第5课:一元一次不等式组的解法(2)
《一元一次不等式组的解法 》 教案精品 2022年数学

9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x <3.应选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x <1.因为不等式组无解,所以-a ≥1,解得a ≤-1.应选D.方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证15.1.2 分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
一元一次不等式组的解法

x ≥-2, (4)不等式组 的解集在数轴上表示为( x 5
B
D.
) -5 ) -2
A.
-5
-2
-1
B.
-5
2.5 4
-2
C.
-5
-2
(5)如图,
则其解集是(
A. 1 x 2.5,
B. 1 x ≤4, C. 2.5 x ≤4
Байду номын сангаас
D. 2.5 x 4
C
小结: 一元一次不等式组和它的解法
x 1, (7) x 4. x 0, (8) x 4 .
x 1, (11) x 4.
x 0, (12 ) x 4.
例1. 求下列不等式组的解集:
x 3, (1) x 7. x 2, ( 2) x 3 . x 2, (3) x 5 . x 0, ( 4) x 4 .
①
②
在同一数轴上表示不等式①,②的解集:
2 3
①,②的解集的公共部分记作: 2<x<3,
x 2, 叫做一元一次不等式组 x 3.的 解集
在数轴上表示不等式的解集时应注意:
大于向右画,小于向左画;有等号的画实心 圆点,无等号的画空心圆圈.
例1. 求下列不等式组的解集(在同一数轴上表示出两个不等式 的解集,并写出不等式组的解集): 第一组
-7 -6 -5 -4 -3 -2 -1 0
解:原不等式组无解.
-3 -2 -1 0
1
2
3
4
5
解:原不等式组无解.
-6
-5 -4 -3 -2 -1
苏教版七年级下册数学[一元一次不等式组(基础) 知识点整理及重点题型梳理]
![苏教版七年级下册数学[一元一次不等式组(基础) 知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/5845eee66f1aff00bed51e91.png)
苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式.【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【第二讲 一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①② (2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2.其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①② 解①得:4x <解②得:12x ≥- 故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】 解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树; 第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式. 到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得: 88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元, 可得:, 解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:, 解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
《一元一次不等式》说课稿(精选5篇)

《一元一次不等式》说课稿(精选5篇)《一元一次不等式》说课稿1一、教学内容的分析1、教材的地位和作用(1)本节内容、是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上、把实际问题和一元一次不等式结合在一起、既是对已学知识的运用和深化、又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础、具有在代数学中承上启下的作用;(2)通过本节的学习、学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程、体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中、引导学生注意估算意识、体会算式结果所对应的实际意义、渗透建立数学模型、分类讨论等数学思想、对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
2、教学的重点和难点对于用不等式解决实际问题、学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求、本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化、并根据解集和结合实际情况分类讨论得出合理结论。
二、教学目标的确定根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平、我从三个方面确定了以下教学目标:1、能进一步熟练的解一元一次不等式、能从实际问题中抽象出不等关系的数学模型、并结合解集解决简单的实际问题。
2、通过观察、实践、讨论等活动、积累利用一元一次不等式解决实际问题的经验、提高分类考虑、讨论问题的能力、感知方程与不等式的内在联系、体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3、在积极参与数学学习活动的过程中、体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时、与其他同学交流、相互启发、培养合作精神。
人教初中数学七下 9.3.2 一元一次不等式组课件 【经典初中数学课件】

分析:从跷跷板的两种状况可以得到的不等关系:
妈妈的体重+小宝的体重 <
爸爸的体重;
妈妈的体重+小宝的体重+6千克 > 爸爸的体重。
学习目标:1、会用一元一次不等式组解决实际问题
自学指导:阅读课本P139-134,例2 思考: 1、“不能完成任务”是什么意思 2、“提前完成任务”又是什么意思?
学习目标:1、会用一元一次不等式组解决实际问题
运用规律求下列不等式组的解集:
((((68(2571(3))4)))xx32xxxxxxxxxxx>>>><<<<><<><>>--37-20-5243-760.,4,-3,.4..1,4., .
