大连理工大学科技成果——自移式破碎机动态特性分析及动态设计
大连理工大学科技成果——港口流动机械(叉车等)故障检测与诊断系统

大连理工大学科技成果——港口流动机械(叉车等)
故障检测与诊断系统
一、产品和技术简介:
本系统为离线巡检测试系统,主要实现对港口流动机械的性能检测,故障诊断及设备的现代化管理。
为适应非平稳信号的分析要求,本产品采用了一种新的信号分析方法。
实现了叉车柴油机部分的燃油系统、缸套及活塞组件、曲轴磨损及配气机构的故障诊断和性能分析。
从而完成叉车振动检测、故障诊断与劣化报警的统一体系。
可实现港口流动机械的预知维修。
二、应用范围和生产条件:
该产品主要应用于各类港口码头的各种流动机械设备。
硬件生产条件:电子元器件焊接调试,洁净车间。
软件生产条件:软件开发微机房。
三、规模与投资、成本估算:
产品每台成本约合8万元人民币。
按年产200台的规模计算,需投资1600万元人民币,其中硬投资1000万,流动资金600万元。
四、提供技术的程度和合作方式:
现场服务、技术咨询、提供设备、人员培训、技术转让、软件免费升级。
并针对用户需求进行二次开发等多方位合作方式。
使用权归用户,技术产权归我所,也可买断产权。
大连理工大学科技成果——复杂型面整体叶轮叶盘旋转磨料流抛光设备及技术

大连理工大学科技成果——复杂型面整体叶轮/叶盘旋转磨料流抛光设备及技术一、产品和技术简介:采用此旋转磨料流体抛光设备,在整体叶轮表面创成出具有特定形状、尺寸和分布规律的微形貌和结构纹理,可显著改善叶轮表面近壁流体的输运特性,对于提升飞机发动机的压气效率、推重比和热导率等关键指标意义重大。
通过旋转磨料流抛光技术可对整体叶轮复杂表面进行几何形状的精确创成,为形成具有特定微形貌和表层性态特征的功能表面的数字化制造奠定了坚实的基础。
二、应用范围:我国将大飞机研制作为国家战略,希望大飞机成为一个有竞争力的产业,带动整个产业链的同步大发展。
整体叶轮作为代表性难加工零件,开展相关制造技术的基础科学研究对实现我国高性能复杂航空零件自主制造能力的突破具有重要意义。
其制造能力和水平体现了一个国家制造业的核心竞争力,是我国大飞机自主研制必须突破的关键技术,在我国航空领域有着巨大的军事,经济及社会效益。
三、生产条件:大连理工大学机械学院在复杂曲面数字化制造理论与应用及精密测量数字化控制、难加工材料精密和超精密加工理论和技术等领域具有深厚的研究基础。
研究成果广泛地应用于能源、航天和国防等领域,获得包括2008年国家技术发明一等奖在内的国家和省部级奖10余项、发明专利10余项。
四、获得的专利等知识产权情况:申请发明专利2项1)一种整体叶轮类零件抛光方法(专利申请号:201210103154.4)2)一种整体叶轮类零件抛光装置(专利申请号:201210103751.7)五、成本估算:整体叶轮,叶盘类零件在国内主要靠手工抛光,抛光单个叶轮需要一个月左右时间,且加工纹理不规则,加工环境差,废品率高。
通过本技术应用,研制自动化光整加工设备,可在原有基础上,使加工效率提高十几倍,设备成本约300万元。
六、规模与投资:据预测,到2020年,我国大约需新增干线客机1600架左右,总价值1500亿美元至1800亿美元;而到2050年,我国大约还需要更新和新增干线客机3000多架,加上各类支线客机和民用运输机,总价值在3500亿美元至4000亿美元之间。
大连理工大学科技成果——脱水污泥干燥气化焚烧技术介绍

大连理工大学科技成果——脱水污泥干燥气化焚烧
技术介绍
一、产品和技术简介:
脱水污泥干燥气化焚烧技术是基于脱水污泥含水率高、固液结合能大的特点研究开发的一种污泥减量化、资源化、无害化和稳定化处理技术。
机械脱水后污泥首先进行具有原始创新思想的转鼓压膜调质热脱水干燥,可析出部分液态水和气态水,其中占污泥总含水量三分之一的水分以液态形式析出,无气化潜热能量消耗,可大幅降低干燥能量消耗。
然后经成型二次干燥,含水率降低至20%湿基含水率,输送至流化床气化炉进行气化,气化产物采用蓄热式超绝热燃烧技术(专利技术),分解焦油类大分子有机物,降低焦油产率,通过提高产气中氢气量提高产气品质。
产生的气化气净化后送入燃气锅炉燃烧,供给转鼓压膜热调质干燥过程所需的干燥介质水蒸汽,燃烧热烟气可为二次干燥提供过程所需干燥介质热空气。
气化残渣用于制造地砖,进一步实现资源化利用。
整套工艺脱水污泥减量化率高达90%以上,污泥自身能量得到充分利用,实现了污泥的资源化利用,气化焚烧过程可实现重金属的固化稳定化,且污泥气化技术可降低二噁英、氮氧化物和硫氧化物排放量,实现过程及产物的无害化,是一种环境友好型污泥处理及最终处置技术。
二、应用范围和生产条件:
环境友好型污泥处理及最终处置。
大连理工大学科技成果——智能起重机

BC-2800 IOT智能装备健康监测与智能运维系统的核心技术
7. 智能机器人(智慧柔性加工系统) 机器人物联网感知端:BC-RB/M-100-I 物联网网安接入单元:BC-RB/WAN-SAF-100-I SENSOR:
示意图:
BC-2800 IOT智能装备健康监测与智能运维系统的核心技术
智能制造体系中的智能装备
一.智能制造体系中的智能装备
□ 智能制造是“中国制造2025”的核心; □ 智能装备——装备智能化是智能制造的基础与保障; 智能装备: • 拥有服务于“智能生产”系统(MES系统、智能控制系统)的自 动化、智能化能力; • 拥有全面的状态信息、过程信息感知,具备自我健康认知—— 健康评估、故障预警与故障诊断能力; • 具备基于物联网的“全生命周期”智能运维、智能服务能力; 智能制造——企业将实现从传统的“以产品为中心”向“以集
BC-2800 IOT智能装备健康监测与智能运维系统的核心技术
4. 智能压缩机(流程工艺的主动力环节) 压缩机机智能感知单元:
2/4/8/16通道一体化高速同步振动(3轴加速度)、温度、 转速数据的同步采集功能,支持齿轮故障本地报警功能; SENSOR: BC-JX/M-208-I系列小型埋入式3轴振动加速度传感器;
智能装备——智能起重机
王孝良
大连理工大学电信学部控制科学与工程学院
School of Control Science and Engineering Dalian University of Technology
汇报提纲
一、智能制造体系中的智能装备 二、智能起重机的智能化功能 三、支撑智能起重机智能化的新单元 四、BC-2600 智能装备IOT健康监测服务平台
某型破拆机器人臂架系统运动仿真及变幅液压缸参数设计

某型破拆机器人臂架系统运动仿真及变幅液压缸参数设计王大洪1,张文帅2,滕儒民2,范子剑2,曾卉帆2(1. 深圳市先进智能技术研究所,广东深圳 518049;2. 大连理工大学机械工程学院,辽宁大连 116023)[摘要]某型破拆机器人臂架系统采用3节工作臂、4个液压缸进行变幅动作,以实现臂架端部破拆装置的合理运动及精准定位,正确计算出破拆装置的作业范围以及液压缸的参数是设计该产品的关键。
