2019年深圳市宝安区九年级上册期末模拟试卷(一)(有答案)-(数学)-名校密卷
2019-2020年广东省深圳市宝安区九年级上册期末数学试卷含解析

广东省深圳市宝安区九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程2=3的解为()A.=3 B.=0 C.1=0,2=﹣3 D.1=0,2=32.(3分)下面左侧几何体的左视图是()A.B. C.D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为,可列方程为()A.300(1+%)2=950 B.300(1+2)=950 C.300(1+2)=950 D.300(1+)2=9507.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数(为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=2的图象向上平移2个单位,得到二次函数y=(+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=a+c的图象如图所示,则二次函数y=a2++c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(﹣1)(+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(>0)上,过点A作AB⊥轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)2﹣8+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了元.请解答以下问题:(1)填空:每天可售出书本(用含的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(>0,>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;=S△COD?如果(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=a2+b+c(a<0)与轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=+1(>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.广东省深圳市宝安区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程2=3的解为()A.=3 B.=0 C.1=0,2=﹣3 D.1=0,2=3【解答】解:∵2﹣3=0,∴(﹣3)=0,则=0或﹣3=0,解得:=0或=3,故选:D.2.(3分)下面左侧几何体的左视图是()A.B. C.D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为,可列方程为()A.300(1+%)2=950 B.300(1+2)=950 C.300(1+2)=950 D.300(1+)2=950【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为,那么根据题意得2018年年收入为:300(1+)2,列出方程为:300(1+)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数(为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=2的图象向上平移2个单位,得到二次函数y=(+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=2的图象向上平移2个单位,得到二次函数y=2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=a+c的图象如图所示,则二次函数y=a2++c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=a+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=a2++c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(﹣1)(+2)的对称轴方程是=﹣.【解答】解:y=﹣(﹣1)(+2)=﹣(2+﹣2)=﹣(+)2+,∴二次函数y=﹣(﹣1)(+2)的对称轴为=﹣,故答案为:=﹣.15.(3分)如图,点A在曲线y=(>0)上,过点A作AB⊥轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为4.【解答】解:∵点A在曲线y=(>0)上,AB⊥轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=AD=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)2﹣8+12=0.【解答】解:2﹣8+12=0,分解因式得(﹣6)(﹣2)=0,∴﹣6=0,﹣2=0,解方程得:1=6,2=2,∴方程的解是1=6,2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了元.请解答以下问题:(1)填空:每天可售出书300﹣10本(用含的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了元,∴每天可售出书(300﹣10)本.故答案为:300﹣10.(2)设每本书上涨了元(≤10),根据题意得:(40﹣30+)(300﹣10)=3750,整理,得:2﹣20+75=0,解得:1=5,2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(>0,>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;=S△COD?如果(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥轴于G,交BC于F,∵CB∥轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC =S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=+2⑤,联立④⑤解得,或(舍),∴P'(﹣1, +1).即:点P的坐标为(﹣1, +1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=a2+b+c(a<0)与轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=+1(>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=a2+b+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(+2)(﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(+2)(﹣4)或y=﹣2++4或y=﹣(﹣1)2+.(2)如图1中,作PE⊥轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=+1(>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=+1中,得到=,∴直线DP的解析式为y=+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=+1,PQ⊥PD,∴直线PQ的解析式为y=﹣+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(,0),则QD2=2+1,QP2=(﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴2+1+(﹣2)2+16=13,整理得2﹣2+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。
2019-2020年广东省深圳市宝安区九年级上册期末数学试卷含解析-优质版

广东省深圳市宝安区九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程2=3的解为()A.=3 B.=0 C.1=0,2=﹣3 D.1=0,2=32.(3分)下面左侧几何体的左视图是()A.B.C. D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为,可列方程为()A.300(1+%)2=950 B.300(1+2)=950 C.300(1+2)=950 D.300(1+)2=9507.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数(为正整数)之间的函数关系式是()A .y=+2000B .y=﹣2000C .y=D .y=8.(3分)如图,延长矩形ABCD 的边BC 至点E ,使CE=BD ,连接AE ,如果∠ADB=38°,则∠E 的值是( )A .19°B .18°C .20°D .21°9.(3分)下列说法正确的是( )A .二次函数y=(+1)2﹣3的顶点坐标是(1,3)B .将二次函数y=2的图象向上平移2个单位,得到二次函数y=(+2)2的图象C .菱形的对角线互相垂直且相等D .平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B 距地面高BA=7m ,身高1.4m 的小红从路灯下的点D 出发,沿A→H的方向行走至点G ,若AD=6m ,DG=4m ,则小红在点G 处的影长相对于点D 处的影长变化是( )A .变长1mB .变长1.2mC .变长1.5mD .变长1.8m11.(3分)一次函数y=a+c 的图象如图所示,则二次函数y=a 2++c 的图象可能大致是( )A .B .C .D .12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE ⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF 交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(﹣1)(+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(>0)上,过点A作AB⊥轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)2﹣8+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同. (1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a 个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a 的值.20.(8分)如图,△ABC 中,∠ACB 的平分线交AB 于点D ,作CD 的垂直平分线,分别交AC 、DC 、BC 于点E 、G 、F ,连接DE 、DF . (1)求证:四边形DFCE 是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF 的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了元.