学习目标:1、会用一元一次不等式组解决实际问题
1、若不等式组 x a 无解,求a的取值范围
2x -1 3
o
0
o
o
X
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (3) x<5
2 、若把以上(1)、(3)两个不等式合起来,这 个一元一次不等式组中x取值范围是多少呢?
o
o
X
X的取值范围是:2<X<5
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
我来说一说!
第九章 9.3 一元一次不等式组(1)
第7课时
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (2) x<-2 (3) x<5 (4) x<-5
2、若把以上(1)、(2)两个不等式 合起来,这个一元一次不等式组中x取 值范围是多少呢?
第五讲 不等式(组)讲义

第五讲 不等式(组)及应用一、课标下复习指南 1.不等式用不等号表示不等关系的式子,叫做不等式. 2.不等式的解和不等式的解集(1)不等式的解:与方程类似,使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:一个含有未知数的不等式的所有的解,组成这个不等式的解集.它可以用最简单的不等式表示,也可以用数轴表示. 3.解不等式求不等式的解集的过程,叫做解不等式. 4.不等式的基本性质性质1 不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变. 性质2 不等式两边都乘以(或除以)同一个正数,不等号的方向不变. 性质3 不等式两边都乘以(或除以)同一个负数,不等号的方向改变. 不等式的其他性质: (1)若a >b ,则b <a ;(2)若a >b ,b >c ,则a >c ; (3)若a ≥b ,b ≥a ,则a =b ; (4)若a 2≤0,则a =0. 5.一元一次不等式类似于一元一次方程,含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式.它的一般形式为ax +b >0(a ≠0)或ax +b <0(a ≠0). 6.一元一次不等式的解法类似于一元一次方程的解法,但要特别注意不等式两边都乘以(或除以)同一个负数时,不等号的方向改变.7.一元一次不等式组及其解集类似于方程组,把含有相同未知数的几个一元一次不等式合在一起组成一个一元一次不等式组,所有这些一元一次不等式的解集的公共部分,叫做这个不等式组的解集. 8.一元一次不等式组的解法解 一元一次不等式组的基本步骤:(1)分别求出不等式组中各个不等式的解集; (2)利用数轴确定它们的公共部分; (3)表示出这个不等式组的解集. 9.一元一次不等式(组)的应用列一元一次不等式(组)解应用题与列方程(组)解应用题的步骤类似,即(1)审题,设出未知数;(2)列不等式(组);(3)解不等式(组);(4)结合不等式(组)的解集与未知数的限制条件确定符合题意的解或解集,并写出答案.10.一元一次不等式、一元一次方程和一次函数的关系一次函数y =kx +b (k ≠0)当函数值y =0时,一次函数转化为一元一次方程;当函数值y >0或y <0时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围. 二、例题分析例1 解不等式21687xx x +≤+-,并在数轴上表示它的解集.解 去分母,得6x -(7x +8)≤6+3x . 去括号,得6x -7x -8≤6+3x . 移项,得6x -7x -3x ≤6+8. 合并同类项,得-4x ≤14系数化1,得27-≥x .不等式的解集在数轴上表示为:图5-1说明 解一元一次不等式的步骤与解一元一次方程类似,只要特别注意在系数化1这一步时,两边同乘(除)以的数是正数还是负数,若是正数,不等号的方向不改变;若是负数,不等号的方向要改变.在数轴上表示不等式的解集的时候,一要定边界点,二是定方向,注意分清空心图和实心点的区别.例2 x 取何值时,代数式645+x 的值不小于代数式3.187x--的值?并求出x 的最小值. 解 由题意,得⋅--≥+3187645x x 解 得⋅-≥41x∴当41-≥x 时,代数式645+x 的值不小于代数式3187x --的值,x 的最小值为⋅-41说明 要明确“大于”、“小于”、“不大于”、“不小于”、“至少”、“至多”等描述不等关系的语言所对应的不等号分别是什么.例3 解不等式组⎪⎩⎪⎨⎧>+-≤+-x x x x 432,33)1(2在数轴上表示它的解集,并求它的整数解.解 ⎪⎩⎪⎨⎧>+-≤+-②①.432,33)1(2x x x x由①得x ≥1.由②得x <5.不等式组的解集在数轴上表示如下:图5-2原不等式组的解集为1≤x <5.所以原不等式组的整数解为1,2,3,4.