本文通过臂架系统的运动仿真给出了该产品的作业范围以及液压缸的参数,为合理设计臂架系统提供了准确数据。
该方法和手段为同类产品的设计提供了借鉴。
[关键词]破拆机器人;臂架;运动学仿真;液压缸参数计算[中图分类号]TU689 [文献标识码]B [文章编号]1001-554X(2022)02-0118-04Motion simulation and parameter design of luffing hydraulic cylinder forboom system of a demolition robotWANG Da-hong,ZHANG Wen-shuai,TENG Ru-min,FAN Zi-jian,ZENG Hui-fan特殊环境下破拆机器人是结合高危环境特点开发的一种遥控多功能作业机器人。
破拆机器人最早由瑞典brokk公司于20世纪70年代开发、研制和生产,经过不断地改进,朝着标准化、系列化、自动化和智能化的方向发展[1]。
进入21世纪,随着人力成本的不断提升和工人要求对工作环境的不断改善,破拆机器人在建筑改造和拆除、桥梁隧道地铁施工、抢险救援及排爆、冶金工业炉窑打渣、水泥工业回转窑拆除等应用场所使用越来越广泛。
王旭[2]以新型拆除机器人工作装置为研究对象,采用矩阵法得到拆除机器人工作装置的运动轨迹方程,为研究拆除机器人工作装置的优化设计提供了新方法;赵家宏[3]用CATIA软件建立了破拆机器人模型,利用ADAMS软件对拆除机器人的工作装置进行了运动学仿真分析,获得了液压锤的工作范围包络图。
大连理工大学科技成果——核主泵关键部件表面强化技术原理与工艺

Theory and Technology of Surface Modification Techniques for NCP Application
研究背景与来源
大型先进压水堆核电站核主泵,是核电站的“心脏”,也是核电技术国产化最后一
个难度最大的重大装备。核主泵驱动核岛内的高温高压水循环,将反应堆芯核裂变的热 能传递给蒸汽发生器产生蒸汽,推动汽轮机发电,设计工作压力17 MPa,流量24000 m3/h,扬程100 m,温度340 ℃,工作效率79%以上。核主泵水润滑轴承、机械密封、 转子组件等关键部件在高温高压及辐射环境中,要满足长期安全可靠使役要求,亟待研 究和解决关键部件耐磨减摩、抗蚀、抗疲劳等表面强化的难题,实现核主泵自主化制造 的突破。
硬质合金冲击强化 (减摩耐磨性能改善 )
硬质合金密封环冲击强化
等离子体源渗氮技术工艺装备
强流脉冲离子束表面工程装备
超音速喷涂硬质合金涂层装备 水润滑轴承表面强化
阶段研究成果
研究工作发表SCI学术论文32篇,授权发明专利3项,国际会议大会邀请报告2次。
(3)发展出强流脉冲离子束无约束冲击强化技术,在硬质合金上耦合形成了数微米重熔改性层和数百微米 冲击硬化层,克服了现有的载能束重熔强化易开裂、冲击效率低的局限性,解决了核级硬质合金部件表面 强化的难题。
等离子体
离子注入层 鞘层
扩散层
等离子体基低能离子注入传质机制
激光束
光吸收层
透明约束层
大面积强流脉冲离子束
(1)发展出低温、高效等离子体基低能离子注入技术,在不锈钢部件上获得高硬高韧、单一过饱和面心立 方相γN改性层,突破了现有第二相强化表面改性方法破坏耐蚀性的局限性,解决了不锈钢部件耐磨抗蚀复 合改性的难题;
大连理工大学科技成果——压电动态测力仪
大连理工大学科技成果——压电动态测力仪一、产品和技术简介压电动态测力仪为系列化产品:三向车削测力仪、三向铣削测力仪、三向磨削测力仪、两向钻削测力仪。
每种有不同的型号和规格,适用于各种金属切削加工中切削力(扭矩)的动态测量。
其中三向压电车削动态测力仪曾获国防科委重大科技成果四等奖、国家经委优秀产品飞龙奖、辽宁省科技进步三等奖、大连市科技成果二等奖,并获得发明专利。
无定心钻削测力仪也获得发明专利。
三向压电石英力传感器获辽宁省科委科技进步二等奖。
国内仅本单位制作,性能指标与国外产品相当,价格优势极其明显。
本技术已经用于某研究所切削化爆材料的监控,长春第一汽车集团技术工艺部材料加工工艺参数制定等,吉林大学、广东工业大学、太原重型机械学院、华北电力学院、辽宁科技大学、大连大学、大连水产学院等高校已经购买了本所的产品用于教学和科研。
二、应用范围适用于金属切削加工中动态力的检测,测量车削、铣削、磨削、钻削等常规加工方法的切削力,可根据需要设计用于非常规切削状态,如车铣加工、金属摩擦系数测量等。
适用高校的金属切削原理课程或金属工艺学教学实验,也适用于科研及机床自动检测控制的更新改造。
三、获得的专利等知识产权情况其中三向压电车削动态测力仪曾获国防科委重大科技成果四等奖、国家经委优秀产品飞龙奖、辽宁省科技进步三等奖、大连市科技成果二等奖,并获得发明专利。
无定心钻削测力仪也获得发明专利。
三向压电石英力传感器获辽宁省科委科技进步二等奖。
国内仅本单位制作,性能指标与国外产品相当,价格优势极其明显。
四、规模与投资如能形成良性产、供、销循环,前期的投入将在几个月内收回,需要具有操作上述设备能力的人员和相应的技术指导,人员在30人以下,投资约80万元。
在具有以上常规加工手段的前提下,搭建专用的研制实验室,购置几台专用设备即可,测力仪的单件成本在8000元-15000元之间。
五、提供技术的程度和合作方式提供相关的技术图纸,指导生产过程,并负责最终的调试和性能评定,培训售后服务人员。
大连理工大学科技成果——便携式型砂紧实率快速智能测试仪
大连理工大学科技成果——便携式型砂紧实率快速
智能测试仪
一、产品和技术简介:
本仪器填补了国内外采用小型轻便仪器在铸造生产现场快速检验型砂性能的空白。
发明专利号码为:ZL001021370。
国内外铸造生产中普遍采用人工观察或实验室测试方法检验型砂性能,无法在生产现场指导即时生产,从而导致大量废品。
据统计,铸件废品中有45%~55%可归于型砂的性能与质量波动。
本仪器采用压力、位移传感器和单片机构成。
体积小、重量轻、携带方便、显示直观,在同等精度下提高测试速度几百倍,测试结果可即时指导生产,大幅降低铸件废品率,显着改善产品质量,提高企业的经济效益。
本仪器适用于采用潮模粘土砂的企业在生产现场快速测量型砂性能。
二、应用范围:
采用潮模粘土砂的铸造生产车间或企业在生产现场快速测量型砂性能。
三、生产条件:具备一般的组装条件即可。
四、成本估算:视生产规模而定。
五、合作形式:面议。
移动煤矿样品摘取机器人Yuanfang Li等人的动态特性分析:悬挂臂的动态特性对移动煤矿样品摘取机