请解答以下问题: (1)填空:每天可售出书 本(用含的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC 的一个顶点与坐标原点重合,OA 边落在轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(>0,>0)的图象经过点C ,与AB交于点D ,连接AC ,CD . (1)试求反比例函数的解析式; (2)求证:CD 平分∠ACB ;(3)如图2,连接OD ,在反比例的函数图象上是否存在一点P ,使得S △POC =S △COD ?如果存在,请直接写出点P 的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=a2+b+c(a<0)与轴交于A(﹣2,0)、B (4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=+1(>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.广东省深圳市宝安区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程2=3的解为()A.=3 B.=0 C.1=0,2=﹣3 D.1=0,2=3【解答】解:∵2﹣3=0,∴(﹣3)=0,则=0或﹣3=0,解得:=0或=3,故选:D.2.(3分)下面左侧几何体的左视图是()A.B.C. D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为,可列方程为()A.300(1+%)2=950 B.300(1+2)=950 C.300(1+2)=950 D.300(1+)2=950【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为,那么根据题意得2018年年收入为:300(1+)2,列出方程为:300(1+)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数(为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y= D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=2的图象向上平移2个单位,得到二次函数y=(+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=2的图象向上平移2个单位,得到二次函数y=2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=a+c的图象如图所示,则二次函数y=a2++c的图象可能大致是()A. B.C.D.【解答】解:∵一次函数y=a+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=a2++c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE ⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF 交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(﹣1)(+2)的对称轴方程是=﹣.【解答】解:y=﹣(﹣1)(+2)=﹣(2+﹣2)=﹣(+)2+,∴二次函数y=﹣(﹣1)(+2)的对称轴为=﹣,故答案为:=﹣.15.(3分)如图,点A在曲线y=(>0)上,过点A作AB⊥轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为 4 .【解答】解:∵点A在曲线y=(>0)上,AB⊥轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=AD=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)2﹣8+12=0.【解答】解:2﹣8+12=0,分解因式得(﹣6)(﹣2)=0,∴﹣6=0,﹣2=0,解方程得:1=6,2=2,∴方程的解是1=6,2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是: =.(2)根据题意,得: =,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF 是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了元.请解答以下问题:(1)填空:每天可售出书 300﹣10 本(用含的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了元,∴每天可售出书(300﹣10)本.故答案为:300﹣10.(2)设每本书上涨了元(≤10),根据题意得:(40﹣30+)(300﹣10)=3750,整理,得:2﹣20+75=0,解得:1=5,2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC 的一个顶点与坐标原点重合,OA 边落在轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(>0,>0)的图象经过点C ,与AB 交于点D ,连接AC ,CD .(1)试求反比例函数的解析式;(2)求证:CD 平分∠ACB ;(3)如图2,连接OD ,在反比例的函数图象上是否存在一点P ,使得S △POC =S △COD ?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥轴于G,交BC于F,∵CB∥轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC =S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2, =2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=+2⑤,联立④⑤解得,或(舍),∴P'(﹣1, +1).即:点P的坐标为(﹣1, +1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=a2+b+c(a<0)与轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=+1(>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=a2+b+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(+2)(﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(+2)(﹣4)或y=﹣2++4或y=﹣(﹣1)2+.(2)如图1中,作PE⊥轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=+1(>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=+1中,得到=,∴直线DP的解析式为y=+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=+1,PQ⊥PD,∴直线PQ的解析式为y=﹣+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(,0),则QD2=2+1,QP2=(﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴2+1+(﹣2)2+16=13,整理得2﹣2+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。
2019-2020学年广东省深圳市宝安区九年级(上)期末数学试卷

2019-2020学年广东省深圳市宝安区九年级(上)期末数学试卷一、选择题(每题3分,共36分)1.(3分)(2019秋•宝安区期末)方程(x﹣3)(x+4)=0的解是( )A.x=3B.x=﹣4C.x1=3,x2=﹣4D.x1=﹣3,x2=4 2.(3分)(桂林模拟)下面四个几何体中,主视图是三角形的是( )A.B.C.D.3.(3分)(2019秋•宝安区期末)已知,则下列结论一定正确的是( )A.x=2,y=3B.2x=3y C.D.4.(3分)(2019秋•宝安区期末)如图,点F在平行四边形ABCD的边AB上,CF的延长线交DA的延长线于点E,则图中相似的三角形有( )对.A.4B.3C.2D.15.(3分)(2019秋•宝安区期末)某人从一袋黄豆中取出20粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有( )A.380粒B.400粒C.420粒D.500粒6.(3分)(2019秋•宝安区期末)已知反比例函数y,当x<0时,y随x的增大而增大,则a的值可能是( )A.3B.2C.1D.﹣17.(3分)(2019秋•宝安区期末)天猫某店铺第2季度的总销售额为662万元,其中4月份的销售额是200万元,设5、6月份的平均增长率为x,求此平均增长率可列方程为( )A.200(1+x)2=662B.200+200(1+x)2=662C.200+200(1+x)+200(1+x)2=662D.200+200x+200(1+x)2=6628.(3分)(2020春•三台县期末)如图,已知O是矩形ABCD的对角线的交点,∠AOB=60°,作DE∥AC,CE∥BD,DE、CE相交于点E.四边形OCED的周长是20,则BC=( )A.5B.5C.10D.109.(3分)(2019秋•宝安区期末)下列说法正确的是( )A.若点C是线段AB的黄金分割点,AB=2,则AC1B.平面内,经过矩形对角线交点的直线,一定能平分它的面积C.两个正六边形一定位似D.菱形的两条对角线互相垂直且相等10.(3分)(2019秋•宝安区期末)数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为( )A.32米B.28米C.24米D.16米11.(3分)(2019秋•宝安区期末)如图,直线a∥b∥c,△ABC的边AB被这组平行线截成四等份,△ABC的面积为32,则图中阴影部分四边形DFIG的面积是( )A.12B.16C.20D.2412.(3分)(2020•兰溪市模拟)如图,正方形ABCD中,AB=4,点E是BA延长线上的一点,点M、N分别为边AB、BC上的点,且AM=BN=1,连接CM、ND,过点M作MF∥ND与∠EAD的平分线交于点F,连接CF分别与AD、ND交于点G、H,连接MH,则下列结论正确的有( )个①MC⊥ND;②sin∠MFC;③(BM+DG)2=AM2+AG2;④S△HMF;A.1B.2C.3D.4二、填空题(每小题3分,共12分)13.(3分)(2019秋•宝安区期末)已知x﹣3y=2,则代数式3x﹣9y﹣5= .14.(3分)(2019秋•宝安区期末)如图,l是一条笔直的公路,道路管理部门在点A设置了一个速度监测点,已知BC为公路的一段,B在点A的北偏西30°方向,C在点A的东北方向,若AB=50米.则BC的长为 米.(结果保留根号)15.(3分)(2019秋•宝安区期末)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)和一次函数y=kx+m(k,m为常数,且k≠0)的图象如图所示,交于点M(,2)、N (2,﹣2),则关于x的不等式ax2+bx+c﹣kx﹣m<0的解集是 .16.(3分)(2019秋•宝安区期末)如图,点A(1,3)为双曲线上的一点,连接AO并延长与双曲线在第三象限交于点B,M为y轴正半轴上一点,连接MA并延长与双曲线交于点N,连接BM、BN,已知△MBN的面积为,则点N的坐标为 .三、解答题(本题共7小题,共52分)17.(5分)(2019秋•宝安区期末)计算:()﹣1+tan45°+|1|18.