基于ZEMAX的简单透镜的优化设计

合集下载

【精品】用Zemax进行优化设计

【精品】用Zemax进行优化设计

目录摘要 .................................................. 错误!未指定书签。

ABSTRACT .............................................. 错误!未指定书签。

引言 .................................................. 错误!未指定书签。

1光学传递函数和点列图................................. 错误!未指定书签。

1.1光学传递函数..................................... 错误!未指定书签。

1.1。

1利用MTF曲线来评价成像质量............... 错误!未指定书签。

1.1。

2利用MTF曲线的积分值来评价成像质量....... 错误!未指定书签。

1.2点列图........................................... 错误!未指定书签。

2像差综述............................................. 错误!未指定书签。

2。

1轴上点球差...................................... 错误!未指定书签。

2.1.1球差的定义和表示方法...................... 错误!未指定书签。

2.1。

2球差的校正............................... 错误!未指定书签。

2。

2像散与像面弯曲(场曲).......................... 错误!未指定书签。

2.2。

1像散..................................... 错误!未指定书签。

2.2.2场曲...................................... 错误!未指定书签。

zemax光学设计案例

zemax光学设计案例

zemax光学设计案例
Zemax光学设计案例。

在光学设计领域,Zemax是一个非常优秀的光学设计软件,它能够帮助工程师
们进行光学系统的设计、优化和分析。

下面,我们将介绍一个使用Zemax进行光
学设计的案例,以便更好地了解Zemax软件的应用和优势。

在这个案例中,我们需要设计一个具有特定光学性能的摄像头透镜系统。

首先,我们需要明确设计要求和约束条件,然后利用Zemax软件进行光学系统的建模和
优化。

在建模过程中,我们需要考虑透镜的曲率、厚度、材料等参数,同时还需要考虑系统的光路布局、光学元件的位置和角度等因素。

利用Zemax的光学设计工具,我们可以对透镜系统进行快速而准确的建模和分析。

通过Zemax的光学优化算法,我们可以对系统的光学性能进行优化,以满足
设计要求。

同时,Zemax还提供了丰富的光学分析工具,可以对系统的像差、光学传递函数、热像模拟等进行全面的分析和评估。

在这个案例中,我们利用Zemax软件成功设计出了一个具有优秀光学性能的摄像头透镜系统。

通过对系统的建模、优化和分析,我们实现了对系统光学性能的精确控制和调节,最终达到了设计要求。

这充分展示了Zemax软件在光学设计领域
的强大功能和广泛应用价值。

总的来说,Zemax是一款非常优秀的光学设计软件,它能够帮助工程师们实现
复杂光学系统的设计、优化和分析。

通过这个案例,我们可以更好地了解Zemax
软件的应用和优势,相信在未来的光学设计工作中,Zemax将会发挥越来越重要的作用,为光学工程领域的发展做出更大的贡献。

15.-4利用ZEMAX像质优化与设计举例

15.-4利用ZEMAX像质优化与设计举例

15. 4利用ZEMAX 像质优化与设计举例ZEMAX 提供了十分强大的像质优化功能,可以对合理的初始光学系统结构进行优化设计。

设计中光学结构参变量可以是曲率、厚度、玻璃材料参数、圆锥系数、参数数据、特殊数据和多重结构数值数据。

本节首先,通过消色差双胶合望远镜物镜设计和参数分析,介绍利用ZEMAX 默认评价函数的优化设计过程。

然后,通过光路中有棱镜的望远物镜、显微物镜和目镜设计举例能,介绍像差补偿、几何像差控制等在ZEMAX 中的实现以及锤形( Hammer)优化的简单应用。

最后通过变焦物镜设计介绍ZEMAX 中多重结构设计实现。

15.4.1消色差双胶合望远镜物镜设计消色差双胶合物镜设计要求见表15.131)初始结构参数确定初始结构参数确定通常有两种方法,本设计采用初级像差理论求解初始结构方法。