Dynamic Characteristics Analysis of the Hydraulic Arm ofMobile Coal Sampling RobotYuanfang Li1, Haibo Xu1, Jun Wang2, Rong Deng1 and Yufeng Lin11Xi'an Jiaotong University, Xi’an 710049, Shanxi, China2Xi'an Hongyu mining special mobile equipment Co., Xi’an 710075, Shaanxi, China Abstract—Dynamic characteristics of the hydraulic armaffects the mobile coal sampling robot’s accuracy and efficiency.The complex and varied working conditions put many highrequirements on the stability of the hydraulic arm. This papertook the hydraulic arm of the MCYY2000 mobile coal samplingrobot as the research object, and established a simplified modelof the hydraulic arm with SolidWorks. It carried out the analysisunder both the condition of no-sampling resistance and thecondition of variable sampling resistance. The analysis was donewith the module of multi-body dynamics simulation in Simulink.This paper helps to obtain the joint torques and hydraulicdriving forces of the hydraulic arm under different conditions. The results provide a basis for further work including accurate motion control, chatter reduction and safety improvement of the coal sampling robot.Keywords—coal sampling robot; hydraulic arm; complex working conditions; dynamic characteristicsI.I NTRODUCTIONThe mobile coal sampling robot is suitable for the sampling of carts, trains and coal heaps in places such as coal yards, steel mills, power plants, and harbors[1]. With its advantages of small size, high mobility, and wide adaptability, it has demonstrated an important position in the industry of mechanized coal sampling in recent years. Compared to manual sampling, the mobile coal sampling robot can reduce labor intensity and increase sampling efficiency[2].The MCYY2000 mobile coal sampling robot developed by Xi'an Hongyu Mining Special Mobile Equipment Co., Ltd. has the advantages of convenient movement, simple operation, and various control modes (manual, semi-automatic, and automatic), and can realize the integration of full-section sampling, crushing, shrinking, and collection. With high sampling efficiency, the sampling robot overcomes the disadvantages of low accuracy, low efficiency, and poor flexibility in the current manual sampling and mechanical sampling processes. As respectively shown by No.1-7 in Figure I, the whole structure of the sampling robot is mainly composed of the car chassis, the disposal storage device, the sample preparation device, the hydraulic arm, the hydraulic system, the driving room and the electrical system.FIGURE I. STRUCTURE OF THE MOBILE COAL SAMPLING ROBOT The hydraulic arm is the most important part of the mobile coal sampling robot. Its dynamic characteristics affects the sampling accuracy and sampling efficiency. Therefore, the dynamic characteristics of the hydraulic arm are important targets for the analysis and research of the coal sampling robot[3][4][5]. This paper takes the hydraulic arm of the MCYY2000 mobile coal sampling robot as the research object, establishes a simplified model of the hydraulic arm of the coal sampling robot in the SolidWorks, and carries out the analysis of no-sampling resistance and variable sampling resistance