(5分)(2020•武汉模拟)解方程:x2﹣4x﹣3=0.19.(8分)(2019秋•宝安区期末)一个盒子中装有1个红球、1个白球和2个蓝球,这些球除颜色外都相同.(1)从盒子中任意摸出一个球,恰好是白球的概率是 ;(2)从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,试用树状图或表格列出所以可能的结果,并求两次摸到的球的颜色能配成紫色的概率.(红色和蓝色在一起可配成紫色)(3)往盒子里面再放入一个白球,如果从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,那么两次摸到的球的颜色能配成紫色的概率是 .20.(8分)(2019秋•宝安区期末)如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?21.(8分)(2019秋•宝安区期末)光明农场准备修建一个矩形苗圃园,苗圃一边靠墙,其他三边用长为48米的篱笆围成.已知墙长为a米.设苗圃园垂直于墙的一边长为x 米.(1)求当x为多少米时,苗圃园面积为280平方米;(2)若a=22米,当x取何值时,苗圃园的面积最大,并求最大面积.22.(8分)(2019秋•宝安区期末)如图1,在菱形ABCD中,AB,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是 .23.(10分)(2019秋•宝安区期末)如图1,在平面直角坐标系中,已知直线l1:y=﹣x+6与直线l2相交于点A,与x轴相交于点B,与y轴相交于点C,抛物线y=ax2+bx+c(a≠0)经过点O、点A和点B,已知点A到x轴的距离等于2.(1)求抛物线的解析式;(2)点H为直线l2上方抛物线上一动点,当点H到l2的距离最大时,求点H的坐标;(3)如图2,P为射线OA的一个动点,点P从点O出发,沿着OA方向以每秒个单位长度的速度移动,以OP为边在OA的上方作正方形OPMN,设正方形OPMN与△OAC 重叠的面积为S,设移动时间为t秒,直接写出S与t之间的函数关系式.2019-2020学年广东省深圳市宝安区九年级(上)期末数学试卷答案与试题解析一、选择题(每题3分,共36分)1.(3分)(2019秋•宝安区期末)方程(x﹣3)(x+4)=0的解是( )A.x=3B.x=﹣4C.x1=3,x2=﹣4D.x1=﹣3,x2=4 C【分析】利用因式分解法解方程.解:x﹣3=0或x+4=0,所以x1=3,x2=﹣4.故选:C.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).2.(3分)(桂林模拟)下面四个几何体中,主视图是三角形的是( )A.B.C.D.C【分析】主视图是从正面看所得到的平面图形,分别写出四个选项的主视图即可选出答案.解:A、圆柱的主视图是长方形,故此选项错误;B、立方体的主视图是正方形,故此选项错误;C、四棱锥的主视图是三角形,故此选项正确;D、三棱柱的主视图是长方形,故此选项错误;故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3.(3分)(2019秋•宝安区期末)已知,则下列结论一定正确的是( )A.x=2,y=3B.2x=3y C.D.D【分析】根据比例的性质即两内项之积等于两外项之积分别对每一项进行分析即可得出答案.解:∵,∴3x=2y,∴A、B选项错误;∵,∴yx∴,∴C选项错误;∵,∴11,∴D选项正确;故选:D.【点评】此题考查了比例的性质,熟练掌握两内项之积等于两外项之积是解题的关键,较简单.4.(3分)(2019秋•宝安区期末)如图,点F在平行四边形ABCD的边AB上,CF的延长线交DA的延长线于点E,则图中相似的三角形有( )对.A.4B.3C.2D.1B【分析】根据平行四边形的性质以及相似三角形的判定方法即可判断.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,由AF∥CD,可以推出△EAF∽△EDC,由AE∥BC,可以推出△AEF∽△BCF,则△EDC∽△CBF,故图中相似的三角形有3对.故选:B.【点评】本题考查相似三角形的判定、平行四边形的性质等知识,熟练掌握相似三角形的判定方法是解题的关键,属于基础题.5.(3分)(2019秋•宝安区期末)某人从一袋黄豆中取出20粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有( )A.380粒B.400粒C.420粒D.500粒B【分析】100粒黄豆中有5粒黄豆染成蓝色,说明在样本中有色的占到20%.而在总体中,蓝色的共有20粒,据此比例可求出黄豆总数.解:依题意可得估计这袋黄豆:20400(粒)故选:B.【点评】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.6.(3分)(2019秋•宝安区期末)已知反比例函数y,当x<0时,y随x的增大而增大,则a的值可能是( )A.3B.2C.1D.﹣1A【分析】直接利用反比例函数的性质得出2﹣a<0,进而得出答案.解:∵反比例函数y,当x<0时,y随x的增大而增大,∴2﹣a<0,解得:a>2.故选:A.【点评】此题主要考查了反比例函数的性质,正确得出2﹣a的符号是解题关键.7.(3分)(2019秋•宝安区期末)天猫某店铺第2季度的总销售额为662万元,其中4月份的销售额是200万元,设5、6月份的平均增长率为x,求此平均增长率可列方程为( )A.200(1+x)2=662B.200+200(1+x)2=662C.200+200(1+x)+200(1+x)2=662D.200+200x+200(1+x)2=662C【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设利润平均每月的增长率为x,根据“第2季度的总销售额为662万元”,可得出方程.解:设利润平均每月的增长率为x,又知:第2季度的总销售额为662万元,其中4月份的销售额是200万元,所以,可列方程为:200+200(1+x)+200(1+x)2=662;故选:C.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).8.(3分)(2020春•三台县期末)如图,已知O是矩形ABCD的对角线的交点,∠AOB=60°,作DE∥AC,CE∥BD,DE、CE相交于点E.四边形OCED的周长是20,则BC=( )A.5B.5C.10D.10B【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形,再利用已知得出菱形的边长,即可得出答案.解:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AC=BD,∴OC=OD,∴四边形OCED是菱形;∵四边形OCED的周长是20,∴CO=DO=5,∴BD=10,∵四边形ABCD是矩形,∴OA=OB,又∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=OC=AB=5,∴BC5.故选:B.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.9.(3分)(2019秋•宝安区期末)下列说法正确的是( )A.若点C是线段AB的黄金分割点,AB=2,则AC1B.平面内,经过矩形对角线交点的直线,一定能平分它的面积C.两个正六边形一定位似D.菱形的两条对角线互相垂直且相等B【分析】根据黄金分割、中心对称图形、位似变换、菱形的性质判断即可.解:A、若点C是线段AB的黄金分割点,AB=2,当AC>BC时,AC1,当AC<BC时,AC=3,本选项说法错误;B、平面内,经过矩形对角线交点的直线,一定能平分它的面积,本选项说法正确;C、两个正六边形不一定位似,本选项说法错误;D、菱形的两条对角线互相垂直,但不一定相等,本选项说法错误;故选:B.【点评】本题考查的是黄金分割、中心对称图形、位似变换、菱形的性质,掌握相关的概念和性质定理是解题的关键.10.(3分)(2019秋•宝安区期末)数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为( )A.32米B.28米C.24米D.16米A【分析】因同学和大厦均和地面垂直,且光线的入射角等于反射角,因此构成一组相似三角形,利用对应边成比例即可解答.解:根据题意,易得到△ABP∽△PDC.即故CDAB1=32米;那么该大厦的高度是32米.故选:A.【点评】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.11.(3分)(2019秋•宝安区期末)如图,直线a∥b∥c,△ABC的边AB被这组平行线截成四等份,△ABC的面积为32,则图中阴影部分四边形DFIG的面积是( )A.12B.16C.20D.24B【分析】先由两边对应成比例且夹角相等的两三角形相似证明△ADG∽△ABC,△AFI∽△ABC,再根据相似三角形面积比等于相似比的平方,得出S△ADG S△ABC,S△AFI S△ABC,然后根据图中阴影部分的面积=S△AFI﹣S△ADG即可求解.解:∵直线a∥b∥c,△ABC的边AB被这组平行线截成四等份,∵,,又∵∠A=∠A,∴△ADG∽△ABC,△AFI∽△ABC,∴()2,()2,∵△ABC的面积为32,∴S△ADG S△ABC=2,S△AFI S△ABC=18∴S阴影=S△AFI﹣S△ADG=18﹣2=16,故选:B.【点评】本题考查了相似三角形判定和性质,根据相似三角形的面积比等于相似比的平方,得出S△ADG S△ABC=4,S△AFI S△ABC=18是解题的关键.12.(3分)(2020•兰溪市模拟)如图,正方形ABCD中,AB=4,点E是BA延长线上的一点,点M、N分别为边AB、BC上的点,且AM=BN=1,连接CM、ND,过点M作MF∥ND与∠EAD的平分线交于点F,连接CF分别与AD、ND交于点G、H,连接MH,则下列结论正确的有( )个①MC⊥ND;②sin∠MFC;③(BM+DG)2=AM2+AG2;④S△HMF;A.1B.2C.3D.4D【分析】设DN交CM于O,在BC上截取BK,使得BK=BM,连接MK,作MT⊥CF 于T.①正确.可以证明△CBM≌△DCN,利用全等三角形的性质解决问题即可.②正确.可以证明△AMF≌△KCM(ASA),推出△FMC是等腰直角三角形即可.③正确.解直角三角形求出AG,DG,通过计算证明即可.④正确.求出MT,FH,利用三角形的面积公式计算即可解:设DN交CM于O,在BC上截取BK,使得BK=BM,连接MK,作MT⊥CF于T.∵四边形ABCD是正方形,∴AB=CB=DC,∠CBM=∠CBM=∠DCN=90°,∵AM=BN=1,∴BM=CN=3,∴△CBM≌△DCN(SAS),∴∠MCB=∠CDN,∵∠MCB+∠DCM=90°,∴∠DCM+∠CDN=90°,∴∠COD=90°,∴CM⊥DN,故①正确,∵MF∥DN,∴MF⊥CM,∴∠FMC=90°,∴∠AMF+∠CMB=90°,∵∠CMB+∠MCB=90°,∴∠AMF=∠MCK,∵BM=BK,∠MBK=90°,∴∠BKM=45°,∵AF平分∠EAD,∴∠EAF∠EAD=45°,∴∠MAF=∠CKM=135°,∵AM=CK,∴△AMF≌△KCM(ASA),∴MF=MC5,∵∠FMC=90°,∴∠MFC=45°,∴sin∠MFC,故②正确,∵OH∥MF,∴∠OHC=∠MFC=45°,∴OH=OC,∴CHOC,∵CFCM=5,∴FH=FC﹣CH,∵MT⊥CF,MF=MC,∴TF=TC,∴MTFC,∴S△FMH•FH•MT,故④正确,∵△NCO∽△NDC,∴CN2=NO•ND,∴ON,∴DH=DN﹣ON﹣OH=5,∵DG∥CN,∴,∴,∴DG,∴AG=4,∴(BM+DG)2=(3)2AM2+AG2=1+()2,∴(BM+DG)2=AM2+AG2,故③正确,故选:D.【点评】本题考查正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题(每小题3分,共12分)13.