望远系统一般由物镜、目镜和棱镜式或透镜式转像系统构成。

望远物镜是望远系统的一个组成部分,其光学特性的特点是:相对孔径和视场都不大。

因此,望远物镜设计中,校正的像差较少,一般不校正与像高的二次方以上的各种单色像差(像散、场曲、畸变)和垂轴色差,只校正球差、彗差和轴向色差。

在这三种像差中通常首先校正色差,因为初级色差和透镜形状 无关,校正了色差以后,保持透镜的光焦度不变,再用弯曲透镜的方法校正球差和彗差,对已校正的色差影响很小。

由初级像差理论可知,双胶合透镜成为消色差双胶合透镜的条件是,双胶合透镜的正负光焦度分配应满足下式:12φφφ=+,1112V V V φφ=-,2212V V V φφ=- (15.22)式中:φ、1φ,和2φ分别双胶合物镜、正透镜和负透镜的光焦度(焦距值的倒数),1V 和2V 为正负透镜所选玻璃的阿贝数V 。

本示例中,正、负透镜的玻璃材料分别选用K9和ZF1,对应的n 1d =1.. 51637 , V 1=64. 07 , n 2d == 1. 64767 ,v 2=33. 87。

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例子详细(多图)ZEMAX单透镜设计例子,单透镜是最简单的透镜系统了,这个例子基本是很多ZEMAX教程开头都会讲的。

1-1 单透镜这个例子是学习如何在ZEMAX里键入资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长范围(Wavelength Range),并且进行优化。

你也将使用到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析工具来评估系统性能。

这例子是一个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使用轴上(On-Axis)的可见光进行分析。

首先在运行系统中开启ZEMAX,默认的xx视窗为透镜资料xx器(Lens Data Editor, LDE),在LDE可键入大多数的透镜参数,这些设罝的参数包括:表面类型(Surf:Type)如标准球面、非球面、衍射光栅…等曲率半径(Radius of Curvature)表面厚度(Thickness):与下一个表面之间的距离材料类型(Glass)如玻璃、空气、塑胶…等:与下一个表面之间的材料表面半高(Semi-Diameter):决定透镜表面的尺寸大小上面几项是较常使用的参数,而在LDE后面的参数将搭配特殊的表面类型有不同的参数涵义。

1-2 设罝系统孔径首先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮里。

点击「GEN」或透过菜单的System->General来开启General的对话框。

点击孔径标签(Aperture Tab)。

因为我们要建立一个焦距100 mm、F/4的单透镜。

所以需要直径为25 mm的入瞳(Entrance Pupil),因此设罝:Aperture Type:Entrance Pupil Diameter Aperture Value:25 mm点击单位标签(Units Tab),并确认透镜单位为Millimeters。