说明 不等式(组)的特殊解,在某个范围内是有限的,要求这些特殊解,首先要确定不等式(组)的解集,再根据要求写出相应的答案.例4 关于x 的方程,如果3(x +4)-4=2a +1的解大于3)43(414-=+x a x a 的解,求a的取值范围.解 3(x +4)-4=2a +1的解为⋅-=372a x 3)43(414-=+x a x a 的解为.316a x -= 由题意得.316372a a ->-解得187>a .即a 的取值范围是187>a . 说明 本题是方程与不等式的结合.例5 若关于x 的不等式组⎪⎩⎪⎨⎧<++>+0,1234a x xx 的解集为x <2,求a 的取值范围. 解 两个不等式的解集分别为x <2,x <-a .∵不等式的解集为x <2,∴-a ≥2, ∴a 的取值范围是a ≤-2.说明 先分别求出两个不等式的解集,再根据解集求出a 的取值范围,此处易遗漏-a =2,导致结果不完整,应特别注意.例6 某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完.问:在已确定调用5辆A 型车的前提下,至少还需调用B 型车多少辆?解 设还需要B 型车x 辆.依题意得20×5+15x ≥300.解得3113≥x .由于x 是车的数量,应为整数,所以至少需要14台B 型车.例7 为改善办学条件,东海中学计划购买部分A 品牌电脑和B 品牌课桌.第一次,用9万元购买了A 品牌电脑10台和B 品牌课桌200张;第二次,用9万元购买了A 品牌电脑12台和B 品牌课桌120张.(1)每台A 品牌电脑与每张B 品牌课桌的价格各是多少元?(2)第三次购买时,销售商对一次购买量大的客户打折销售.规定:一次购买A 品牌电脑35台以上(含35台),按九折销售,一次购买B 品牌课桌600张以上(含600张),按八折销售.学校准备用27万元购买电脑和课桌,其中电脑不少于35台,课桌不少于600张,问有几种购买方案?解 (1)设每台A 品牌电脑m 元,每张B 品牌课桌n 元,则有⎩⎨⎧=+=+.9000012012,9000020010n m n m 解得⎩⎨⎧==.150,6000n m(2)有两种方案.设购电脑x 台,课桌y 张.则有 ⎪⎩⎪⎨⎧≥≥=+.600,35,2700001205400y x y x解得⎪⎩⎪⎨⎧≤≤≤≤.675600,323635y xx =35时,y =675;x =36时,y =630. 方案①:购电脑35台,课桌675张; 方案②:购电脑36台,课桌630张. 三、课标下新题展示例8 如图5-3,要使输出值y 大于100,则输入的最小正整数x 是______.图5-3解 设n 为正整数,由题意得⎩⎨⎧>+⨯>-.1001342,100)12(5n n解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105;若x 为偶数,即x =22时,y =101.∴满足条件的最小正整数x 是21.例9 某工厂用如图5-4(a)所示的长方形和正方形纸板,做成如图5-4(b)所示的竖式与横式两种长方体形状的无盖纸盒.图5-4(a) 图5-4(b)(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x 个.①根据题意完成以下表格:竖式纸盒(个)横式纸盒(个)x 所用正方形纸板张数(张) 2(100-x )所用长方形纸板张数(张)4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板n 张,做成上述两种纸盒,纸板恰好用完.已知290<n <306.则n 的值是______.(写出一个即可)解 (1)①根据题意完成表格如下:竖式纸盒(个)横式纸盒(个) x 100-x 所用正方形纸板张数(张) x 2(100-x ) 所用长方形纸板张数(张)4x3(100-x )⎩⎨⎧≤-+≤-+.340)100(34,162)100(2x x x x ② 解得38≤x ≤40. 又∵x 是整数,∴x =38,39,40.答:有三种方案:生产竖式纸盒38个,横式纸盒62个;或生产竖式纸盒39个,横式纸盒61个;或生产竖式纸盒40个,横式纸盒60个.(2)293或298或303.例10 用长度相等的100根火柴摆放一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴杆的根数.解 设三角形三边分别为x ,y ,3x .依题意得⎪⎩⎪⎨⎧>+≤≤=++③②①.3,3,1003x y x x y x x y x 由①、②得207100≤≤x 由①、③得⋅<350x因为x 为正整数,故x=15或16.所以满足条件的三角形各边所用火柴杆的根数为15,40,45或16,36,48. 四、课标考试达标题 (一)选择题1.