(3分)(2019秋•宝安区期末)已知x﹣3y=2,则代数式3x﹣9y﹣5= 1 .见试题解答内容【分析】首先把3x﹣9y﹣5化成3(x﹣3y)﹣5,然后把x﹣3y=2代入,求出算式的值是多少即可.解:∵x﹣3y=2,∴3x﹣9y﹣5=3(x﹣3y)﹣5=3×2﹣5=6﹣5=1故1.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.14.(3分)(2019秋•宝安区期末)如图,l是一条笔直的公路,道路管理部门在点A设置了一个速度监测点,已知BC为公路的一段,B在点A的北偏西30°方向,C在点A的东北方向,若AB=50米.则BC的长为 (25+25) 米.(结果保留根号)见试题解答内容【分析】由题意知AD⊥BC于点D,且∠BAD=30°,∠DAC=∠ACD=45°,根据AB=50米可求得BD=AB sin∠BAD=25(米),AD=AB cos∠BAD=25(米),再由AC=CD=25米可得答案.解:如图所示,由题意知AD⊥BC于点D,且∠BAD=30°,∠DAC=∠ACD=45°,∵AB=50米,∴BD=AB sin∠BAD=5025(米),AD=AB cos∠BAD=5025(米),在Rt△ACD中,∵∠DAC=∠ACD=45°,∴AC=CD=25(米),则BC=BD+CD=25+25(米),故(25+25).【点评】本题考查了解直角三角形的应用,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.15.(3分)(2019秋•宝安区期末)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)和一次函数y=kx+m(k,m为常数,且k≠0)的图象如图所示,交于点M(,2)、N (2,﹣2),则关于x的不等式ax2+bx+c﹣kx﹣m<0的解集是 x<2 .见试题解答内容【分析】根据函数图象,写出一次函数图象在抛物线上方所对应的自变量的范围即可.解:当x<2时,ax2+bx+c<kx+m,所以不等式ax2+(b﹣k)x+c﹣m<0的解集为x<2.故答案为x<2.【点评】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.16.(3分)(2019秋•宝安区期末)如图,点A(1,3)为双曲线上的一点,连接AO并延长与双曲线在第三象限交于点B,M为y轴正半轴上一点,连接MA并延长与双曲线交于点N,连接BM、BN,已知△MBN的面积为,则点N的坐标为 .见试题解答内容【分析】根据双曲线的图象过点A(1,3),可求出反比例函数的关系式,点A、M、N 三点在一条直线上,且M、N在双曲线上,设出点M、N的坐标,利用双曲线的对称性可求出S△MON S△BMN,这样可得到关于两点坐标的关系式,联立可求出答案.解:连接ON,∵点A(1,3)为双曲线上,∴k=3,即:y;由双曲线的对称性可知:OA=OB,∴S△MBO=S△MAO,S△NBO=S△NAO,∴S△MON S△BMN,设点M(0,m),N(n,),∴mn,即,mn,①设直线AM的关系式为y=kx+b,将M(0,m)A(1,3)代入得,b=m,k=3﹣m,∴直线AM的关系式为y=(3﹣m)x+m,把N(n,)代入得,(3﹣m)×n+m,②由①和②解得,n,当n时,,∴N,故.【点评】考查反比例函数、一次函数、二次函数的图象和性质,利用点的坐标,表示线段的长,进而表示三角形的面积是常用的方法.三、解答题(本题共7小题,共52分)17.(5分)(2019秋•宝安区期末)计算:()﹣1+tan45°+|1|见试题解答内容【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.解:()﹣1+tan45°+|1|=2﹣2+11【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(5分)(2020•武汉模拟)解方程:x2﹣4x﹣3=0.见试题解答内容【分析】配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.解:移项得x2﹣4x=3,配方得x2﹣4x+4=3+4,即(x﹣2)2,开方得x﹣2=±,∴x1=2,x2=2.【点评】此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19.(8分)(2019秋•宝安区期末)一个盒子中装有1个红球、1个白球和2个蓝球,这些球除颜色外都相同.(1)从盒子中任意摸出一个球,恰好是白球的概率是 ;(2)从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,试用树状图或表格列出所以可能的结果,并求两次摸到的球的颜色能配成紫色的概率.(红色和蓝色在一起可配成紫色)(3)往盒子里面再放入一个白球,如果从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,那么两次摸到的球的颜色能配成紫色的概率是 .见试题解答内容【分析】(1)根据各种颜色球的个数,直接求出概率;(2)无放回摸球,用列表法列举出所有等可能出现的情况,从中找出一红一蓝的情况,进而求出概率.(3)两次放回摸球,用列表法列举出所有等可能出现的情况,从中找出一红一蓝的情况,进而求出概率.解:(1)P白球,故;(2)用列表法得出所有可能出现的情况如下:共有12种等可能的情况,其中一红一蓝的有4种,∴P配紫;(3)再加1个白球,有放回摸两次,所有可能的情况如下:共有25种等可能的情况,其中一红一蓝的有4种,∴P配紫;故.【点评】考查列表法或树状图法求等可能事件发生的概率,使用次方法一定注意每一种结果出现的可能性是均等的,即为等可能事件,同时注意“有放回”和“无放回”的区别.20.(8分)(2019秋•宝安区期末)如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?见试题解答内容【分析】(1)根据对角线垂直的平行四边形是菱形证明即可.(2)首先利用三角形中位线定理证明ONBE,利用勾股定理求出BE即可解决问题.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,∵∠DOF=∠EOB,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.(2)解:∵DM=AM,DO=OB,∴OM∥AB,AB=2OM=8,∴DN=EN,ONBE,设DE=EB=x,在Rt△ADE中,则有x2=42+(8﹣x)2,解得x=5,∴ON.【点评】本题考查矩形的性质,三角形的中位线定理,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(8分)(2019秋•宝安区期末)光明农场准备修建一个矩形苗圃园,苗圃一边靠墙,其他三边用长为48米的篱笆围成.已知墙长为a米.设苗圃园垂直于墙的一边长为x 米.(1)求当x为多少米时,苗圃园面积为280平方米;(2)若a=22米,当x取何值时,苗圃园的面积最大,并求最大面积.见试题解答内容【分析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(48﹣2x)=﹣2x2+48x,根据二次函数的性质求解即可.(1)解:根据题意得:(48﹣2x)x=280,解得:x=10或x=14,∴当x为10米或14米时,苗圃园面积为280平方米;(2)解:设苗圃园的面积为y平方米,则y=x(48﹣2x)=﹣2x2+48x=﹣2(x﹣12)2+288∵二次项系数为负,∴苗圃园的面积y有最大值.∴当x=12时,即平行于墙的一边长是24米,24>22,不符题意舍去;∴当x=13时,y最大=286平方米;答:当x=13米时,这个苗圃园的面积最大,最大值为286平方米.【点评】此题考查了二次函数、一元二次方程、一元二次不等式的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.22.(8分)(2019秋•宝安区期末)如图1,在菱形ABCD中,AB,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是 3 .见试题解答内容【分析】(1)先根据菱形的性质求出BC=3,再利用含30度角的直角三角形的性质求出BM,即可得出结论;(2)先判断出四边形ABNM是平行四边形,得出∠AMB=∠EBD,进而判断出△ABM∽△EDB,即可得出结论;(3)先判断出AM+AN=BN+AN,再判断出点N的运动轨迹是线段CP,进而判断出再CP上取一点N使AN+BN最小,最后利用轴对称构造出图形,计算即可得出结论.解:(1)如图1,连接AC交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,BD=2OB,CD=BC=AB,∵∠BCD=120°,∴∠CBD=30°,∴OCBC,∴OBOC,∴BD=3,∵∠BCD=120°,∠DCM=30°,∴∠BCM=90°,∴CMBC=1,∴BM=2CM=2,∴DM=BD﹣BM=1;(2)∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵MN∥CD,MN=CD,∴AB∥MN,AB=MN,∴四边形ABNM是平行四边形,∴AM∥BN,∴∠AMB=∠EBD,∵AB∥CD,∴∠ABM=∠EDB,∴△ABM∽△EDB,∴,∴AM•DE=BE•AB,∵AB=CD,∴AM•DE=BE•CD;(3)如图2,∵四边形ABCD是菱形,∴∠ABD∠ABC,CD∥AB,∵∠BCD=120°,∴∠ABC=60°,∴∠ABD=30°,连接CN并延长交AB的延长线于P,∵CD∥MN,CD=MN,∴四边形CDMN是平行四边形,∴当点M从点D向B运动时,点N从点C向点P运动(点N的运动轨迹是线段CP),∠APC=∠ABD=30°,由(2)知,四边形ABNM是平行四边形,∴AM=BN,∴AM+AN=AN+BN,而AM+AN最小,即:AN+BN最小,作点B关于CP的对称点B',当点A,N,B'在同一条线上时,AN+BN最小,即:AM+AN的最小值为AB',连接BB',B'P,由对称得,BP=B'P=AB,∠BPB'=2∠APC=60°,∴△BB'P是等边三角形,B'P过点B'作B'Q⊥BP于Q,∴BQB'P,∴B'QBQ,∴AQ=AB+BQ,在Rt△AQB'中,根据勾股定理得,AB'3,即:AM+AN的最小值为3,故答案为3.【点评】此题是相似形综合题,主要考查了菱形的性质,平行四边形的判定和性质,相似三角形的判定和性质,含30度角的直角三角形的性质,等边三角形的判定和性质,判断出点N的运动轨迹是线段CP是解本题的关键.23.(10分)(2019秋•宝安区期末)如图1,在平面直角坐标系中,已知直线l1:y=﹣x+6与直线l2相交于点A,与x轴相交于点B,与y轴相交于点C,抛物线y=ax2+bx+c(a≠0)经过点O、点A和点B,已知点A到x轴的距离等于2.(1)求抛物线的解析式;(2)点H为直线l2上方抛物线上一动点,当点H到l2的距离最大时,求点H的坐标;(3)如图2,P为射线OA的一个动点,点P从点O出发,沿着OA方向以每秒个单位长度的速度移动,以OP为边在OA的上方作正方形OPMN,设正方形OPMN与△OAC 重叠的面积为S,设移动时间为t秒,直接写出S与t之间的函数关系式.见试题解答内容【分析】(1)由已知可得点A的纵坐标为2,则可求A(4,2),令y=0,﹣x+6=0,求出B(6,0),把A(4,2),B(6,0),O(0,0)代入y=ax2+bx+c得抛物线的解析式为yx2x;(2)由已知可求直线l2的解析式为yx,设点H的坐标为(m,m2m),过H作HG∥y 轴交直线l2于G,则G(m,m),所以HGm2mmm2+m(m﹣2)+1,当m=2时,HG 有最大值,点H的坐标为(2,2);(3)当0<t时,如图2,过A作AE⊥OB于E,OA2,tan∠AOE,由tan∠NOH=tan∠AOE,OP=ON=NM=PMt,则NH=NMt,S(tt)tt2;当t≤2时,过点P作PH⊥x轴,由∠POH=∠QON,OPt,求出NQt,则P(2t,t),直线MP的解析式为y=﹣2x+5t,所以G(5t﹣6,﹣5t+12),分别求出GP=3(2﹣t),AP=2t,MG=63t,证明△GPA∽△GKM则有MKt﹣2,Stt(t﹣2)×(63t)t2+40t﹣30;当2<t时,可求N(﹣t,2t),则直线MN的解析式为yxt,K(4t,t+2),NQt,Q(0,t),求出MKt﹣2,Stt(t﹣2t﹣2)tt2+10t;当t时,S=S△OAC4×6=12.