奇数与偶数初步拓展练习 小学一年级奥数 思维训练
小学奥数奇数偶数专项练习题及答案

小学奥数奇数偶数专项练习题及答案
小学奥数奇数偶数专项练习题及答案
1.甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
考点:奇偶性问题.
分析:因为李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒.所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子.如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个.否则甲盒子中的`黑子数不变.也就是说,李平每次从甲盒子拿出的黑子数都是偶数.由于181是奇数,奇数减偶数等于奇数.所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.
解答:
解;他每拿一次,甲盒子中的棋子数就减少一个,
180+181-1=360(次)
所以拿360次后,甲盒里只剩下一个棋子;
李平每次从甲盒子拿出的黑子数都是偶数,
由于181是奇数,奇数减偶数等于奇数,
则甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,
所以甲盒里剩下的一个棋子应该是黑子.
答:这个棋子是黑色.
点评:完成本题的关健是明确“李平每次从甲盒子拿出的黑子数都是偶数”,然后再据数的奇偶性进行解答就行了.。
一年级奥林匹克数学第二学期思维训练(3)

一年级第二学期思维(sīwéi)训练
1、20个小朋友报数(bào shù),单数一行,双数一行。
单数第5个数是〔〕号,双数(shuāngshù)第10个数是〔〕号。
天平板(píngbǎn)上有8个同样(tóngyàng)的乒乓球,左边4个,右边4个。
〔如下列图〕如果拿掉1个球,板上还有〔〕个球。
5、小朋友排队去公园,小华前面有4个人,后面有10个人。
小华排在第〔〕个,一共有〔〕个小朋友去公园。
6、图中共有〔〕个长方形。
7、:- =6 - =1 + =3
求: =〔〕 =〔〕 =〔〕
8、小动物开运动会,50米赛跑的成绩表如下;请在跑得最快的动物下面打“√〞,跑得最慢的打“×〞。
动物名小兔〔〕小鹿〔〕小〔〕小猪〔〕时间12秒 8秒 11秒 15秒
9、张老师带了男女同学各10名去看电影,一共要买〔〕张电影票。
10、把没有按规律写的数划去;
〔1〕1、3、5、6、7、9、11;〔2〕3、6、9、12、15、16、18;〔3〕2、5、8、11、12、14、17;〔4〕1、5、6、9、13、17、21;
内容总结
(1)一年级第二学期思维训练
1、20个小朋友报数,单数一行,双数一行
(2)〔如下列图〕如果拿掉1个球,板上还有〔〕个球
(3)3、1+2+3+4+5+6+7+8+9+10=〔〕
4、〔〕-4=〔〕-1
5、小朋友排队去公园,小华前面有4个人,后面有10个人
(4)小华排在第〔〕个,一共有〔〕个小朋友去公园。
小学奥数5-6-1 奇数与偶数的性质与应用.专项练习及答案解析

本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
一、奇数和偶数的定义 整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a ,b ,有a +b 与a -b 同奇或同偶模块一、奇偶分析法之计算法【例 1】 1231993++++……的和是奇数还是偶数?【考点】奇偶分析法之计算法 【难度】2星 【题型】解答【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数.【答案】奇数【例 1】 从1开始的前2005个整数的和是______数(填:“奇”或“偶”)。
【考点】奇偶分析法之计算法 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,5题【解析】 1+2+3+…+2004+2005=(1+2005)×2005÷2=1003×2005是奇数例题精讲知识点拨教学目标5-1奇数与偶数的性质与应用【巩固】2930318788……得数是奇数还是偶数?+++++【考点】奇偶分析法之计算法【难度】2星【题型】解答【解析】偶数。