若a >b ,且c 为有理数,则( ). A .ac >bc B .ac <bc C .ac 2>bc 2 D .ac 2≥bc 22.如图5-5,a ,b ,c 分别表示苹果、梨、桃子的质量.若同类水果质量相等,则下列关系正确的是( ).图5-5A .a >c >bB .b >a >cC .a >b >cD .c >a >b 3.不等式x <3的解集在数轴上表示为( ).4.函数11-=x y 中,自变量x 的取值范围在数轴上可表示为( ).5.不等式组⎪⎩⎪⎨⎧-≤-<+x x x x 23821,148的解集在数轴上表示正确的是( ).6.若关于x 的不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ).A .k <2B .k ≥2C .k <1D .1≤k <27.若(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ). A .a <2 B .a <3 C .a <4 D .a <5 (二)填空题8.若不等式组⎩⎨⎧>-<-32,12b x a x 的解集是-1<x <1,则(a +1)(b +1)的值是______.9.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图5-6所示,则关于x 的不等式k 2x >k 1x +b 的解集为______.图5-610.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.11.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少应付给超市______元. (三)解答题 12.求不等式8)1(3411-≥--x x 的非负整数解.13.解不等式组⎩⎨⎧≥+->+,33)1(2,03x x x 并判断23=x 是否是该不等式组的解.14.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.15.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类别 电视机 洗衣机 进价(元/台) 1800 1500 售价(元/台)20001600计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元. (1)请你帮助商店算一算有多少种进货方案? (不考虑除进价之外的其他费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)16.2008年北京奥运会的比赛已经圆满闭幕.当时某球迷打算用8000元预订10张下表中比赛项目的门票.(下表为当时北京奥运会官方票务网站公布的几种球类决赛的门票价格)(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?比赛项目票价(元/场)男篮1000足球800乒乓球500参考答案第五讲 不等式(组)及应用1.D . 2.C . 3.B . 4.B . 5.C . 6.A . 7.C . 8.-2. 9.x <-1. 10.-1<k <3. 11.8元.12.513≤x ,x =0,1,2. 13.-3<x ≤1,23=x 是该不等式组的解.14.解不等式得x <21,x >2-3a ,又∵只有4个整数解,∴16≤2-3a <17,解得3145-≤<-a . 15.解:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意得⎪⎩⎪⎨⎧≤-+-≥.161800)100(15001800),100(21x x x x 解不等式组,得⋅≤≤31393133x 即购进电视机最少34台,最多39台,商店有6种进货方案.(2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000.∵100>0,∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多,为13900元.16.解:(1)设预订男篮门票x 张,则乒乓球门票(10-x )张.由题意得 1000x +500(10-x )=8000 解得x =6. ∴10-x =4.答:可订男篮门票6张,乒乓球门票4张.(2)设男篮门票与足球门票都订a 张,则乒乓球门票(10-2a )张.由题意得⎩⎨⎧≤-≤-++.1000)210(500,8000)210(5008001000a a a a a 解得⋅≤≤433212a 由a 为正整数,可得a =3.答:他能预订男篮门票3张,足球门票3张,乒乓球门票4张.。
微专题六 一元一次不等式(组)的解法及其应用
B品牌运动服/件
30
累计采购款/元
10 200
(1)A,B两种品牌运动服的进货单价各是多少元?