解:(1)∵点A到x轴的距离等于2,∴点A的纵坐标为2,∴2=﹣x+6,∴x=4,∴A(4,2),当y=0时,﹣x+6=0,∴x=6,∴B(6,0),把A(4,2),B(6,0),O(0,0)代入y=ax2+bx+c得,解得:,∴抛物线的解析式为yx2x;(2)设直线l2的解析式为y=kx,∴2=4k,∴k,∴直线l2的解析式为yx,设点H的坐标为(m,m2m),如图1,过H作HG∥y轴交直线l2于G,当GH的值最大时,点H到直线l2的距离最大.∴G(m,m),∴HGm2mmm2+m(m﹣2)2+1,当m=2时,HG有最大值,此时点H到直线l2的距离最大,∴点H的坐标为(2,2);(3)当0<t时,如图2,过A作AE⊥OB于E,∴OA2,tan∠AOE,∵∠NOP=∠BOC=90°,∴∠HON=∠AOE,∴tan∠NOH=tan∠AOE,∵OP=ON=NM=PMt,∴NH=HMt,S(tt)tt2;当t≤2时,过点P作PH⊥x轴,∵∠POH=∠QON,OPt,∴OP=ON=NM=PMt,∴NQt,可求P(2t,t),直线MP的解析式为y=﹣2x+5t∴G(5t﹣6,﹣5t+12),∴GP=3(2﹣t),AP=2t,∴MG=63t,∵∠MGK=∠AGP,∴△GPA∽△GKM,∴MKt﹣2,∴Stt(t﹣2)×(63t)t2+40t﹣30;当2<t时,可求N(﹣t,2t),则直线MN的解析式为yxt,∴K(4t,t+2),。
{3套试卷汇总}2019年深圳市九年级上学期数学期末考前模拟试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是()A.3 B.4 C.5 D.6【答案】B【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【详解】∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=13S△ACF,S△BGF=S△BGD=13S△BCF,∵S△ACF=S△BCF=12S△ABC=12×12=6,∴S△CGE=13S△ACF=13×6=2,S△BGF=13S△BCF=13×6=2,∴S阴影=S△CGE+S△BGF=1.故选:B.【点睛】此题主要考查根据三角形中线性质求解面积,熟练掌握,即可解题.2.如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=35°,则∠C的度数为()A.70°B.65°C.55°D.45°【答案】C【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.3.把Rt△ABC各边的长度都扩大3倍得到Rt△A′B′C′,对应锐角A,A′的正弦值的关系为( ) A.sinA=3sinA′ B.sinA=sinA′ C.3sinA=sinA′ D.不能确定【答案】B【解析】根据相似三角形的性质,可得∠A=∠A′,根据锐角三角函数的定义,可得答案.【详解】解:由Rt△ABC各边的长度都扩大3倍的Rt△A′B′C′,得Rt△ABC∽Rt△A′B′C′,∠A=∠A′,sinA=sinA′故选:B.【点睛】本题考查了锐角三角函数的定义,利用相似三角形的性质得出∠A=∠A′是解题关键.4.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>1;②b2﹣4ac>1;③9a﹣3b+c=1;④若点(﹣1.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<1.其中正确的个数有()A.2 B.3 C.4 D.5【答案】B【分析】分析:根据二次函数的性质一一判断即可.【详解】详解:∵抛物线对称轴x=-1,经过(1,1),∴-2b a=-1,a+b+c=1, ∴b=2a ,c=-3a ,∵a >1,∴b >1,c <1,∴abc <1,故①错误,∵抛物线对称轴x=-1,经过(1,1),可知抛物线与x 轴还有另外一个交点(-3,1)∴抛物线与x 轴有两个交点,∴b 2-4ac >1,故②正确,∵抛物线与x 轴交于(-3,1),∴9a-3b+c=1,故③正确,∵点(-1.5,y 1),(-2,y 2)均在抛物线上,(-1.5,y 1)关于对称轴的对称点为(-1.5,y 1)(-1.5,y 1),(-2,y 2)均在抛物线上,且在对称轴左侧,-1.5>-2,则y 1<y 2;故④错误,∵5a-2b+c=5a-4a-3a=-2a <1,故⑤正确,故选B .【点睛】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.已知11x y =3,则代数式232x xy y x xy y+---的值是( ) A .72- B .112- C .92 D .34【答案】D【分析】由113x y -=得出3y x xy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy -+=--,计算可得. 【详解】 113x y-=, ∴ 3y x xy-=,∴ 3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xy xy xy xy -+-+-====-----. 故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.6.如图,三个边长均为2的正方形重叠在一起,M 、N 是其中两个正方形对角线的交点,则两个阴影部分面积之和是( )A .1B .2C .2D .4 【答案】A 【分析】连接AN,CN,通过ANB CND ≅将每部分阴影的面积都转化为正方形ACFE 的面积的14,则答案可求.【详解】如图,连接AN,CN∵四边形ACFE 是正方形∴,45,90AN CN NAB NCD ANC =∠=∠=︒∠=︒∵,ANC ANB BNC BND CND BNC ∠=∠+∠∠=∠+∠,90ANC BND ∠=∠=︒∴ANB CND ∠=∠∴()ANB CND ASA ≅∴ANB CND S S =所以四边形BCDN 的面积为正方形ACFE 的面积的14同理可得另一部分阴影的面积也是正方形ACFE 的面积的14∴两部分阴影部分的面积之和为正方形ACFE的面积的1 2即1221 2⨯⨯=故选A【点睛】本题主要考查不规则图形的面积,能够利用全等三角形对面积进行转化是解题的关键.7.如图,周长为28的菱形ABCD中,对角线AC、BD交于点O,H为AD边中点,OH的长等于( )A.3.5 B.4 C.7 D.14【答案】A【解析】根据菱形的周长求出其边长,再根据菱形的性质得出对角线互相垂直,最后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】∵四边形ABCD是菱形,周长为28∴AB=7,AC⊥BD∴OH=13.5 2AB=故选:A【点睛】本题考查的是菱形的性质及直角三角形斜边上的中线等于斜边的一半,熟练掌握菱形的性质是关键. 8.将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4()A.先向左平移3个单位,再向上平移4个单位B.先向左平移3个单位,再向下平移4个单位C.先向右平移3个单位,再向上平移4个单位D.先向右平移3个单位,再向下平移4个单位【答案】A【分析】抛物线的平移问题,实质上是顶点的平移,原抛物线的顶点为(0,0),平移后的抛物线顶点为(-3,1),由顶点的平移规律确定抛物线的平移规律.【详解】抛物线y=2x2的顶点坐标为(0,0),抛物线y=2(x+3)2+1的顶点坐标为(-3,1),点(0,0)需要先向左平移3个单位,再向上平移1个单位得到点(-3,1).∴抛物线y=2x2先向左平移3个单位,再向上平移1个单位得到抛物线y=2(x+3)2+1.故选A.【点睛】在寻找图形的平移规律时,往往需要把图形的平移规律理解为某个特殊点的平移规律.9.正六边形的周长为12,则它的面积为()A.3B.33C.43D.63【答案】D【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为12,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【详解】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=16×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为12,∴BC=12÷6=2,∴OB=BC=2,∴BM=12BC=1,∴OM=22OB BM=3,∴S△OBC=12×BC×OM=12×2×3=3,∴该六边形的面积为:3×6=63.故选:D.【点睛】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.10.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A .6(m ﹣n )B .3(m +n )C .4nD .4m【答案】D 【详解】解:设小长方形的宽为a ,长为b ,则有b=n-3a ,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m .故选D .11.如图,二次函数y =ax 2+bx +c 的图象与x 轴的一个交点坐标是(3,0),对称轴为直线x =1,下列结论:①abc >0;②2a +b =0;③4a ﹣2b +c >0;④当y >0时,﹣1<x <3;⑤b <c .其中正确的个数是( )A .2B .3C .4D .5【答案】B 【分析】根据二次函数y =ax 2+bx +c 的图象与性质依次进行判断即可求解.【详解】解:∵抛物线开口向下,∴a <0;∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a >0,所以②正确;∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①错误;∵抛物线与x 轴的一个交点坐标是(3,0),对称轴为直线x =1,∴抛物线与x 轴的另一个交点坐标是(﹣1,0),∴x =﹣2时,y <0,∴4a ﹣2b +c <0,所以③错误;∵抛物线与x轴的2个交点坐标为(﹣1,0),(3,0),∴﹣1<x<3时,y>0,所以④正确;∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正确.故选B.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像性质特点.12.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为( )A.5.5×103B.55×103C.0.55×105D.5.5×104【答案】D【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】55000的小数点向左移动4位得到5.5,所以55000用科学记数法表示为5.5×104,故选D.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本题包括8个小题)13.将一块弧长为2π的半圆形铁皮围成一个圆锥的侧面(接头处忽略不计),则围成的圆锥的高为____.