基于Zemax的光学透镜设计与激光打标机的应用

基于Zemax的光学透镜设计与激光打标机的应用

基于Zemax的光学透镜设计与激光打标
机的应用
简介
本文旨在探讨基于Zemax的光学透镜设计在激光打标机中的应用。

光学透镜是激光打标机中至关重要的光学组件,其设计合理性直接影响到激光打标机的性能和质量。

Zemax光学透镜设计软件
Zemax是一种专业的光学设计软件,具有强大的光学设计和分析功能。

通过使用Zemax,设计师可以对光学透镜进行高精度的设计和优化,以实现激光打标机需要的精确焦距、聚光效果和光斑质量。

光学透镜设计原理
光学透镜的设计原理涉及到光学的折射、反射、透射等基本规律。

在使用Zemax进行光学透镜设计时,需要考虑到激光打标机的工作波长、光斑直径、工作距离等参数。

设计师可以通过调整透镜的曲率半径、厚度和材料来实现所需的光学功能。

光学透镜在激光打标机中的应用
光学透镜在激光打标机中扮演着关键的角色。

通过合理设计光
学透镜,可以实现激光的聚焦、扩束、从而控制光斑的形状、大小
和质量。

光学透镜的设计应考虑到激光的工作波长、功率以及所需
的聚光效果。

优化的光学透镜设计可以提高激光打标机的标记质量、速度和精度。

结论
基于Zemax的光学透镜设计在激光打标机中具有重要的应用价值。

使用Zemax进行光学透镜的设计和优化,可以帮助设计师实现所需的激光聚光效果,提高激光打标机的性能和质量。

因此,深入
理解Zemax光学透镜设计软件的原理和使用方法,对激光打标机的设计与应用具有重要意义。

ZEMAX光学成像设计实例---ZEMAX基础实例-单透镜设计

ZEMAX光学成像设计实例---ZEMAX基础实例-单透镜设计

第二章 基础实例设计ZEMAX基础实例 ‐ 单透镜设计引言• 在成像光学系统设计中,主要指的是透镜系统设计,当然也有一些反射系统或棱镜系统。

• 在透镜系统设计中,最基础、最简单的便是单透镜设计。

但我们不要小看这样的单透镜系统,因为它也代表了一个光学系统设计的完整流程。

麻雀虽小,五脏俱全!• 本节中,我们通过手把手的操作,为大家展示使用 ZEMAX 进行成像光学设计的完整流程。

使初学者快速领略到ZEMAX光学设计的风采,在轻松的设计中感受到光学设计的乐趣。

• 通过单透镜设计,可以使大家学习到Z EMAX 序列编辑器建模方法,光束大小设置方法,视场设置方法,变量的设罝方法,评价函数设置方法,优化方法,像差分析方法和提髙像质的像差平衡方法等,单透镜系统参数设计任何一个镜头,我们都必须有特定的要求,比如焦距,相对口径,视场,波长,材料,分辨率,渐晕,MTF等等,根据系统的简易程度客户给的要求也各不相同。

由于单透镜最简单的系统,要求也就很少。

本例中我们设计单透镜规格参数如下:EPD = 20mmF/#=10FFOV= 10 degreeWavelength 0.587umMaterial BK7Best RMS Spot Radius首先我们需要把知道的镜头的系统参数输入软件中,系统参数包括三部分:光束孔径大小,视场类型及大小,波长。

在这个单透镜的规格参数中,入瞳直径(EPD)为20mm,全视场(FFOV)为10度,波长0.587微米,分别如下说明。

1、点击System » General或点快捷按扭Gen打开通用设置对话框:入瞳直径即到还有其它像空间F 数互转换。

物空间数值直接定义物随光阑尺寸用这种类型本例中,我2、点击打开即用来直接确它几种光束孔(Image Space 值孔径(Object 物点发光角度寸漂移(Float B 型来计算入瞳我们只需选择开视场对话框定进入系统光孔径定义类型e F/#),用于t Space NA),来约束进入系By Stop Size),瞳的大小。

ZEMAX光学设计第02讲ZEMAX实例:单透镜设计


球差
最小模糊圈 近轴焦点
横向像差 纵向像差 球差存在时最清楚面不在近轴焦点处!
光学像差 分类
•几何像差(单色像差)
–起源于非近轴光线的聚焦
• 球差 (spherical aberration) • 彗差 (coma) • 像散 (astigmatism) • 场曲 (field curvature) • 畸变 (distortion)
•色像差 Chromatic aberration
–起源于透镜折射率随波长改变,因此不同颜色聚焦 在不同位置
像差的起源
• 球差 (spherical aberration) • 彗差 (coma) • 像散 (astigmatism) • 场曲 (field curvature) • 畸变 (distortion)
ZEMAX光学设计 (第2讲)
Optical Design & ZEMAX
ZEMAX实例:单透镜设计
1.设计流程
系统参数输入 初始结构创建 优化变量设置 评价目标函数设置
像质分析 系统改进提高
再优化
2.单透镜设计实例
(1)LDE 透镜数据编辑
(2)孔径、视场、波长参数输入
3.球差
longitudinal aberrations
像差的起源
其他五种像差
• 统称为几何像差 • 在后面一一描述
球差
慧差
像散
场曲
畸变
H. Gross ed., Handbook of Optical Systems, Ch29.4, Wiley-VCH (2007)
像差的起源
• 另一种常见的像差表示法Zernike多项式
垂直倾斜
45°像散