解:(1)设 A,B 两种品牌运动服的进货单价分别为 x 元和 y 元.
根据题意,得
+ = ,
= ,
解得
= ,
+ = ,
∴A,B 两种品牌运动服的进货单价分别为 240 元和 180 元.
①有哪几种购买方案?
②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?
解:(2)①设购买儿童口罩 m 包,则购买成人口罩(5-m)包.
+ (-) ≥ ,
根据题意,得
解得 2≤m≤3.
+ (-) ≤ ,
∵m 为整数,∴m=2 或 m=3.∴共有两种购买方案:
-
解不等式 x-4<
,得 x<2,
则不等式组的解集为-3≤x<2,
∴不等式组的所有负整数解为-3,-2,-1.
一元一次不等式的应用
6.某商城的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行
销售.已知这两种服装过去两次的进货情况如表所示:
进货批次
第一次
A品牌运动服/件
故此商场至少需购进6件A种商品.
一元一次不等式组的应用
8.小明网购了一本课外书,同学们想知道书的价格,小明让他们猜.甲说:“至少25元”.乙说:“至多
22元,”丙说:“至多20元,”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为(
)
B
A.20<x<22
B.22<x<25
人教版《一元一次不等式》初中数学-教学课件2
4.(2019·聊城)若不等式组x+3 1<x2-1, 无解,则 m 的取值范围为 x<4m
(A)
A.m≤2 B.m<2 C.m≥2 D.m>2
四、一元一次不等式组的解法
【1.例解1】下【解列例下不列等4不式】等,式并解:把解下集列在数不轴上等表式示出组来::
<12 的解,求 a 的取值范围. 分析:先求出两个不等式的解集,再由题意得出关于 a 的不等式,解
之即可. 解:解不等式1-62x <12 得 x>-1.解不等式43 x+4<2x-23 a 得 x>a
+6,依题意得 a+6≥-1,∴a≥-7
【对应训练】
3.若不等式 x-1<a 的正整数解是 1,2,3,则 a 的取值范围是( C )
第圆二心十 角四的【章关系例,圆直:5径理】所解(对圆2圆及01周有9角关·的概锦特念点,州,掌切握)某线弧与、市过弦政切、点圆部的心半角门径的为之关间系了的,关探保系索护,点正与生多圆边、态形直环与线圆与境的圆关、,系圆。与计圆划之间购的位买置A关,系,B探两索圆周角与 2第5二推十种论七1型三章个相号角似都的:相是环等在的前保三面角设研形究备是图等形.边的三已全角等知形和一购些全买等一变换套基础A上型的设拓广备与发和展三。全套章共B分型三小设节备内容共。第需一2小3节0“万图元形的相似”主
章重点是解一元二次方程的思路及具体方法。本章的难点是解一元二次方程。
3的.千想万象不能要(力2以,)为根探“究据高性考实需以验能要动力手市立能意力政”,,部理就解门是运要用采去实钻购际难问A题题型、的偏能和题力、,B怪分型题析。设和这解备里决的问共能题力5的0是探套指究:创,思新维预能能力算力,,处资对理现金、实运不生用活信超的息观过的察能3分力0析,0力新0,材创料造、性 新牛情角景 尖万、能元新钻问出,题来应的问变能最理力解。多能力可,购其重买点是A概型念观设点备形成多和规少律套的认?识过程,它往往蕴藏在最简单、最基础的题目活事实之中。不是钻
一元一次不等式(组)知识总结思维导图
一对一教育授课记录学员姓名授课教师所授科目数学学员年级七年级讲次第讲上课时间2014年06月14日共2课时总课时14:00—16:00教学标题一元一次不等式(组)知识体系图:教学目标1.会解一元一次不等式及会用一元一次不等式解应用题。
2.理解一元一次不等式组的概念及其解集,掌握一元一次不等式组的解法。
教学重难点解不等式(组)和解方程不同,要注意符号变化;取解集时,一般借助于数轴,既直观,又不会漏解。
