函数 —— 高一数学试题-数学试题
高一数学函数试题答案及解析

高一数学函数试题答案及解析1.若自然数使得作竖式加法时均不产生进位现象,便称为“好数”.如因为12+13+14不产生进位现象,所以12是“好数”;但13+14+15产生进位现象,所以13不是“好数”,则不超过100的“好数”共有()A.9个B.11个C.12个D.15个【答案】C.【解析】根据题意分别求出个位数和十位数需要满足的条件,即个位数需要满足要求:,所以,所以个位数可取0,1,2三个数;又因为十位数需要满足:,所以,所以十位可以取0,1,2,3四个数,故四个数的“好数”共有个,故应选C.【考点】数的十进制;新定义.2.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用3.关于函数,有以下命题:①函数的图像关于轴对称;②当时是增函数,当时,是减函数;③函数的最小值为;④当或时,是增函数;⑤无最大值,也无最小值。
其中正确的命题是:__________.【答案】①③④【解析】函数的定义域为,且,∴该函数为偶函数,故①正确;当时,,在上单调递减,在单调递增,故函数在单调递减,在单调递增,故②错误;因为在单调递减,在单调递增,∴在时,函数取最小值,故③正确;∵在单调递减,故在内单调递增,故④正确;有最小值,故⑤错误.【考点】1.命题的真假判断;2.函数的性质.4.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.5.若函数对于上的任意都有,则实数的取值范围是.【答案】【解析】由函数对于上的任意都有,可知在上单调递增,因此有,解得.【考点】函数的单调性.6.函数.满足,则的值为()A.B.C.D.【答案】B【解析】因为,函数.满足,所以,解得,,故选B。
高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析1.若函数是偶函数,则的增区间是.【答案】或【解析】由条件,得,即,所以原函数为,所以函数的增区间为.【考点】函数的奇偶性与单调性.2.(12分)已知是定义在R上的奇函数,当时,,其中且. (1)求的值;(2)求的解析式;【答案】(1)0(2)【解析】(1)因是奇函数,所以有,所以=0.……4分(2)当时,,,由是奇函数有,,……12分【考点】本小题主要考查利用函数的奇偶性求函数值和函数解析式的求取,考查学生对函数性质的应用能力.点评:对于分段函数,当已知一段函数的表达式要求另一段时,要利用函数的性质,并且要注意“求谁设谁”的原则.3.已知函数是定义在实数集R上的不恒为零的偶函数,且对任意实数都有,则的值是A.B.C.D.【答案】A【解析】令,可得,令,得所以,令,得,同理令可得,所以【考点】本小题主要考查函数的奇偶性和抽象函数的求值问题,考查学生的运算求解能力.点评:解决抽象函数问题,常用的方法是“赋值法”.4.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.5.(本小题12分)已知函数,(1)判断函数在区间上的单调性;(2)求函数在区间是区间[2,6]上的最大值和最小值.【答案】(1)函数是区间上的减函数;(2),【解析】(1)设是区间上的任意两个实数,且,则-==.由得,,于是,即.所以函数是区间上的减函数. ……6分(2)由(1)知函数函数在区间的两个端点上分别取得最大值与最小值,即当时,;当时,. ……12分【考点】本小题主要考查利用定义判断函数的单调性和利用函数的单调性求函数的最值,考查学生对定义的掌握和利用能力以及数形结合思想的应用.点评:利用单调性的定义判断或证明函数的单调性时,要把结果划到最简,尽量不要用已知函数的单调性判断未知函数的单调性.6.设偶函数的定义域为,当时是增函数,则的大小关系是()A.B.C.D.【答案】A【解析】因为是偶函数,所以,而当时是增函数,所以.【考点】本小题主要考查函数奇偶性和单调性的综合应用,考查学生的逻辑推理能力.点评:函数的奇偶性和单调性经常结合考查,要熟练准确应用.7.已知是偶函数,且当时,,则当时,【答案】【解析】由题意知,当时,,所以,又因为是偶函数,所以,所以当时,.【考点】本小题主要考查利用函数的奇偶性求函数的解析式,考查学生的运算求解能力.点评:此类问题要注意求谁设谁.8.(本小题满分13分)已知定义域为的函数是奇函数。
高一数学必修一函数各章节测试题4套

函数的性质测试题一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根 6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若 函 数()()2212f x x a x =+-+在区间 (]4,∞-上是减 函 数,则 实 数a 的 取值范 围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( ) A .(10)(13)(15)f f f << B .(13)(10)(15)f f f << C .(15)(10)(13)f f f << D .(15)(13)(10)f f f <<二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高一数学函数经典题目及答案