of the hydraulic arm through the multi-body dynamics simulation module of Simulink. The dynamic simulation analysis under the two working conditions helps to obtain joint torques and hydraulic driving forces. The analysis is used to provide the basis for follow-up accurate motion control, reducing flutter, and improved work accuracy and safety.II.I NTRODUCTION OF THE H YDRAULIC A RM ANDW ORKING C ONDITION A NALYSISAs respectively shown by No.1-11 in Figure II, the hydraulic arm of the mobile coal sampling robot is composed the base, the upper arm, the second arm, the telescopic arm, the mast, the sampling head, the upper arm cylinder, the second arm cylinder, the telescopic arm cylinder, the guide cylinder and the swing hydraulic motor. The base is connected with the slewing bearing, and the hydraulic motor provides power. The base drives the entire hydraulic arm to realize a 300° rotation. The upper arm, second arm and telescopic arm are driven by their respective hydraulic cylinders to achieve the motion of pitching and telescoping. The sampling cylinder is fixed in the mast, and the directly reciprocating motion of the sampling head guide rail is driven by moving the pulley block and the chain. This motion controls the vertical down sampling and the oblique down sampling at different angles. The mast makes it possible to keep the upper arm and the second arm stationary3rd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2018)during sampling, so the sampling accuracy can be higher. The sampling head is a spiral structure[6] and can complete the deep sampling into coal heaps with a depth of 2 meters.FIGURE II. STRUCTURE OF THE HYDRAULIC ARM The related size parameters of the hydraulic arm of the coal sampling robot are shown in Table I. The parameters in the table are all from the actual design parameters of the MCYY2000 mobile coal sampling robot.TABLE I. RELATED SIZES OF THE HYDRAULIC ARMComponent Size / mmupper arm 2900second arm 2700telescopic arm 1000mast 3400Sampling head 2100Complex and varied working conditions[7] of coal sampling projects put many high requirements on the stability of the dynamic characteristics of the hydraulic arm:(1) When the sampling head of the hydraulic arm is moving at a low speed and operating the pitching movement with no-sampling resistance, the torque of each joint and the driving force of the hydraulic cylinder should be changed smoothly with small amplitude, so that the hydraulic arm can maintain safety and stability during its adjustment of the sampling angle.