小学奥数5-6-1 奇数与偶数的性质与应用.专项练习及答案解析

本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
一、奇数和偶数的定义 整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a ,b ,有a +b 与a -b 同奇或同偶模块一、奇偶分析法之计算法【例 1】 1231993++++……的和是奇数还是偶数?【考点】奇偶分析法之计算法 【难度】2星 【题型】解答【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数.【答案】奇数【例 1】 从1开始的前2005个整数的和是______数(填:“奇”或“偶”)。
【考点】奇偶分析法之计算法 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,5题【解析】 1+2+3+…+2004+2005=(1+2005)×2005÷2=1003×2005是奇数例题精讲 知识点拨教学目标5-1奇数与偶数的性质与应用【答案】奇数【巩固】2930318788……得数是奇数还是偶数?+++++【考点】奇偶分析法之计算法【难度】2星【题型】解答【解析】偶数。
新课标小学数学奥林匹克辅导及练习奇数与偶数(一)(含答案)

新课标小学数学奥林匹克辅导及练习奇数与偶数(一)(含答案)阅读思考:其实,在日常生活中同学们就已经接触了很多的奇数、偶数.凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数.因为偶数是2的倍数,所以通常用这个式子来表示偶数(这里是整数).因为任何奇数除以2其余数都是1,所以通常用式子来表示奇数(这里是整数).奇数和偶数有许多性质,常用的有:性质1 两个偶数的和或者差仍然是偶数.例如:8+4=12,8-4=4等.两个奇数的和或差也是偶数.例如:9+3=12,9-3=6等.奇数与偶数的和或差是奇数.例如:9+4=13,9-4=5等.单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数.性质2 奇数与奇数的积是奇数.例如:等91199⨯=偶数与整数的积是偶数.例如:等.性质3 任何一个奇数一定不等于任何一个偶数.例1.有5张扑克牌,画面向上.小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下.要想使5张牌的画面都向下,那么每张牌都要翻动奇数次.5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下.而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数.所以无论他翻动多少次,都不能使5张牌画面都向下.例2.甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?分析与解答:不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒.所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子.如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个.否则甲盒子中的黑子数不变.也就是说,李平每次从甲盒子拿出的黑子数都是偶数.由于181是奇数,奇数减偶数等于奇数.所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.例3.如图(1-1)是一张的正方形纸片.将它的左上角一格和右下角一格去掉,剩下的部分能否剪成若干个的长方形纸片?图(1-1)图(1-2)分析与解答:如图1-2,我们在方格内顺序地填上奇、偶两字.这时就会发现,要从上面剪下一个的长方形纸片,不论怎样剪,都会包含一个奇,一个偶.