-C. 13x y -= D. 3xy =解析: D 根据指数函数的概念判断。