(2) When the hydraulic arm is sampling at a fixed sampling angle, the sampling head is subject to a varying sampling resistance. At this time, the joint torques and the hydraulic driving forces must avoid sharp changes or exceeding its safety range[8] so that the coal sampling robot can stay safe. The key research of this paper focuses on the dynamic characteristics of the hydraulic arm of the coal sampling robot under the two working conditions.III.A NALYSIS OF D YNAMIC C HARACTERISTICS OF THEH YDRAULIC A RMTo build a virtual prototype, simplified models should be used as much as possible. In order to reduce the simulation time[9], the number of parts should be reduced as much as possible while satisfying the integrity of the virtual prototyping simulation movement. According to the actual size of the hydraulic arm and the types of hydraulic cylinders, the components including the base, the upper arm, the second arm, the telescopic arm, the mast, the sampling head and hydraulic cylinders are modeled and assembled in SolidWorks. The virtual prototype of the hydraulic arm of the coal sampling robot is shown in Figure III.FIGURE III. VIRTUAL PROTOTYPE MODEL OF THE HYDRAULICARMAs shown by No.1-8 in Figure IV. the simplified schematic diagram of the movement mechanism includes three joints - join1, joint2 and joint3 - and five hydraulic cylinders - cylinder1, cylinder2, cylinder3, cylinder4 and cylinder5. The range of the motion of each joint variable and cylinder driving variable is shown in Table II.FIGURE IV. MOTION MECHANISM OF THE HYDRAULIC ARM OFTHE COAL SAMPLING ROBOTTABLE II. RANGE OF JOINT ANGLES AND CYLINDER LENGTHS Joint angle Range /(°) Cylinder length Range / mmjoint θ1 66-130 cylinders1 1750-2750 joint θ2 90-160cylinder s2 1450-2300cylinder s3 2700-3700 joint θ3 60-135cylinder s4 1650-2650cylinder s5 3400-5500Import the assembled model into Simulink and generate a block diagram of the model. Set the appropriate material properties and apply the necessary constraints[10] for each component in the model, and add torque sensors and force sensors for the rotating joints and hydraulic cylinders. The signal window modules are also added. The general Simulink dynamic analysis block diagram after settings is shown in Figure V. The multibody structure diagram of the hydraulic arm is shown in Figure VI.FIGURE V. GENERAL SIMULINK DYNAMIC ANALYSIS BLOCKDIAGRAMFIGURE VI. SIMSCAPE MULTIBODY STRUCTURE DIAGRAM A.Analysis of the Dynamic Characteristics of the HydraulicArm of Coal Sampling Robot under the Condition of No-sampling ResistanceWhen the hydraulic arm is under the no-sampling resistance condition, the sampling head only performs low-speed pitching movements. At this time, each joint torque and the hydraulic cylinder driving force should be stable and be of small-scale changes, so that the coal sampling robot can remain safe and stable during the adjustment of its sampling angle. When analyzing the dynamic characteristics of the hydraulic arm under this condition, the sampling resistance is set to zero. The curve of the length of the hydraulic cylinder s4 is shown in Figure VII. The lengths of cylinders s1, s2, s3 and s5 are respectively set to 2250mm, 1950mm, 2700mm and 3400mm. According to the relationship between the joint variables and the cylinder driving variables, the curve of the joint angle θ3 is shown in Figure VIII.FIGURE VII. CURVE OF THE