【答案】3【分析】根据侧面展开图,求出圆锥的底面半径和母线长,然后利用勾股定理求得圆锥的高.【详解】如下图,为圆锥的侧面展开图草图:∵侧面展开图是弧长为2π的半圆形∴2π=122l π,其中l 表示圆锥的母线长 解得:2l =圆锥侧面展开图的弧长对应圆锥底面圆的周长∴2π=2πr ,其中r 表示圆锥底面圆半径解得:r=1∴根据勾股定理,h=22213-=故答案为:3【点睛】本题考查圆锥侧面展开图,公式比较多,建议通过绘制侧面展开图的草图来分析得出公式.14.120°的圆心角对的弧长是6π,则此弧所在圆的半径是_____.【答案】1【分析】根据弧长的计算公式l=180n r π,将n 及l 的值代入即可得出半径r 的值 【详解】解:根据弧长的公式l =180n r π , 得到:6π=120180r π , 解得r =1.故答案:1.【点睛】此题考查弧长的计算,掌握计算公式是解题关键15.如图,一个长为4,宽为3的长方形木板斜靠在水平桌面上的一个小方块上,其长边与水平桌面成30°夹角,将长方形木板按逆时针方向做两次无滑动的翻滚,使其长边恰好落在水平桌面l 上,则木板上点A 滚动所经过的路径长为_____.【答案】72π 【分析】木板转动两次的轨迹如图(见解析):第一次转动是以点M 为圆心,AM 为半径,圆心角为60度;第二次转动是以点N 为圆心,'NA 为半径,圆心角为90度,根据弧长公式即可求得.【详解】由题意,木板转动两次的轨迹如图:(1)第一次转动是以点M 为圆心,AM 为半径,圆心角α为60度,即3πα= 所以弧'AA 的长33r παπ==⨯=(2)第二次转动是以点N 为圆心,'NA 为半径,圆心角β为90度,即2πβ=所以弧'''A A 的长5522r πβπ==⨯=(其中半径'2'25NA NM AM =+=) 所以总长为5722πππ+= 故答案为72π.【点睛】本题考查了图形的翻转、弧长公式(弧长l r α=,其中α是圆心角弧度数,r 为半径),理解图形翻转的轨迹是解题关键.16.分解因式:x 3﹣4x 2﹣12x=_____.【答案】x (x +2)(x -6).【分析】因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.首先提取公因式x ,然后利用十字相乘法求解,【详解】解:x 3﹣4x 2﹣12x=x (x 2﹣4x ﹣12)=x (x+2)(x ﹣6).【点睛】本题考查因式分解-十字相乘法;因式分解-提公因式法,掌握因式分解的技巧正确计算是本题的解题关键. 17.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心,若AB=2,则DE=______.【答案】1【解析】利用位似的性质得到AB :DE=OA :OD ,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC 与△DEF 位似,原点O 是位似中心,∴AB :DE=OA :OD ,即2:DE=1:3,∴DE=1.故答案是:1.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.18.如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为_____.【答案】y=﹣43x或y=-4x【解析】分析:直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.详解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(-3,4),设过点A′的正比例函数的解析式为:y=kx,则4=-3k,解得:k=-43,则过点A′的正比例函数的解析式为:y=-43 x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A′,此时A′(1,-4),设过点A′的正比例函数的解析式为:y=k′x,则-4=k′,则过点A′的正比例函数的解析式为:y=-4x.故答案为y=﹣43x 或y=-4x. 点睛:此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.三、解答题(本题包括8个小题)19.如图,下列网格由小正方形组成,点,,A B C 都在正方形网格的格点上.(1)在图1中画出一个以线段BC 为边,且与ABC ∆面积相等但不全等的格点三角形;(2)在图2和图3中分别画出一个以线段AB 为边,且与ABC ∆相似(但不全等)的格点三角形,并写出所画三角形与ABC ∆的相似比.(相同的相似比算一种)(1)(2)【答案】(1)画图见解析;(2)画图见解析;图2:10;图3:5. 【分析】(1)根据等底、等高的两个三角形面积相等,检验网格特征画出图形即可;(2)根据相似三角形的性质画出图形即可.【详解】(1)如图所示,BCD ∆即为所求.(答案不唯一)(2)如图所示,ABE ∆和ABF ∆即为所求,∵BC=2,AC=2,AE=5,BE=5,AB=10,∴AB AE BEAC BC AB===10,∴△ABE∽△CAB,∴相似比102k=;∵2,AC=2,52,10∴AB AF BFBC AC AB==5∴△AFB∽△CAB,相似比5k=【点睛】本题考查相似三角形的判定与性质及网格的特征,正确找出对应边是解题关键20.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y(吨)与销售价x(万元)之间的函数关系为y=-x+2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?【答案】(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,令w=0.96,则-x2+3x-1.04=0.96解得x1=1,x2=2,答:当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,当x=1.5时,w 最大=1.21,∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.21.如图1,抛物线2y x bx c =-++与x 轴相交于点A 、点B ,与y 轴交于点C (0,3),对称轴为直线x=1,交x 轴于点D ,顶点为点E .(1)求该抛物线的解析式;(2)连接AC ,CE ,AE ,求△ACE 的面积;(3)如图2,点F 在y 轴上,且2,点N 是抛物线在第一象限内一动点,且在抛物线对称轴右侧,连接ON 交对称轴于点G ,连接GF ,若GF 平分∠OGE ,求点N 的坐标.【答案】(1)y=-x 2+2x+3;(2)1;(3)点N 的坐标为:113+113+. 【分析】(1)由点C 的坐标,求出c ,再由对称轴为x=1,求出b ,即可得出结论;(2)先求出点A ,E 坐标,进而求出直线AE 与y 轴的交点坐标,最后用三角形面积公式计算即可得出结论;(3)先利用角平分线定理求出FQ=1,进而利用勾股定理求出OQ=1=FQ ,进而求出∠BON=45°,求出直线ON 的解析式,最后联立抛物线解析式求解,即可得出结论.【详解】解:(1)∵抛物线y=-x 2+bx+c 与y 轴交于点C (0,3),令x=0,则c=3,∵对称轴为直线x=1, ∴12(1)b -=⨯-, ∴b=2,∴抛物线的解析式为y=-x 2+2x+3;(2)如图1, AE 与y 轴的交点记作H ,由(1)知,抛物线的解析式为y=-x 2+2x+3,令y=0,则-x 2+2x+3=0,∴x=-1或x=3,∴A (-1,0),当x=1时,y=-1+2+3=4,∴E (1,4),∴直线AE 的解析式为y=2x+2,∴H (0,2),∴CH=3-2=1,∴S △ACE =12CH•|x E -x A |=12×1×2=1; (3)如图2, 过点F 作FP ⊥DE 于P ,则FP=1,过点F 作FQ ⊥ON 于Q ,∵GF 平分∠OGE ,∴FQ=FP=1,在Rt △FQO 中,2,根据勾股定理得,221OF FQ -=,∴OQ=FQ ,∴∠FOQ=45°,∴∠BON=90°-45°=45°,过点Q 作QM ⊥OB 于M ,OM=QM∴ON 的解析式为y=x ①,∵点N 在抛物线y=-x 2+2x+3②上,联立①②,则223y xy x x =⎧⎨=-++⎩, 解得:113113x y ⎧+=⎪⎪⎨+⎪=⎪⎩或113113x y ⎧-=⎪⎪⎨-⎪=⎪⎩(由于点N 在对称轴x=1右侧,所以舍去),∴点N 的坐标为:(1132+,1132+). 【点睛】此题是二次函数综合题,主要考查了待定系数法,三角形面积的求法,角平分线定理,勾股定理,直线与抛物线的交点坐标的求法,求出直线ON 的解析式是解本题的关键.22.已知一次函数y 1=ax+b 的图象与反比例函数y 2=的图象相交于A 、B 两点,坐标分别为(—2,4)、(4,—2).(1)求两个函数的解析式;(2)求△AOB 的面积;(3)直线AB 上是否存在一点P (A 除外),使△ABO 与以B ﹑P 、O 为顶点的三角形相似?若存在,直接写出顶点P 的坐标.【答案】(1)y=-x+2 ,y=8x -;(2)AOB 的面积为6;(3)(73,13-). 【详解】(1)将点(-2,4)、(4,-2)代入y 1=ax+b ,得2442k b k b -+=⎧⎨+=-⎩,解得:12k b =-⎧⎨=⎩, ∴y=-x+2 ,将点(-2,4)代入y 2=k x,得k =-8,∴y=8x -; (2)在y=-x+2中,当y =0时,x =2,所以一次函数与x 轴交点是(2,0),故△AOB 的面积为=112422622⨯⨯+⨯⨯=; (3)∵OA =OB =222425+=,∴△OAB 是等腰三角形, ∵△ABO 与△BPO 相似,∴△BPO 也是等腰三角形,故只有一种情况,即P 在OB 的垂直平分线上,设P (x ,-x+2)则22222422x x x x , 解得:73x =, ∴顶点P 的坐标为(73,13-). 23.2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y 1(元)与月份x (1≤x≤12,且x 为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y 2(元)与月份x (1≤x≤12,且x 为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x… 3 4 5 6 … 售价y 1/元 … 12 14 16 18 …(1)求y 1与x 之间的函数关系式.(2)求y 2与x 之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w (元),求w 与x 之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?【答案】(1)y 1=2x+6;(2)y 2=14x 2﹣32x+454;(3)w =﹣14x 2+72x ﹣214,1月份销售每千克猪肉所第获得的利润最大,最大利润是11元1.【分析】(1)设1y 与x 之间的函数关系式为1y kx b =+,将(3,12)(4,14)代入1y 解方程组即可得到结论;(2)由题意得到抛物线的顶点坐标为(3,9),设2y 与x 之间的函数关系式为:2y =239a x -+(),将(5,10)代入2y =239a x -+()得2539a -+()=10,解方程即可得到结论;(3)由题意得到w =1y −2y =2x +6−142x +32x−454=−142x +72x−214,根据二次函数的性质即可得到结论. 【详解】(1)设y 1与x 之间的函数关系式为y 1=kx+b ,将(3,12)(4,14)代入y 1得,312414k b k b +=⎧⎨+=⎩, 解得:26k b =⎧⎨=⎩, ∴y 1与x 之间的函数关系式为:y 1=2x+6;(2)由题意得,抛物线的顶点坐标为(3,9),∴设y 2与x 之间的函数关系式为:y 2=a (x ﹣3)2+9,将(5,10)代入y 2=a (x ﹣3)2+9得a (5﹣3)2+9=10,解得:a =14, ∴y 2=14(x ﹣3)2+9=14x 2﹣32x+454; (3)由题意得,w =y 1﹣y 2=2x+6﹣14x 2+32x ﹣454=﹣14x 2+72x ﹣214, ∵﹣14<0, ∴w 由最大值,∴当x =﹣2b a =﹣72124⎛⎫⨯- ⎪⎝⎭=1时,w 最大=﹣14×12+72×1﹣214=1. 