我们再数一下奇字和偶字的个数,奇字有30个,偶字有32个.所以这张纸不能剪成若干个的长方形纸片.2. 一串数排成一行,它们的规律是:前两个数都是1,从第三个数开始,每个数都是前两个数的和,也就是:1,1,2,3,5,……那么这串数的第100个是奇数还是偶数?分析与解:这道题的规律是两奇一偶,第100个为奇数.【模拟试题】(答题时间:30分钟)1. 30个连续自然数的乘积是奇数还是偶数?2.有6张扑克牌,画面都向上,小明每次翻转其中的5张.那么,要使6张牌的画面都向下,他至少需要翻动多少次?3.博物馆有并列的5间展室的电灯开关.他从第一间展室开始,走到第二间,再走到第三间……,走到第五间后往回走,走到第四间,再走到第三间……,如果开始时五间展室都亮着灯,那么他走过100个房间后,还有几间亮着灯?4. 有九只杯口向上的杯子放在桌子上,每次将其中四只杯子同时“翻转”,使其杯口向下,问能不能经过这样有限多次的“翻转”后,使九只杯口全部向下?为什么?【试题答案】1. 30个连续自然数的乘积是奇数还是偶数?答:和是奇数2.有6张扑克牌,画面都向上,小明每次翻转其中的5张.那么,要使6张牌的画面都向下,他至少需要翻动多少次?答:5次3.博物馆有并列的5间展室的电灯开关.他从第一间展室开始,走到第二间,再走到第三间……,走到第五间后往回走,走到第四间,再走到第三间……,如果开始时五间展室都亮着灯,那么他走过100个房间后,还有几间亮着灯?答:第5展室灯亮着4. 有九只杯口向上的杯子放在桌子上,每次将其中四只杯子同时“翻转”,使其杯口向下,问能不能经过这样有限多次的“翻转”后,使九只杯口全部向下?为什么?答:不能.。
思维训练:奇数与偶数

数学学习离不开研究数,我们今天研究的是自然数。
在数学上,可以根据不同的标准把自然数进行分类,以此来研究自然数的性质。
今天我们根据是不是2的倍数将自然数分成两类,一是奇数(单数),二是偶数。
任何一个自然数要么是奇数要么是偶数,我们称之为自然数的奇偶性。
几个自然数的和、差、积的结果也是自然数,所以也具有奇偶性。
所以,我们不仅研究自然数的奇偶性,也要研究几个自然数和、差、积结果的奇偶性。
在现实生活中,我们可以利用自然数的奇偶性解释和判断一些问题。
课前预习一、基础复习:0、2、4、6、8…这些数共同的特征是(),他们被称做( )。
1、3、5、7、9…这些数共同的特征是(),他们被称做( )。
二、游戏走入:请大家同我一起做:取两张小纸条,在每个纸条上分别写一个奇数和一个偶数。
写好后两只手任意各握一个。
把左手的数乘以3,右手的数乘以2,最后把两个积相加,结果得奇数的同学起立。
请大家互相猜一猜,同桌同学的左手握的数奇偶性。
三、探究总结:①先按要求举例计算然后根据计算发现并总结规律。
奇数+奇数=( )数;偶数+偶数=( )数奇数+偶数=( )数;偶数-偶数=( )数奇数-奇数=( )数;偶数-奇数=( )数奇数-偶数=( )数;偶数×偶数=( )数奇数×偶数=( )数;奇数×奇数=( )数②A:1+3=()数 B: 1+2=()数1+3+5=()数 1+2+3=()数1+3+5+7=()数 1+2+3+4=()数1+3+5+7+9=()数 1+2+3+4+5=()数……………………结论:奇数的个数是奇数,和是()数;结论:()数的个数决定结果的奇偶性。
奇数的个数是偶数,和是()数;③1+2+3…+10的和是奇数还是偶数?④1+2+3…+20的和是奇数还是偶数?⑤10个连续自然数相加,其和是奇数还是偶数?⑥9个连续自然数相加,其和是奇数还是偶数?⑦你能在下式的“□”填上“+”或“-”使等式成立吗?1□2□3□4□5□6□7□8□9=38补充练习一1、6A+3B=60,其中A和B都是自然数,B是奇数还是偶数?2、设abc为三位数,交换各数位上的数字为bca,利用奇偶性,判断下面的算式是否正确?(提示:a+b = b+c = c+a = 9)3、如果两人每通一次电话,通话双方都记通话一次。
小升初数学思维拓展专项训练 专题2奇偶性问题
专题2-奇偶性问题小升初数学思维拓展数论问题专项训练(知识梳理+典题精讲+专项训练)一、主要用到的知识点。
1.奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数;偶数±奇数=奇数。