zemax基本操作和透镜设计实验

Zemax基本操作和透镜设计一、实验目的学习ZEMAX软件的安装过程,熟悉ZEMAX软件界面的组成及基本使用方法。

设计一个单透镜和一个双胶合透镜。

二、实验要求1、掌握ZEMAX软件的安装、启动与退出的方法。

2、掌握ZEMAX软件的用户界面。

3、掌握ZEMAX软件的基本使用方法。

4、学会使用ZEMAX的帮助系统。

三、实验内容○单透镜设计用BK7玻璃设计一个焦距为100mm的F/4单透镜,要求在轴上可见光范围内。

1. 打开ZEMAX软件,点击新建,以抹去打开时默认显示的上一个设计结果,同时新建一个新的空白透镜。

2. 在主菜单-系统-光波长弹出的对话框中输入3个覆盖可见光波段的波长,设定主波长。

同样在系统-通用配置里设置入瞳直径值。

3. 在光阑面的Glass列里输入BK7作为指定单透镜的材料,并在像平面前插入一个新的面作为单透镜的出射面。

4. 输入相关各镜面的厚度和曲率半径。

5. 生成光线像差特性曲线、2D、3D图层曲线和实体模型、渲染模型等分析图来观察此时的成像质量。

6. 利用Solve功能来求解镜片厚度,更新后观察各分析图的相应变化。

7. 利用主菜单-工具-优化-优化来对设计进行优化,更新后观察各分析图的相应变化。

8. 调用并建构优化函数(Merit Function),在优化后更新全部内容,然后观察各分析图的相应变化。

9. 分别调用点列图、OPD图以及焦点色位移图(主菜单-分析-杂项)来观察最优化后的成像质量。

10. 将此设计起名保存,生成报告。

优化前优化后○双胶合透镜设计以前一个实验内容设计优化后的单透镜为基础,添加一块材料为SF1玻璃的透镜来构建双透镜系统,进一步优化成像质量。

1. 插入新的平面作为第二块透镜的出射面,输入相关镜面的厚度、曲率半径以及玻璃类型值(BK7、SF1)。

2. 生成光线像差特性曲线、2D、3D图层曲线和实体模型、渲染模型等分析图来观察此时的成像质量。

3. 沿用前例的优化函数,在优化更新后观察各分析图的相应变化,并分别对比单透镜时的点列图、OPD图以及焦点色位移图(主菜单-分析-杂项)的相应变化,观察双透镜此时的成像质量。

ZEMAX单透镜设计例子详细(多图)

ZEMAX单透镜设计例⼦详细(多图)ZEMAX单透镜设计例⼦,单透镜是最简单的透镜系统了,这个例⼦基本是很多ZEMAX教程开头都会讲的。

1-1 单透镜这个例⼦是学习如何在ZEMAX⾥键⼊资料,包括设罝系统孔径(System Aperture)、透镜单位(Lens Units)、以及波长范围(Wavelength Range),并且进⾏优化。

你也将使⽤到光线扇形图(Ray Fan Plots)、弥散斑(Spot Diagrams)以及其它的分析⼯具来评估系统性能。

这例⼦是⼀个焦距100 mm、F/4的单透镜镜头,材料为BK7,并且使⽤轴上(On-Axis)的可见光进⾏分析。

⾸先在运⾏系统中开启ZEMAX,默认的编辑视窗为透镜资料编辑器(Lens Data Editor, LDE),在LDE可键⼊⼤多数的透镜参数,这些设罝的参数包括:表⾯类型(Surf:Type)如标准球⾯、⾮球⾯、衍射光栅…等曲率半径(Radius of Curvature)表⾯厚度(Thickness):与下⼀个表⾯之间的距离材料类型(Glass)如玻璃、空⽓、塑胶…等:与下⼀个表⾯之间的材料表⾯半⾼(Semi-Diameter):决定透镜表⾯的尺⼨⼤⼩上⾯⼏项是较常使⽤的参数,⽽在LDE后⾯的参数将搭配特殊的表⾯类型有不同的参数涵义。

1-2 设罝系统孔径⾸先设罝系统孔径以及透镜单位,这两者的设罝皆在按钮列中的「GEN」按钮⾥(System->General)。

点击「GEN」或透过菜单的System->General 来开启General的对话框。

点击孔径标签(Aperture Tab)(默认即为孔径页)。

因为我们要建⽴⼀个焦距100 mm、F/4的单透镜。

所以需要直径为25 mm 的⼊瞳(Entrance Pupil),因此设罝:Aperture Type:Entrance Pupil DiameterAperture Value:25 mm点击单位标签(Units Tab),并确认透镜单位为Millimeters。