1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例2. 求函数22x 1x x 1y +++=的值域。
例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。
例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。
(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。
例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析1.下列幂函数中过点(0,0),(1,1)的偶函数是()A.B.C.D.【答案】B【解析】A中函数的定义域是,不关于原点对称,不具有奇偶性;B中函数经验证过这两个点,又定义域为,且;C中函数不过(0,0);D中函数,∵,∴是奇函数,故选B.【考点】幂函数的性质与函数的奇偶性.2.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.3.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.4.函数的单调增区间是_______.【答案】【解析】由,所以此函数的定义域为,根据复合函数的单调性,所以此函数的单调增区间为.5.(本小题满分12分)已知函数 (为常数)在上的最小值为,试将用表示出来,并求出的最大值.【答案】【解析】(1)因为抛物线y=x2-2ax+1的对称轴方程是,本题属于轴动区间定的问题,然后分轴在区间左侧,在区间内,在区间右侧三种情况分别得到其最小值,得到最小值h(a),然后再求出h(a)的最大值.∵y=(x-a)2+1-a2,∴抛物线y=x2-2ax+1的对称轴方程是.(1)当时,,当时,该函数取最小值;(2) 当时, , 当时,该函数取最小值;(3) 当a>1时, , 当时,该函数取最小值综上,函数的最小值为6.证明:函数是偶函数,且在上是减少的。
(本小题满分12分)【答案】见解析。
【解析】本试题主要是考查了函数的奇偶性的定义以及单调性的性质。
高一数学必修一函数的最值问题试题

函数的最值问题(高一)一.填空题:1. ()35,[3,6]f x x x =+∈的最大值是 。
1()f x x=,[]1,3x ∈的最小值是 。
2.函数y =的最小值是 ,最大值是3.函数212810y x x =-+的最大值是 ,此时x = 4.函数[]23,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3,2,1y x x x=-∈--的最小值是 ,最大值是 6.函数y=2-x -21+x 的最小值是。
y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 .8.函数()21f x x =-在[2,6]上的最大值是 最小值是 。
9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。
12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值13.函数f (x )=)1(11x x --的最大值是 222251x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为:18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。
二、解答题20.已知二次函数 在 上有最大值4,求实数 a 的值。
数学题高一试题及答案
数学题高一试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为a1 = 1,d = 2,求a3的值。
A. 5B. 6C. 7D. 8答案:A3. 函数y = x^3 - 3x^2 + 2x + 1的极值点个数是:A. 0B. 1C. 2D. 3答案:C二、填空题4. 计算复数(1 + 2i)(3 - 4i)的结果为______。
答案:11 - 10i5. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求该圆的半径。
答案:5三、解答题6. 已知函数f(x) = x^3 - 3x^2 + 2,求证f(x)在x = 2处取得极小值。
证明:首先求导数f'(x) = 3x^2 - 6x。
令f'(x) = 0,解得x = 0 或x = 2。
验证f''(x) = 6x - 6,代入x = 2,得到f''(2) = 6 > 0,因此f(x)在x = 2处取得极小值。
7. 解不等式:x^2 - 4x + 4 > 0。
解:将不等式转化为(x - 2)^2 > 0,由于平方项总是非负的,所以不等式成立当x ≠ 2。