LENGTH OF CYLINDER 4FIGURE VIII. CURVE OF JOINT ANGLE θ3The curves of the joint torques and the hydraulic cylinder driving forces are respectively shown in Figure IX and Figure X. With the extension and retraction of the mast cylinder s4, the torques of the joint1-joint3 firstly increase and then decrease within a smaller range, and the change trend is relatively stable. The torque of joint1 is the largest. The torque of joint2 is the next, and the torque of joint3 is the smallest. The driving forces of the hydraulic cylinders also change smoothly. The driving force of the hydraulic cylinder1 is the largest, and the driving force of the hydraulic cylinder3 remains basically unchanged.The results show that when the hydraulic arm of the coal sampling robot performs low-speed swing movement of its sampling head under the condition of no-sampling resistance, the joint torques and the driving forces of the hydraulic cylinders change smoothly and slightly. The driving forces of the hydraulic cylinders mainly overcome the effect of gravity. The simulation results are in accordance with the actual situation.FIGURE IX. CURVES OF JOINT TORQUESFIGURE X. CURVES OF CYLINDER DRIVING FORCESB.Analysis of the Dynamic Characteristics of the HydraulicArm of Coal Sampling Robot under the Condition ofVariable ResistanceIn the sampling process, the sampling head of the coal sampling robot is mainly subjected to three external loads including the insertion resistance, the gravity of coal and the lifting resistance. The insertion resistance and the ascending resistance are uncertain under different working conditions. According to formulas and relevant experiences, the insertion resistance and the ascending resistance are respectively set to 6000 N and 5000 N. The designing parameters of the coal sampling robot show that the coal sampling weight is about 200N, which is much smaller compared with the other two resistances. Therefore, the curve of the sampling resistance during vertical sampling process is shown in Figure XI. According to this, the dynamic characteristics of the hydraulic arm of the coal sampling robot under the variable resistance condition can be verified.FIGURE XI. CURVE OF THE SAMPLING RESISTANCEFIGURE XII. CURVE OF THE LENGTH OF CYLINDER 5 When analyzing the dynamic characteristics of the hydraulic arm under the variable resistance condition, the joint angles θ1 and θ2 respectively maintain 70° and 110°. The joint angle θ3 is set to 90°, which means the sampling head performs vertical sampling at a sampling angle of 90°. Curve of the length of Hydraulic cylinder 5 is shown in Figure XII.As shown in Figure XIII and Figure XIV when the sampling resistance is given, the curves of the joint torques and the driving forces of the hydraulic cylinders are no longer smooth. Instead, they show sharp turning changes with the changes of the sampling resistance. The joint 1 and the joint 2 show large torques and relatively large variation. The