【点睛】本题主要考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象与性质是解题的关键.24.如图,E 是正方形ABCD 的CD 边上的一点,BF ⊥AE 于F ,(1)求证:△ADE ∽△BFA ;(2)若正方形ABCD 的边长为2,E 为CD 的中点,求△BFA 的面积,【答案】(1)见详解;(2)45【分析】(1)根据两角相等的两个三角形相似,即可证明△ADE ∽△BFA ;(2)利用三角形的面积比等于相似比的平方,即可解答.【详解】(1)证明:∵BF ⊥AE 于点F ,四边形ABCD 为正方形,∴△ADE 和△BFA 均为直角三角形,∵DC ∥AB ,∴∠DEA=∠FAB ,∴△ADE ∽△BFA ;(2)解:∵AD=2,E 为CD 的中点,∴DE=1,∴2212=5+, ∴5AE AB =, ∵△ADE ∽△BFA , ∴2455BFA ADE S S ∆∆==, ∵S △ADE =12×1×2=1, ∴S △BFA =45S △ADE =45. 【点睛】本题主要考查三角形相似的性质与判定,熟记相似三角形的判定是解决第(1)小题的关键;第(2)小题中,利用相似三角形的面积比是相似比的平方是解决此题的关键.25.如图,为了测量上坡上一棵树PQ 的高度,小明在点A 利用测角仪测得树顶P 的仰角为45︒,然后他沿着正对树PQ 的方向前进10m 到达点B 处,此时测得树顶P 和树底Q 的仰角分别是60︒和30.设PQ AB ⊥,且垂足为C .求树PQ 的高度(结果精确到0.1m 3 1.7≈).【答案】15.7米【分析】设CQ x =,在Rt △BCQ 中可得3BC x ,然后在Rt △PBC 中得3=PC x ,进而得到PQ=2x ,3AC x =,然后利用AC AB BC =+建立方程即可求出x ,得到PQ 的高度.【详解】解:设CQ x =,∵在Rt △BCQ 中,30∠=︒QBC , ∴3tan30=︒CQ BC x 又∵在Rt △PBC 中,60PBC ∠=︒, ∴tan 60333=︒⋅==PC BC x x∴2=-=PQ PC CQ x ,又∵45A ∠=︒,∴3==AC PC x ∵103AC AB BC x =+= ∴1033x x +=,解得:(5333x = ∴(1033215.73==≈PQ x m【点睛】 本题考查了解直角三角形的应用,熟练利用三角函数解直角三角形是解题的关键.26.在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有 名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为 ;(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A ,B ,C)和2位女同学(D ,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】(1)50;(2)答案见解析;(3)115.2°;(4)35.【分析】(1)根据统计图数据,直接求解,即可;(2)先求出足球项目和其他项目的人数,再补全条形统计图,即可;(3)由“乒乓球”部分所对应的圆心角度数=360°×“乒乓球”部分所占的百分比,即可求解;(4)先画出树状图,再根据概率公式,即可得到答案.【详解】(1)由题意得:该班的总人数=15÷30%=50(名),故答案为:50;(2)足球项目的人数=50×18%=9(名),其它项目的人数=50﹣15﹣9﹣16=10(名),补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°1650⨯=115.2°.故答案为:115.2°;(4)画树状图如图:由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,∴P(恰好选出一男一女)123 205 ==.【点睛】本题主要考查扇形统计图和条形统计图以及概率,掌握扇形统计图和条形统计图的特征以及画树状图,是解题的关键.27.某农场今年第一季度的产值为50万元,第二季度由于改进了生产方法,产值提高了20%;但在今年第三、第四季度时该农场因管理不善.导致其第四季度的产值与第二季度的产值相比下降了11.4万元. (1)求该农场在第二季度的产值;(2)求该农场在第三、第四季度产值的平均下降的百分率.【答案】(1)60;(2)该农场在第三、第四季度产值的平均下降百分率为10%【分析】(1)根据题意,第二季度的产值=第一季度的产值×(1+20%),把数代入求解即可;(2)本题可设该农场第三、四季度的产值的平均下降的百分率为x ,则第三季度的产值为60(1-x )万元,第四季度的产值为60(1-x )2万元,由此可列出方程,进而求解.【详解】解:(1)第二季度的产值为:50(120%)60⨯+=(万元);(2)设该农场在第三、第四季度产值的平均下降的百分率为x ,根据题意得:该农场第四季度的产值为6011.448.6-=(万元),列方程,得:260(1)48.6x -=,即2(1)0.81x -=,解得:120.1 1.9x x ==,(不符题意,舍去).答:该农场在第三、第四季度产值的平均下降百分率为10%.【点睛】此类题目旨在考查下降率,要注意下降的基础,另外还要注意解的合理性,从而确定取舍.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列二次根式中,不是最简二次根式的是( )AB C D 【答案】C【解析】根据最简二次根式的定义对各选项分析判断即可.【详解】解:A 是最简二次根式,不合题意,故本选项错误;BC =2D故选C .【点睛】本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.2.向上发射一枚炮弹,经x 秒后的高度为y ,且时间与高度的关系式为2y ax bx =+,若此时炮弹在第7秒与第13秒时的高度相等,则在下列哪一个时间的高度是最高的( )A .第8秒B .第10秒C .第12秒D .第15秒 【答案】B【分析】二次函数是一个轴对称图形,到对称轴距离相等的两个点所表示的函数值也是一样的.【详解】根据题意可得:函数的对称轴为直线x=713102+=,即当x=10时函数达到最大值.故选B . 【点睛】本题主要考查的是二次函数的对称性,属于中等难度题型.理解“如果两个点到对称轴距离相等,则所对应的函数值也相等”是解决这个问题的关键.3.二次函数y =ax 2+bx+c 的部分对应值如表,利用二次的数的图象可知,当函数值y >0时,x 的取值范围是( )A .0<x <2B .x <0或x >2C .﹣1<x <3D .x <﹣1或x >3 【答案】C【分析】利用表中数据和抛物线的对称性得到抛物线的对称轴为直线x =1,则抛物线的顶点坐标为(1,4),所以抛物线开口向下,则抛物线与x 轴的一个交点坐标为(3,1),然后写出抛物线在x 轴上方所对应的自变量的范围即可.【详解】∵抛物线经过点(1,3),(2,3), ∴抛物线的对称轴为直线2012x +==, ∴抛物线的顶点坐标为(1,4),抛物线开口向下,∵抛物线与x 轴的一个交点坐标为(﹣1,1),∴抛物线与x 轴的一个交点坐标为(3,1),∴当﹣1<x <3时,y >1.故选:C .【点睛】本题考查了二次函数与x 轴的交点、二次函数的性质等知识,解题的关键是要认真观察,利用表格中的信息解决问题. 4.如图,把Rt ABC ∆绕点A 逆时针旋转50︒,得到Rt AB C ''∆,点C 恰好落在边AB 上的点C '处,连接BB ',则BB A '∠的度数为( )A .50︒B .55︒C .60︒D .65︒【答案】D【分析】 由旋转的性质可得AB'=AB ,∠BAB'=50°,由等腰三角形的性质可得∠AB'B=∠ABB'=65°.【详解】解:∵Rt △ABC 绕点A 逆时针旋转50°得到Rt △AB′C′,∴AB'=AB ,∠BAB'=50°,∴18050''652AB B ABB ︒-︒∠=∠==︒, 故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.5.两个相似三角形的对应边分别是15cm 和23cm ,它们的周长相差40cm ,则这两个三角形的周长分别是( )A .45cm ,85cmB .60cm ,100cmC .75cm ,115cmD .85cm ,125cm 【答案】C【解析】根据相似三角形的周长的比等于相似比列出方程,解方程即可.【详解】设小三角形的周长为xcm ,则大三角形的周长为(x+40)cm , 由题意得,154023x x =+, 解得,x=75,则x+40=115,故选C .6.已知△ABC ,D ,E 分别在AB ,AC 边上,且DE ∥BC ,AD=2,DB=3,△ADE 面积是4则四边形DBCE 的面积是( )A .6B .9C .21D .25【答案】C【解析】∵DE//BC ,∴△ADE ∽△ABC , ∴2ADE ABC S AD S AB ∆∆⎛⎫= ⎪⎝⎭, ∵AD=2,BD=3,AB=AD+BD , ∴425ADE ABC S S ∆∆=, ∵S △ADE =4,∴S △ABC =25,∴S 四边形DBCE =S △ABC -S △ADE =25-4=21,故选C.7.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,3的线段的概率为( )A .14B .25C .23D .59【答案】B【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为3的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率.【详解】根据题意可得所有的线段有15条,长度为3的线段有AE 、AC 、FD 、FB 、EC 、BD 共6条,则P (长度为3的线段)=62155=. 故选:B【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用. 8.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( ) A . B . C . D .【答案】C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A .此图案既不是轴对称图形,也不是中心对称图形;B .此图案既不是轴对称图形,也不是中心对称图形;C .此图案既是轴对称图形,又是中心对称图形;D .此图案仅是轴对称图形;故选:C .【点睛】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.9.在ABC ∆中,90C ∠=︒,2sin 5A =,则sin B 的值是( ) A .23 B .25 C .215 D .45【答案】C【分析】作出图形,设BC=2k ,AB=5k ,利用勾股定理列式求出AC ,再根据锐角的正弦等于对边比斜边,。
深圳宝安区2018 2019九年级数学上学期期末模拟试卷 带解析北师大版