基于ZEMAX的简单透镜的优化设计

实验二基于ZEMAX的简单透镜的优化设计一.实验目的学会用ZEMAX对简单单透镜和双透镜进行设计优化。

二.实验要求1.掌握使用ZEMAX实现光学优化设计的基本过程;2.学会生成光线像差(ray aberration)特性曲线、光程差(OPD)曲线和点列图(Spotdiagram)、焦点色位移图和场曲图;3.学会面厚度的求解方法,学会定义透镜的边缘厚度解和视场角,进行简单的优化;4. 初步掌握为实际生产和装配考虑的额外设计和优化。

三.实验原理(一)基本设计过程1.拟好设计草图(光路图);2.软件仿真光路图;3. 优化设计:像质分析评价—优化—再分析评价—再优化--……达到指标;4. 输出结果。

(二)优化设计仿真光路图完成以后,调用各种像质分析图进行像质分析评价,看设计是否达标,如还未达标,则恰当使用各种优化工具进行初步优化;然后再重新进行分析评价,看是否达标,如此反复,直到设计达标。

1.像质分析图。

本实验中需学会调用光线像差(ray aberration)特性曲线、光程差(OPD)曲线和点列图(Spot diagram)、焦点色位移图和场曲图来进行像质分析评价,各图可从主菜单-分析中调出。

光线像差(ray aberration)特性曲线:关于光瞳坐标函数的光线像差特征曲线,见理论课内容。

光程差(OPD)曲线:见理论课内容。

点列图(Spot diagram):焦点色位移图(Chromatic Focal Shift):不同波长(颜色)的光线对于同一个正透镜的不同焦距的曲线,可直观看出色差的大小。

视场、场曲图:见理论课内容。

2.调用优化工具进行优化。

本实验中需掌握solves功能和评价函数(Merit Function)两种优化工具。

(1)Solves功能:解(solves),能使一些函数可以自动地调整特定值,可在曲率、厚度、玻璃名称、半径、圆锥系数等参数上指定;(2)评价函数:评价函数也叫优化函数,可由直接调用系统自带默认评价函数或用户自创评价函数来创建,函数中的变量由用户自己在镜头数据编辑框中设置,函数值会实时显示在评价函数编辑框的表头上,函数值越小,说明优化的结果越好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二基于ZEMAX的简单透镜的优化设计
一.实验目的
学会用ZEMAX对简单单透镜和双透镜进行设计优化。

二.实验要求
1.掌握使用ZEMAX实现光学优化设计的基本过程;
2.学会生成光线像差(ray aberration)特性曲线、光程差(OPD)曲线和点列图(Spot
diagram)、焦点色位移图和场曲图;
3.学会面厚度的求解方法,学会定义透镜的边缘厚度解和视场角,进行简单的优化;
4. 初步掌握为实际生产和装配考虑的额外设计和优化。

三.实验原理
(一)基本设计过程
1.拟好设计草图(光路图);2.软件仿真光路图;
3. 优化设计:像质分析评价—优化—再分析评价—再优化--……达到指标;
4. 输出结果。

(二)优化设计
仿真光路图完成以后,调用各种像质分析图进行像质分析评价,看设计是否达标,如还未达标,则恰当使用各种优化工具进行初步优化;然后再重新进行分析评价,看是否达标,如此反复,直到设计达标。

1.像质分析图。

本实验中需学会调用光线像差(ray aberration)特性曲线、光程差
(OPD)曲线和点列图(Spot diagram)、焦点色位移图和场曲图来进行像质分析评
价,各图可从主菜单-分析中调出。

光线像差(ray aberration)特性曲线:关于光瞳坐标函数的光线像差特征曲线,见理论课内容。

光程差(OPD)曲线:见理论课内容。

点列图(Spot diagram):
焦点色位移图(Chromatic Focal Shift):不同波长(颜色)的光线对于同一个正透镜的不同焦距的曲线,可直观看出色差的大小。