joint 3 shows relatively small torque. The driving forces of the hydraulic cylinder 1 and the hydraulic cylinder 2 are relatively large and the amplitude of their changes is also large. The driving forces of the hydraulic cylinder 4 and the hydraulic cylinder 5 change within a little range and are relatively stable. The hydraulic cylinder 3 basically has no change of driving force under this condition.The results show that the joint torques and the driving forces of the hydraulic cylinders have turning changes under the condition of variable resistance. Due to the low moving speed of the sampling head, the influence of inertial force and inertia torque is relatively small[11]. The driving forces of the hydraulic cylinders mainly overcome the gravity of the arm itself and the external sampling resistance. The simulation results are in accordance with the actual situation.FIGURE XIII. CURVES OF JOINT TORQUESFIGURE XIV. CURVES OF CYLINDER DRIVING FORCESIV.C ONCLUSIONSThis paper took the hydraulic arm of the MCYY2000 mobile coal sampling robot as the researching object. It established a simplified model of the hydraulic arm with SolidWorks, and carried out the dynamic simulation analysis of the hydraulic arm under both the condition of no-sampling resistance and the condition of variable resistance with the Simulink. The simulation results are basically in accordance with the actual situation.(1) Under the condition of no-sampling resistance, the hydraulic arm of the coal sampling robot performs low-speed swing movement of the sampling head. The joint torques and the driving forces of the hydraulic cylinders change smoothly and slightly. The driving forces of the hydraulic cylinders mainly overcome the effect of gravity.(2) Under the condition of variable resistance, the joint torques and the driving forces of the hydraulic cylinders show turning changes. Due to the low moving speed of the sampling head, the influence of inertial force and inertial torque are relatively small. The driving forces of the hydraulic cylinders mainly overcome the gravity of the arm itself and the external sampling resistance.In this paper, the joint torques and hydraulic driving forces of the hydraulic arm are obtained through dynamic simulation analysis. The results help to provide a basis for further work including accurate motion control, chatter reduction and safety improvement of the coal sampling robot.A CKNOWLEDGMENTThanks to the support of Xi'an Hongyu Mining Special Mobile Equipment Co., Ltd. And thanks to the help of Shaanxi Science & Technology Co-ordination & Innovation Project.R EFERENCES[1]Yang Jinhe and Liu Enqing. Discussion on mechanized sampling ofcommercial coal [J]. Coal Processing & Comprehensive Utilization, 2007(04): 29-30.[2]Sun Gang. Research on Performance Index of Coal Sampling Machine[J].Journal of China Coal Society, 2009, 34(06): 836-839.[3]Qu Can. Virtual Design of Sampling Arm for Vehicle Coal samplingrobot [D]. Xi'an: Chang’an University, 2014.