2.奇数个奇数的和(或差)为奇数,偶数个奇数的和(或差)为偶数,任意多个偶数的和(或差)为偶数。
3.奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数。
4.若干个数相乘,其中有一个因数是偶数,则积为偶数;如果所有的因数都是奇数,则积为奇数。
5.偶数的平方能被4整除,奇数的平方被4除余1。
【典例一】一个偶数,各个数位上的数字之和是24,这个数最小是()。
【分析】根据自然数的组成规律可和,一个自然数位数越少,其值就越小,由于这个偶数的各位数之和为24,24÷2=12,24÷3=8,所以这个自然数位数最少可为3位数.由于三个数位数字的平均数为8,则其则这三个数可为8,或7、8、9.而要求这个数最小可为几,一个数高位上的数越小,其值就越小,所以其百位可为7,由于是偶数,个数为8,由此可知,这个数为798.【解答】解:由于这个偶数的各位数之各为24,24÷2=12,24÷3=8,所以这个自然数位数最少可为3位数.三个数位数字的平均数为8,则其则这三个数可全为8,或7、8、9.要求这个数最小可为几,所以其百位可为7,由于是偶数,个数为8,由此可知,这个数为798.故答案为:798.【点评】了解自然数的组成规律及数位知识是完成本题的关键.【典例二】12399910001001+++⋯+++的和是奇数还是偶数?请写出理由.【分析】因为,奇数+奇数=偶数偶数+偶数=偶数偶数+奇数=奇数,所以看奇数多少个就行,1~1000里面有500个偶数、500个奇数,所以,1239991000+++⋯++的和是偶数,再加上1001,结果就是奇数了.【解答】解:奇数+奇数=偶数偶数+偶数=偶数偶数+奇数=奇数,因为,1~1000里面有500个偶数、500个奇数,则1239991000+++⋯++的和是偶数,所以,12399910001001+++⋯+++的和是奇数.【点评】完成本题要在了解数和的奇偶性的基础上完成.【典例三】晚上小明家正开着灯在吃晚饭,顽皮的弟弟按了5下开关,这时灯是亮还是暗?如果按了50下呢?【分析】由小明家正开着灯在吃晚饭,顽皮的弟弟按了5下开关,可知第1下是关,第2下是开,1是奇数,2是偶数,可知奇数时关,偶数时开,5是奇数,如果按50下,50是偶数,据此解答即可.【解答】解:第1下是关,第2下是开,可知奇数时关,偶数时开,5是奇数,所以5下是关,50是偶数,是开;答:按5下开关,这时灯是暗的,如果按了50下灯是亮的.【点评】本题主要理解第1下是关,第2下是开,可知奇数时关,偶数时开.一.选择题(共8小题)1.下面算式的结果是偶数的有()个。
(完整版)一年级奥数3之奇数和偶数
二、奇数和偶数
知识点:
1、奇数:像1、3、5、7、9-—--——这些单数,叫做奇数。
偶数:像2、4、6、8、10-—--——这些双数叫做偶数
2、奇数与偶数的特性:
偶数+偶数=偶数偶数—偶数=偶数
奇数+奇数=偶数奇数-奇数=偶数
奇数+偶数=奇数奇数(偶数)-偶数(奇数)=奇数
练习一
1、下面10个数,请你分一分。
偶数
奇数
2、一筐西红柿,2个2个往外拿,最后还余1个,这筐西红柿的个数是奇数还是偶数?
3、小方和姐姐一起放学回家,姐姐正准备打开电灯,谁知淘气的小方就
一连拉了4次灯,这时屋里的电灯是亮了还是不亮?如果拉15次灯呢?拉100次呢?拉121次呢?
4、王叔叔去小河边游泳,他把衣服放在右岸,开始游泳。
从一岸游到另一岸叫做游一次,他游了5次之后上岸休息。
这时他能拿到他的衣服吗?休息一会儿后他又接着游了5次,这时他能拿到他的衣服吗?为什么?
5、把7颗糖分给3个小朋友吃,不要求每个小朋友分得的糖一样多,但分得的糖的颗数要是偶数,能分吗?为什么?
6、把10面小红旗分别插到2个地方,要求每个地方的红旗的面数都是偶数,能分吗?如果能分,可以怎么分呢?
7、李老师要把9个风筝分给3个班,如果要求每个班分的个数都是偶数,能分吗?为什么?
8、桌子上有9个苹果,小明先吃了一个。
他想把剩下的苹果分给他的两个好朋友吃吗,要求每人分得的苹果个数都是偶数,可以分吗?如果可以,怎样分?
9、张老师有11本书,想作为礼物送给3个小朋友,每个小朋友分得的本数都必须是奇数,可以分吗?怎样分?