视场、场曲图:见理论课内容。

2.调用优化工具进行优化。

本实验中需掌握solves功能和评价函数(Merit Function)
两种优化工具。

(1)Solves功能:解(solves),能使一些函数可以自动地调整特定值,可在曲率、
厚度、玻璃名称、半径、圆锥系数等参数上指定;
(2)评价函数:评价函数也叫优化函数,可由直接调用系统自带默认评价函数或用
户自创评价函数来创建,函数中的变量由用户自己在镜头数据编辑框中设置,函数
值会实时显示在评价函数编辑框的表头上,函数值越小,说明优化的结果越好。

使用评价函数对所设计系统进行优化的步骤:
(a)设置可供选择的变量;
(b)创建评价函数,可根据设计具体需要,直接调用系统自带默认评价
函数,或加入一些限制条件到默认评价函数中重新创建新的评价函数;
(c )开始优化。

3. 为实际生产装配考虑的优化设计。

为了使软件仿真设计出来光学系统在之后的实际
生产加工装配使用时方便,需适当考虑在做软件设计时就考虑到一些额外的设计。

如本次实验中为了实际装配需要,将各透镜半口径改得比系统优化后自动生成的半口径稍大。

四. 实验内容
(一). 设计项目:用BK7玻璃设计一个焦距为100mm 的F/4单透镜,要求在轴上可见光范围内最终成像的点列图的RMS RADIUS<80,光线像差<500±,光程差<waves 20±。

1. 草拟并仿真光路图。

2. 生成光线像差特性曲线、2D 、3D 图层曲线和渲染模型等分析图来观察此时的成像质量。

3. 利用Solve 功能来求解第2面的厚度,以便适当的消除离焦现象,更新后观察各分析图的相应变化。

4. 将第1、第2面的曲率半径以及第2面的厚度值设为变量,建构并调用默认优化函数(Merit Function )。

5. 在调用默认优化函数后的优化函数编辑框中的第一行前按INS 插入一个新行,在其oper#列处双击(或右键单击),在弹出的对话框中将操作数选为EFFL ,target 设为100,weight 设为1,确定。

6. 调用优化工具进行优化,在优化后更新全部内容,然后观察各分析图的相应变化。

7. 分别调用点列图、OPD 图以及焦点色位移图(主菜单-分析-杂项)来观察最优化后的成像质量。

8. 将此设计起名保存,生成报告。

(二). 设计项目: 以前一个实验内容设计优化后的单透镜为基础,添加一块材料为SF1玻璃的透镜来构建胶合双透镜系统,进一步优化成像质量达到点列图的RMS RADIUS<11,光线像差<50±,光程差<waves 1±。

1. 草拟并仿真光路图。

2. 生成光线像差特性曲线、2D 、3D 图层曲线、点列图、OPD 图和渲染模型等分析图来观察此时的成像质量。

3. 设置STO 面、第2、第3面的曲率半径,以及第3面的厚度为变量,沿用前例的优化函数,在优化更新后观察各分析图的相应变化,并分别对比单透镜时的点列图、OPD 图以及焦点色位移图(主菜单-分析-杂项)的相应变化,观察双透镜此时的成像质量。

4. 为了实际装配需要,将各透镜半口径改得比系统优化后自动生成的半口径稍大(举例为14mm ),更新后观察此时的3D 图和各特性曲线的变化,从曲面数据报告中查看各面的边缘厚度值。

5. 利用Solve 功能来求解镜片边缘厚度(举例设计要求为3mm ),更新后观察各分析图的相应变化。

再一次调用优化函数进行优化后,重新观察各分析图变化。

6. 定义视场(系统-视场,举例加入两个分别为7°和10°的y 视场),从分析-杂项-视场场曲调出场曲图来观察此双透镜的离轴特性。

7. 将此设计起名保存,生成报告。

五. 报告要求:
1.截屏打印:
单透镜:LDE 窗口,OPD 图,图解报告4,点列图,焦点色位移图
双透镜:LDE窗口,第1面的曲面数据报告,2D图,场曲图,焦点色位
移图
3.试分析实验内容四(一).5中加黑部分各项设置的意义;
4.试分析在第1面的曲面数据报告中的Thickess值和Edge Thickness分别指的是
什么值,在2D图中标出相应的指向(方向、范围)。

5.上传以各自学号为文件名的*.zmx文件。

六.实验仪器PC机。

相关文档
最新文档