[4]Lu Na. Dynamic Analysis of Sampling Arm of Coal Sampling MachineBased on ANSYS [D]. Xi'an: Chang’an University, 2014.[5]Li Longlong. Inverse Kinematics Analysis and Sampling TrajectoryControl Simulation of Coal Sampling Arm [D]. Xi'an: Xi’an University of Architecture and Technology, 2014.[6]Li Xuta, He Lile, Zhang Youzhen and Leng Mingyou. Analysis of SpiralDrill Pipe Fatigue Strength of Spiral Coal Sampling Device [J]. Coal Engineering, 2012(11): 93-94+98.[7]Zhu Xiaoyong and Zhang Yuangen. Common problems in coal samplingand its solution [J]. Modern Industrial Economy and Informationization, 2017, 7(16): 72-74.[8]Chen Chuanxiong and Kong Jian. Optimization Design and Analysis ofCoal Sampling Robot Transmission System [J]. Coal Technology, 2016,(02): 259-262.[9]Geng Chunxia and Ye Feng. Research on the Optimized Design ofSampling Arm of Coal Sampling Machine [J]. Coal Technology, 2013,(12): 14-16.[10]SUN Xuguo, HUANG Sunzhuo, LIN Shuwen, et al. Modeling andsimulation of excavator mechanism dynamics based on Matlab[J].Mechanical Engineer, 2007(9): 91-93.[11]Zheng Deshuai, Gu Lichen, Zhang Ping and Jia Yongfeng. AMESimmodeling and feasibility analysis of a new coal sampling arm [J].Machine Tool & Hydraulics, 2013, 41(13): 155-157.。
大连理工大学理论力学工程减震自设计实验
1.工程减振背景和研究背景工程减振在现代工程中应用十分广泛很多工程因为没有考虑共振效应而失败造成经济上的损失和人员上的伤亡。
因此其研究价值不言而喻。
工业和运输业中广泛采用机器作原动力机械振动的危害越发严重减振要求日益迫切。
汽轮机、水轮机和电机等动力机械汽车、火车、船舶和飞机等交通运输工具以及工作母机、矿山机械和工程机械等都沿着高速重载方向发展其振动也日益强烈。
精密机床和精密加工技术的发展中如果离开严格隔振的平静环境工作就不正常,无法达到预期的精度目标。
材料工业和建筑工业的发展中广泛采用高强度的建筑材料建筑高度不断攀升使得建筑受风载激励后振幅达几米之大难以满足舒适和安全要求倘不能减振此类高楼就无法继续发展下去。
飞机、导弹、坦克、战车通常在最为恶劣的环境中工作。
因此军工部门对减振环节的要求也日渐增多。
尤其是如今的精确打击方向的研究更需要减振理论的支持无论是民用工业还是军事工业其产品性能都与减振技术密切相关。
产品性能又决定了企业的利润效益。
因此关于减振的研究永不过时。
对于减振最积极的办法是针对振动的原因对症下药。
引起振动的原因有很多所以对于不同的振动原因应采取不同的方法。
机电产品绿色设计包括振动工程而振动控制是振动工程的一个重要学科分支。
随着科学技术的迅速发展、机械的高速化及结构的轻型化大量的工程振动问题不断地涌现引起了机械工作状态的恶化生产效率和工作质量的下降。
而机械振动常常是造成机械和结构恶性破坏和失效的直接原因。
振动使结构的内应力大大增加由于振动产生的交变载荷使结构发生疲劳破坏共振使结构产生不允许的大变形致使结构发生严重破坏。
在有些机械中由于自身作业的环境恶劣再加上振动的存在而引起地基的振动和噪音造成更为恶劣的环境使精密仪器不能正常工作人的劳动条件恶化。
工程史上由于振动而引起的失事已屡见不鲜。
闻名的Tacoma吊桥事件就是一例。
该桥长2800尺宽39尺于1940年因风载激起自振历时一小时振动约720周破坏殆尽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究内容与特色
进行自移式破碎机动态特性分析和优化及稳定性问题,包括:关键零部件的数字模型建立和有限元分 析;钢结构的设计优化分析;冲击载荷下的大型露天自移式装备的稳定性设计;大型露天装备平衡及抗风 扰技术;破碎机移动中生产运行及抗冲击技术等。 (1)进行破碎机钢结构静力分析拓扑优化,再在此基础上进行结构优化。以载荷为目标函数,以体积减 小为约束条件下寻找最合适的模型,使载荷最小; (2)考虑履带-地面非线性接触、散体物料冲击影响等进行自移式破碎机动态特性分析及稳定性分析; (3)建立了基于质量慢变的自移式破碎机落料系统动力学模型,考虑质量慢变的前提下,对自移式破碎 机进行落料动力学分析和稳定性分析,并设计落料系统实验验证理论结果。
自移式破碎机动态特性分析及动态设计
Dynamic Characteristics Analysis and Design of Self-Mobile Crusher
课题背景与来源
我国是能源生产和消费大国,以煤为主的能源消费结构将长期存在。目前露天开采已成为国际采矿 业的首选。但目前我国露天煤矿仅占10%,远远落后于50%的国际平均水平,其主要原因之一就是露天 装备巨大、长期依赖进口。以自移式破碎机为核心的大型露天矿半连续开采成套装备替代卡车简化了生 产环节、减少对人员和短缺油料的依赖、降低环境污染,并具有不受矿岩软、硬及气候条件限制等突出 优点。可广泛应用于我国乃至世界上大多数露天煤矿,将引领露天采矿新的技术革命。
破碎机钢结构有限元模型 落料离散元模拟
拓扑优化结果
10
8
6
T1
4
稳定
不稳定 2
00
2
46Biblioteka 8 10T0质量变化与不稳定区关系
研究内容与特色
发表论文5篇,其中SCI/EI检索4篇 。
铁架台
模态分析结果
漏斗
转盘
电机 光学平台
料斗 传感器
弹簧 框架
实验装置图