因此,解集为{x|x ≠ 2}。
四、计算题8. 计算定积分∫(0到1) (2x + 3) dx。
解:首先求被积函数(2x + 3)的原函数F(x) = x^2 + 3x。
计算定积分,得到F(1) - F(0) = (1^2 + 3*1) - (0^2 + 3*0) = 4。
答案:49. 已知函数f(x) = √x,求f(x)在区间[1, 4]上的平均变化率。
解:平均变化率定义为(f(b) - f(a)) / (b - a),代入f(x) = √x,得到平均变化率= (√4 - √1) / (4 - 1) = (2 - 1) / 3 = 1/3。
高一数学函数及其表示试题答案及解析
高一数学函数及其表示试题答案及解析1.下列各组函数是同一函数的是①与;②与;③与;④与。
A.①②B.①③C.③④D.①④【答案】C【解析】①中两函数定义域相同,值域不同,分别为;②中两函数定义域不同,分别为;③、④中两函数定义域、值域都相同。
【考点】函数的概念,即函数的三要素:定义域、对应法则、值域。
2.设计下列函数求值算法程序时需要运用条件语句的函数为().A.B.C.D.【答案】C.【解析】因为分段函数在求值时,不同范围内的自变量对应不同的函数,所以在编写函数求值的算法程序需运用条件语句,故本题选C.【考点】基本算法语句中的条件语句的理解.3.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围【答案】(1)f(x)=x2-x+1,(2)【解析】(1)求二次函数解析式,一般方法为待定系数法.二次函数解析式有三种设法,本题设一般式f(x)=ax2+bx+1,再利用等式恒成立,求出项的系数.由a(x+1)2+b(x+1)-ax2-bx=2x得2ax+a+b=2x,所以.(2)恒成立问题一般转化为最值问题.先构造不等式,再变量分离,这样就转化为求函数的最小值问题.试题解析:(1)设f(x)=ax2+bx+1a(x+1)2+b(x+1)-ax2-bx=2x2ax+a+b=2xf(x)=x2-x+1(2)考点:二次函数解析式,二次函数最值,不等式恒成立4.已知函数,那么的值是()A.B.C.D.【答案】D【解析】表示当自变量时对应的函数值;根据分段函数的定义,当时,;因为 , 所以.故选D【考点】1、函数的概念;2、分段函数.5.下列函数中,与函数有相同图象的一个是A.B.C.D.【答案】B【解析】选项A中函数的定义域为,定义域不相同,故选项A错;选项B中函数可化为,故B正确;选项C中函数的定义域为,故选项C错;选项D中函数的定义域为,故选项D 错.所以正确答案为B.【考点】函数相等.6.设集合A=B=,从A到B的映射在映射下,B中的元素为(4,2)对应的A中元素为()A.(4,2)B.(1,3)C.(6,2)D.(3,1)【答案】D【解析】集合A=B=,从A到B的映射在映射下,B中的元素为,所以,解得,所以集合中的元素为故选D.【考点】本题主要考查了映射的定义.7.下列四组函数,表示同一函数的是( )A.,B.C.D.【答案】D【解析】 A选项两个函数的定义域相同,但至于分别是[0,+∞)和R,所以排除A.B选项的定义域分别为x≠0和x>0,所以排除B.C选项中的定义域分别为R和x≠0,所以排除C.D选项的两函数化简后都是y=x,所以选D.【考点】 1.常见函数的定义域,值域问题.2.同一函数的判定方法.8.下列4对函数中表示同一函数的是( )A.,=B.,=C.=,D.,=【答案】B【解析】A.与=定义域不同;B.与=定义域、值域、对应法则完全相同,所以是同一函数;C.=与的定义域不同;D.与=的值域不同。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.函数的定义域是()A.(-,-1)B.(1,+)C.(-1,1)∪(1,+)D.(-,+)【答案】C.【解析】出现在对数的真数位置,故>0,即,又出现在分式的分母上,故≠0,即,要使式子有意义,则这两者同时成立,即且,用区间表示即为(-1,1)∪(1,+).要使式子有意义,则,解得且,故选C.【考点】函数的定义域求法,对数函数的定义域2.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.3.函数,满足,则的值为()A.B. 8C. 7D. 2【答案】B【解析】因为,函数,所以,,10,又,故,8,选B。
【考点】函数的概念,函数的奇偶性。
点评:简单题,此类问题较为典型,基本方法是通过研究,发现解题最佳途径。
4.已知函数,,(1)若为奇函数,求的值;(2)若=1,试证在区间上是减函数;(3)若=1,试求在区间上的最小值.【答案】(1)(2)利用“定义法”证明。
在区间上是减函数(3) 若,由(2)知在区间上是减函数,在区间上,当时,有最小值,且最小值为2。
【解析】(1)当时,,若为奇函数,则即,所以(2)若,则=设为, =∵∴,∴>0所以,,因此在区间上是减函数(3) 若,由(2)知在区间上是减函数,下面证明在区间上是增函数.设 , =∵,∴∴所以,因此在区间上上是增函数因此,在区间上,当时,有最小值,且最小值为2【考点】函数的奇偶性、单调性及其应用点评:中档题,研究函数的奇偶性,要注意定义域关于原点对称。