教学提纲及掌握情况主要内容和方法(目标)考纲要求课堂掌握情况作业完成情况知识点一:一元一次不等式I II 1 2 3 4 5知识点二:一元一次不等式组I II 1 2 3 4 5方法:(详见第2-3页)I II 1 2 3 4 5课堂表现:签名确认:学员:班主任:教学主任:说明:1、考纲要求I、II :I 是考试大纲,针对老教材的;II是新课程标准,针对新教材的;2、课堂掌握情况以分值来评判各知识点或解题方法的掌握熟练程度,1,2,3,4,5代表5种分值,1代表了解,2代表理解,3代表基本掌握,4代表熟练掌握,5代表综合运用;3、作业完成情况指学生本堂课针对此知识点进行训练的作业完成情况。
【知识要点】 一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式:a a a a< >≤≥解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变) 合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 三、一元一次不等式组含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
(完整版)一元一次不等式组的三种求解方法
一元一次不等式组的三种求解方法一元一次不等式及不等式组的解法是初中数学中的一个重要内容,具体可利用图象、数轴以及口诀解答有关题目.下面结合实例进行讲解,同学们在解题时可以灵活选择解题方法。
一、利用图象解一元一次不等式(组)1.求解一元一次不等式kx+b>0或kx+b0或y〈0;当一次函数y=kx+b 的图象在x轴上方或下方时,求横坐标x的取值范围。
2。
求解一元一次不等式k1x+b1〉k2x+b2或k1x+b1〈k2x+b2(其中k、b为常数,且k≠0)可以转化为:求当x取何值时,一次函数y1=k1x +b1的值大于或小于一次函数y2=k2x+b2的值;当一次函数y1=k1x+b1的图象在一次函数y2= k2x+b2图象上方或下方时,求横坐标x的取值范围。
例1 用图象的方法解不等式2x+1>3x+4.解析:把原不等式的两边看作两个一次函数,在同一坐标系中画出直线y=2x+1与y= 3x+4(图1),从图象上可以看出它们的交点的横坐标是x=-3,因此当x3x+4,因此不等式的解集是x〈-3.图1例2 已知函数y=kx+m和y=ax+b的图象如图2交于点p,则根据图象可得不等式组kx+m>0ax+b>kx+m的解集为_____________.图2解析:当kx+m>0时,x〉—2。
ax+b>kx+m时,x〈-1。
∴不等式组的解集为:—2〈x〈—1。
数轴在解一元一次不等式中有着重要作用,不等式的解集在数轴上的表示如下:(1)x〉a:数轴上表示a的点画成空心圆圈,表示a的点的右边部分来表示,表示a不在解集内;(2)x (3)x≥a:数轴上表示a的点画成实心圆点,表示a的点及a的点的右边部分来表示,表示a在这个解集内;(4)x≤a:数轴上表示a的点画成实心圆点,表示a的点及a的点的左边部分来表示,表示a在这个解集内.例3 已知m为任意实数,求不等式组1-x〈3x〈m—2的解集.解析:由不等式1-x2,先在数轴上表示,如图1.接着,在上面的数轴上表示出解集x2,m>4时,该不等式组的解集为2<x〈m—2;当表示数m —2的点在表示2的点的左边或和与2重合即m—2≤2,m≤4时,该不等式组无解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x-y=1+3m
为负数.
(1)求 m 的取值范围;
(2)化简:∣m-3∣-∣m+2∣;
(3)在 m 的取值范围内,当 m 为何整数时,不等式
2mx+x<2m+1 的解为 x>1.
6x-2≥3x-4…① (2)2x+1 1-x
3 - 2 <1…②
2x+5≤3(x+2)…① (3)x-1 x-2
3
2
1 的解集在
3 x 2
数轴上表示正确的是
()
A.