10、1+2+3+4+5+6+7+8不计算,猜一猜和是奇数还是偶数。
小学奥数 奇数与偶数的性质与应用 精选例题练习习题(含知识点拨)
本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
一、奇数和偶数的定义 整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a ,b ,有a +b 与a -b 同奇或同偶模块一、奇偶分析法之计算法【例 1】 1231993++++……的和是奇数还是偶数?【例 1】 从1开始的前2005个整数的和是______数(填:“奇”或“偶”)。
例题精讲知识点拨教学目标5-1奇数与偶数的性质与应用【巩固】2930318788……得数是奇数还是偶数?+++++【巩固】123456799100999897967654321+++++++++++++++++++++的和是奇数还是偶数?为什么?【巩固】(200201202288151152153233……)(……)得数是奇数还是偶数?++++-++++【例 2】12345679899+⨯+⨯+⨯++⨯的计算结果是奇数还是偶数,为什么?【例 3】东东在做算术题时,写出了如下一个等式:1038137564=⨯+,他做得对吗?【例 4】一个自然数分别与另外两个相邻奇数相乘,所得的两个积相差150,那么这个数是多少?【巩固】一个偶数分别与其相邻的两个偶数相乘,所得的两个乘积相差80,那么这三个偶数的和是多少?【例 5】能否在下式的“□”内填入加号或减号,使等式成立,若能请填入符号,不能请说明理由。
一年级奥林匹克单数与双数思维训练7
一年级奥林匹克单数与双数的思维训练(7)
班级:_________ 姓名:___________
1、下面有十个数请你帮它们分一分。
单数
2、把1、
3、
4、6加起来的和是单数还是双数?在括号里打勾。
1 + 3 + 4 + 6 = ()是单数(),是双数()。
3、小明去电影院看《海底总动员》,买了一张15排14座的电影票,它是从单号门进去还是从
双号门进去比较方便?在括号里打勾。
单号门(), 双号门()。
4、可以填什么数?
双数单数
+ = + =
5、小朋友在游泳池游泳,从东岸游到西岸为一次。
请回答下列问题。
在括号里打勾。
(1)、如果小朋友开始在东岸,来回游了许多次后,他们又回到东岸,那么他们游泳的次数是单数还是双数?
单数(),双数()。
(2)、如果小朋友开始在东岸,来回游了8次后,他们又回到西岸,那么他们游泳的次数是单数还是双数?
单数(),双数()。
6、家里来客人了,小红帮妈妈摆筷子,(每双筷子是2支),猜一猜,坐上摆的是筷子是单数怀
是双数?在括号里打勾。
单数(),双数()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲奇数与偶数初步拓展练习
姓名:班级:
1、1,22,333,4444,55555这5个数的和是奇数还是偶数?
2、能否从图中选出5个数,使他们的和等于30?
3、雨后,一段马路上有很多小水洼。
小明上学路过这里,他每到一处小水洼就脱鞋淌过去,到了没水的地方又把鞋穿上。
请问:若能他脱鞋与穿鞋的次数之和是奇数,这时他在水中吗?
4、5个苹果分给两个小朋友,若要求每个小朋友分到奇数个,能分吗?
5、母亲节到了,丽丽买了一束花准备送给妈妈,其中有1枝百合花、2枝玫瑰、4枝康乃馨。
她付了50元,花店阿姨找了25元。
丽丽一看百合花的标价是每枝6元,然后她对花店阿姨说:“您的账算错了!”小朋友们想一想,丽丽为什么马上就知道账算错了呢?她到底说的对不对呢?
6、请找出两个数,使得他们的和为22,差为5.这样的两个数是否存在?若存在,请写出这样个数;若不存在,请说明理由。
7、小明买了一堆球,只知道篮球比排球多1个,排球比足球多1个,足球个数是奇数,请判断篮球的个数是奇数还是偶数?
参考答案:
1、奇数,因为这道题目中有3个奇数,奇数个奇数为奇数,所以答案为奇数。
2、不能。
因为方格里面的数都是奇数,奇数个奇数只能是奇数,得不到偶数。
3、在水中。
因为小明淌过一处水洼时,必拖鞋一次,又穿鞋一次,脱鞋与穿鞋的次数之和是2次,是偶数,若是在水中时,必是只脱鞋没穿鞋,这时他脱鞋与穿鞋次数之和必为奇数。
4、不能分。
因为两个奇数之和必为偶数,可是5是奇数,所以不能分。
5、丽丽说得是对的。
因为1枝百合花的标价是6元,6是个偶数;玫瑰和康乃馨的标价不管是多少钱,2枝玫瑰和4枝康乃馨的签署也都是偶数,丽丽付了50元还是偶数,所以花店阿姨找回的钱也应是偶数。
阿姨找回的25元是奇数,所以丽丽说得对。
6、不存在。
因为两数之和与两数之差奇偶相同,但是和为偶数,差为奇数,显然不存在。
7、奇数。
相邻的两个数奇数和偶数是相邻的。
足球是奇数,排球比足球多一个,排球是偶数;篮球比排球多1个,篮球是奇数。