高一数学函数试题
高一数学函数试题1.已知,函数.若,则()A.B.C.D.【答案】A.【解析】首先由可得,,即①;然后根据可得,,即②.最后将①代入②可得,,即,故应选A.【考点】二次函数的求值.2.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.3.已知函数().(1)证明:当时,在上是减函数,在上是增函数,并写出当时的单调区间;(2)已知函数,函数,若对任意,总存在,使得成立,求实数的取值范围.【答案】(1)证明详见解析,在是减函数,在是增函数;(2).【解析】(1)根据函数单调性的定义进行证明即①设;②作差:;③因式分解到最简;④根据条件判定符号;⑤作出结论,经过这五步即可证明在单调递减,同理可证在是增函数,最后由奇函数的性质得出;在是减函数,在是增函数;(2)先将“对任意,总存在,使得成立”转化为“函数在区间的值域包含了在区间的值域”,分别根据函数的单调性求出这两个函数的值域,最后由集合的包含关系即可得到的取值范围.试题解析:(1)证明:当时①设是区间上的任意两个实数,且,则∵,∴,∴,即∴在是减函数 4分②同理可证在是增函数 5分综上所述得:当时,在是减函数,在是增函数 6分∵函数是奇函数,根据奇函数图像的性质可得当时,在是减函数,在是增函数 8分(2)∵() 8分由(1)知:在单调递减,单调递增∴, 10分又∵在单调递减∴由题意知:于是有:,解得 12分.【考点】1.函数的单调性与最值;2.函数的奇偶性;3.函数的值域.4.已知函数()(Ⅰ)求函数的周期和递增区间;(Ⅱ)若,求的取值范围.【答案】(1)函数的单调递增区间为()(2)的取值范围为.【解析】(1)由题设由,解得,故函数的单调递增区间为()(2)由,可得考察函数,易知于是.故的取值范围为【考点】三角函数和差倍半公式及三角函数的图象和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数—— 高一数学试题-数学试题
[科目] 数学
[年级]高一
[类型] 同步
[关键词] 函数概念
[标题] 代数·函数概念及其图像
[内容]
数概念及其图像
一、班级__________姓名________学号____________
填空题1 圆的面积用S表示,半径用R表示,则S= ,其中_________是常量,_________
是自变量,________是_______的函数,自变量的取值范围是___________.
设轮子每分钟转100转,那么轮子的转数n与时间t(分钟)的函数关系的解析式为__________. 1.设长方形的周长为30,宽为x,那么它的长y与宽x的函数关系式的解析式为_________. 2.已知把它写成y是x的函数式(其中x是自变量)是________,其中x的取值范围是_________.
3.已知,当x=3时,y=_________,当x= 时,y=__________.
二、解答题
6.求下列函数中自变量x的取值范围:
(1)y=3-2x;(2)y= ;(3)y=
(4)(5)(6)
(7)(8)
7.已知函数,求当函数值分别为3,-7,0时,自变量x的值.
8.已知水池的容量为100立方米,每小时的注水量为5立方米:
(1)求水池中的水量V(立方米)与注水时间t(小时)之间函数关系;
(2)求t的取值范围;
(3)求当t=5,8,16时,对应的注水量.
9.已知函数y=5x+2,不画图像,判断点,(0,),(,5),()在不在这个函数的图象上.
三、选择题
10.在下面等式中,y是x的函数有().
(A)(x>0)(B)2x-3y=0
(C)y=±|x| (D)4x-3y
11.下列各组函数中,两个函数相同的是().
(A)y=x与y=()2 (B)y=x与y=
(C)y=x与y= (D)与
12.函数的自变量x的取值范围是().
(A)全体实数(B)x>0 (C)x<0 (D)x≠0
13.已知点P在函数y= 的图像上,点P坐标为(),则b=().
(A)(B)
(C)2( ) (D)
14.下列各组函数中,图像完全相同的是( ).
(A)y=x与(B)y=x与y=|x|
(B)y=x与y= (D)y=x与y=( )2
四、填空题
15.已知点A在函数y=-2x的图像上,如果点A的横坐标为2,那么点A的纵坐标为________.
16.已知点N在函数的图像上,如果点N的纵坐标为-2,那以点N的横坐标为_________.
17.已知函数y= ,当x=6时,y=_______;当x=-6时,y=________.
18.若三角形的底边长为8,高为x,面积为y,则面积与高之间的函数关系是_________,自变量取值范围是___________.
五、解答题
19.已知等腰三角形周长为20cm,(1)写出底边长y(cm)与腰长x(cm)的函数关系式;(2)求自变量x的取值范围;(3)作出函数的图像.
20.在半径为1的半圆内有一个内接等腰梯形,它以直径为下底,求(1)若腰为1时,等腰梯形的周长;(2)等腰梯形周长y与x腰长之间的函数关系式.。