B.
C.
D.
2x 9 6x 1
2.(2017 泰安)不等式组
,的解集为
x k 1
x 2 .则 k 的取值范围为 ( )
A. k 1
B. k 1
C. k 1
D. k 1
x+2y=4k 3.已知2x+y=2k+1 ,且-1<x-y<0,则 k 的取值范
围为
x+2>1
4.(16•苏州)不等式组
2x-1≤8-x
的最大整数解
是
.
C.
D.
1
3
x−1≤7- x
3.(16•滨州)对于不等式组 2
2 下列
5x+2>3(x-1)
说法正确的是( )
A.此不等式组无解 B.此不等式组有 7 个整数解
C.此不等式组的负整数解是﹣3,﹣2,﹣1
5 D.此不等式组的解集是﹣ <x≤2
1
合作 探究四
列不等式组解应用题
例 4.(14•湘潭)某企业新增了一个化工项目,为了节 约资源,保护环境,该企业决定购买 A、B 两种型号 的污水处理设备共 8 台,具体情况如下表:
A型 B型
价格(万元/台)
12
10
月污水处理能力(吨/月) 200 160
经预算,企业最多支出 89 万元购买设备,且要求月处 理污水能力不低于 1380 吨. (1)该企业有几种购买方案? (2)哪种方案更省钱,说明理由.
合作 探究二
求不等式组的特殊解
自主预习 感受新知
1.不等式组定义:
2.不等式组的解集:组成不等式组的几个不等式解集
的 ,叫做这个不等式组的解集.求不等式组的解集
的过程叫做
.
3.不等式组解集的数轴确定法:借助于数轴可以找到
组成不等式组的各个不等式解集的公共部分即不等式
组的解集.
不等式组示例
数轴表达
公共部分(解集)
x≥-1,y<2,现有 k=x-y,则 k 的取值范围是
14.对于非负实数 x“四舍五入”到个位的值记为<x>,
1
1
即当 n 为非负整数时,如果 n-2≤x<n+2 ,则<x>=n,
如<0>=<0.46>=0,<0. 64>=<1.49>=1,<3. 5>=<4.28>=4, 请解决以下问题:
(1)填空:①<π>= 的取值范围是
(2)若一辆 A 型货车可装甲种茶叶 6 吨,乙种茶叶 2 吨;一辆 B 型货车可装甲种茶叶 3 吨,乙种茶叶 7 吨.按此要求安排 A、B 两种型号货车一次性运完这 批茶叶,共有哪几种运输方案?
(3)说明哪种方案运费最少?最少运费是多少万 元?
4(1 x) 5 x
(5)
x
3 5
老师点拨 学法指津 1.记清解不等式组的步骤:先分别求出各不等式的解 集;再利用数轴求出这些不等式的解集的公共部分, 最后写出解集; 2.注意列不等式组解应用题时,要用不等式准确的表 达题目中的不等关系,解出的数要与实际相符合.
课后作业
A 组 夯实基础
一.选择题:
3x-1<x+1
1.(16•巴中)不等式组
围是_____.
2
x+5<5x+1
7.(16•聊城)不等式组
x-m>1
的解集是 x>1,
则 m 的取值范围是
.
三.解答题:
8.解下列不等式组,并把它们的解集在数轴上表示出:
1+2x<3x+2…① (1)
x-3≤3(x+5)…②
x+y=-7-m
9.已知方程组
的解满足 x 为非正数,y
2
x a 0
4. (2017 百色)关于 x 的不等式组
的
2x 3a 0
解集中至少有 5 个整数解,则正数 a 的最小值是( )
2
A.3
B.2
C. 1
D.
3
二.填空题:
2x+1>3
5.(15•宿迁)关于
x
的不等式组 a-x>1
的解集为 1
<x<3,则 a 的值为
.
6.若|2x-1|=2x-1, |3x-5|=5-3x,则 x 的取值范
课题 5: 一元一次不等式组及解法 目标认识
5x-4≤2x+5…① (3)
7+2x≤6+3x…②
2x+3≥x-1……① (4)2x+5
3 -1<2-x…②
知识目标
重、难点 思维标
了解一元一次不等式组的概念及其解 集,并会用数轴确定一元一次不等组的 解集,会列不等式组解应用题. 确定一元一次不等式组的解集. 化归思想.
x-2b>3
(a+1)(b-1)的值等于
.
(5) (2017 金华)若关于 x 的一元一次不等式组
2x 1 3 x 2, 的解是 x 5 ,则 m 的取值范围是
x m
(6)若数
a
使关于
x
的不等式组
x
2
1
x
2
有且
2 2
7x 4 a
仅有四个整数解,则数 a 的取值范围
{x>4 x>2
{x<4 x<2
{x<4 x>2
{x>4 x<2 口诀
注意:若带有等号,则带等号一端的数在数轴上用实 心点.
互助学习 探究新知
合作探 究一
不等式组的解法
例 1.解下列不等式组,并把解集表示在数轴上:
2x-1>x+1…① (1)
x+8<4x-1…②
1-2x≥4-x…① (2)
3x-4>3……②
例 2.x 取哪些整数值时,不等式 5x+2>3(x-1)与
1
3
2 x-1≤7-2 x 都成立?
合作 探究三
含参数的不等式组
例 3.填选题:
3x-1>4(x-1) (1) (15•恩施州)关于 x 的不等式组
x<m
的解集为 x<3,那么 m 的取值范围为( )
A.m=3 B.m>3 C.m<3 D.m≥3
的最大整
2(2x-1)≤5x+1
数解为
()
A.1
B.﹣3
C.0
D.﹣1
2x+y=m+7
2.(16•绵阳)在关于
x、y
的方程组 x+2y=8-m
中,
未知数满足 x≥0,y>0,那么 m 的取值范围在数轴上
应表示为
()
独立思考 运用新知
A.
B.
2x 1 3x 2
1.(2017 威海)不等式组
3 < 2 …②
2x-7<3(1-x)…①
(4)4
2
3x+3≤1-3x…②
10.在茶节期间,某茶商订购了甲种茶叶 90 吨,乙种 茶叶 80 吨,准备用 A、B 两种型号的货车共 20 辆运 往外地.已知 A 型货车每辆运费为 0.4 万元,B 型货 车每辆运费为 0.6 万元.
(1)设 A 型货车安排 x 辆,总运费为 y 万元,写出 y 与 x 的关系式;
;②如果<2x-1>=3,则实数 x .
(2)试举例说明:当 x= ,y= 时,<x+y>=<x>+<y> 不成立.
4 (3)求满足<x>=3x 的所有非负实数 x 的值.
15.(2017 东营)为解决中小学大班额问题,东营市 各县区今年将改扩建部分中小学,某县计划对 A、B 两 类学校进行改扩建,根据预算,改扩建 2 所 A 类学校 和 3 所 B 类学校共需资金 7800 万元,改扩建 3 所 A 类 学校和 1 所 B 类学校共需资金 5400 万元. (1)改扩建 1 所 A 类学校和 1 所 B 类学校所需资金分 别是多少万元? (2)该县计划改扩建 A、B 两类学校共 10 所,改扩建 资金由国家财政和地方财政共同承担.若国家财政拨 付资金不超过 11800 万元;地方财政投入资金不少于 4000 万元,其中地方财政投入到 A、B 两类学校的改扩 建资金分别为每所 300 万元和 500 万元.请问共有哪 几种改扩建方案?
表示不超过 x 的最大整数.例如:[2.3]=2,[-1.5]=-
2.则下列结论:
①[-2.1]+[1]=-2;②[x]+[-x]=0;③若[x+1]=3,则 x
的取值范围是 2≤x<3;④当-1≤x<1 时,[x+1]+[-x+1]
的值为 0、1、2.其中正确的结论有
(写出所有
正确结论的序号).