深圳宝安区2018 2019九年级数学上学期期末模拟试卷带解析北师大版广东省深圳市宝安区2018-2019学年九年级(上)期末模拟题(一)一.选择题(共12小题,满分36分)1.方程x(x﹣1)=x的解是()A.x=0B.x=0、x=1C.x=0和x=2D.x=0或x=22.下列图形中,主视图为图①的是()A.B.C.D.3.已知 = (a≠0,b≠0),下列变形错误的是()A. = B.2a=3b C. = D.3a=2b4.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有()A.15个B.20个C.10个D.25个5.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2B.k<﹣2C.k<2D.k>26.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=1007.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y= B.y= C.y= D.y=8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则DE的长是()A.5B.C.D.9.已知坐标平面上有两个二次函数y=a(x﹣1)(x+7),y=b(x+1)(x﹣15)的图象,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图象依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移8 单位B.向右平移8单位C.向左平移10单位D.向右平移10单位10.圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A.B.C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.14.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b= .15.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= 上运动,则k= .16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC= ,OC= ,则另一直角边BC的长为.三.解答题(共7小题,满分42分)17.(5分)计算:﹣12+ ﹣(3.14﹣π)0﹣|1﹣ |.18.(5分)解方程:x2+3x+2=0.19.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.球两红一红一白两白礼金券(元)182418(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.21.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y= 与y= (x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线 y=﹣ x2+bx+c经过点A,B.(1)求k的值和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.②连接BN,当∠P BN=45°时,求m的值.参考答案一.选择题1.解:方程移项得:x(x﹣1)﹣x=0,分解因式得:x(x﹣2)=0,解得:x=0或x=2,故选:D.2.解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.3.解:由 = 得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a =2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.4.解:设袋中白球有x个,根据题意,得: =0.25,解得:x=15,经检验:x=15是分式方程的解,所以袋中白球有15个,故选:A.5.解:∵方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△=(﹣2k)2﹣4(k2﹣k+2)=4k﹣8>0,解得:k>2.故选:D.6.解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.7.解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴ xy=10,∴y与x的函数关系式为:y= .故选:C.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO= AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE= ;∴DE=8﹣,故选:C.9.解:∵y=a(x﹣1)(x+7)=ax2+6ax﹣7a,y=b(x+1)(x﹣15)=bx2﹣14bx ﹣15b,∴二次函数y=a(x﹣1)(x+7)的对称轴为直线x=﹣3,二次函数y=b(x+1)(x﹣15)的对称轴为直线 x=7,∵﹣3﹣7=﹣10,∴将二次函数y=b(x+1)(x﹣15)的图形向左平移10个单位,两图形的对称轴重叠.故选:C.10.解:如图,根据常识桌面与地面平行,所以,△ADE∽△ABC,∴ = ,即 = ,解得BC=1.8,所以,地面上阴影部分的面积=π•()2=0.81π平方米.故选:B.11.解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y 轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y 轴右侧,故A正确;故选:A.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN= a,∴FM= a,∵AE∥FM,∴ = = = ,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16× =6.故答案为:6.14.解:∵由题意函数y=2x2+bx的交换函数为y=bx2+2x,∵函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,两个函数的对称轴相同,∴﹣ =﹣,解得b=﹣2或2,∵互为交换函数a≠b,故答案为:﹣2.15.解:如图,连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,由题可得AO=BO,AC=BC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,∴Rt△AOC中,OC:AO=1:,∵∠AOD+∠COE=90°,∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴ =()2=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴S△AOD= |﹣3|= ,∴S△OCE= × = ,即 |k|= ,∴k=±1,又∵k>0,∴k=1.故答案为:1.16.解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC= ,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=1,∴FB=OM=OF﹣FM=1﹣ = ,则BC=CF+BF=1+ = .故答案为:.三.解答题(共7小题,满分42分)17.解:原式=﹣1+ +4﹣1﹣(﹣1)=﹣1+ +4﹣1﹣ +1=3.18.解:分解因式得:(x+1)(x+2)=0,可得x+1=0或x+2=0,解得:x1=﹣1,x2=﹣2.19.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率= = ;(2)∵两红的概率P= ,两白的概率P= ,一红一白的概率P= ,∴摇奖的平均收益是:×18+ ×24+ ×18=22,∵22>20,∴选择摇奖.20.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(4﹣x)2+22,解得:x= ,答:MD长为.21.解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1= =25%,x2=﹣(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%.2 2.解:(1)①如图1,∵m=4,∴反比例函数为y= ,当x=4时,y=1,∴B(4,1),当y=2时,∴2= ,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣ x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y= 得,x= ,由y= 得,x= ,∴PA=4﹣ = ,PC= ﹣4= ,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形A BCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当x=4时,y= = ,y= =∴B(4,),D(4,),∴P(4,),∴A(,),C(,)∵AC=BD,∴﹣ = ﹣,∴m+n=3223.解:(1)把A(3,0)代入y=kx+2中得,0=3k+2,k=﹣,∴直线AB的解析式为:y=﹣ x+2,∴B(0,2),把A(3,0)和B(0,2)代入抛物线y=﹣ x2+bx+c中,则,解得:,二次函数的表达式为:y=﹣;(2)①设M(m,0),则P(m,﹣ m+2),N(m,﹣)有两种情况:①当N在P的上方时,如图1,∴PN=yN﹣yP=(﹣)﹣(﹣ m+2)=﹣ +4m,由于四边形OBNP为平行四边形得PN=OB=2,∴ +4m=2,解得:m= 或;②当N在P的下方时,同理可得:PN=(﹣ m+2)﹣(﹣)= ﹣4m=2,解得:m= ;综上,m= 或;②有两解,N点在AB的上方或下方,如图2,过点B作BN的垂线交x轴于点G,过点G作BA的垂线,垂足为点H.由∠PBN=45°得∠GBP=45°,∴GH=BH,设GH=BH=t,则由△AHG∽△AOB,得AH= t,GA= ,由AB=AH+BH=t+ t= ,解得t= ,∴AG= × = ,从而OG=OA﹣AG=3﹣ = ,即G(,0)…………(7分)由B(0,2),G(,0)得:直线BG:y=﹣5x+2,直线BN:y=0.2x+2.则,解得:x1=0(舍),x2= ,即m= ;则,解得:x1=0(舍),x2= ;即m= ;故m=与m= 为所求.…………(9分)。
2019届广东省深圳市宝安区九年级上学期期末考试数学试卷【含答案及解析】

2019届广东省深圳市宝安区九年级上学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 一元二次方程x2-4=0的解是()A. x=2B. x1=2,x2=-2C. x1=2,x2=0D. x=162. 一个几何体如下左图,则它的左视图是()A. B. C. D.3. 如图,点P为反比例函数的图象上一点,PA⊥x轴于点A,△PAO的面积为2,则k的值是()A. 2B. 4C. -2D. -44. 在一个有10万人的小镇,随机调查了1000人,其中有120人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A. B. C. D.5. 如图,△ABC中,点D、E分别在边AB、BC上,DE//AC,若DB=4,AB=6,BE=3,则EC长是()A. 4B. 3C. 2.5D. 4.56. 某学校2013年年底调查学生的近视率为15%,经过两年的时间,2015年年底再次调查该校学生的近视率为20%,设该校这两年学生人数总数不变,学生近视率年均增长率为x,则以下所列方程正确的是()A. (1+x)+15%(1+x)2=20%B. 15%(1+x%)2=20%C. 15%(1-x)2=20%D. 15%(1+x)2=20%7. 如图,菱形ABCD的边长为4,对角线交于点O,∠ABC=600,点E、F分别为AB、AO的中点,则EF的长度为()A. B. 3 C. 2 D. 48. 一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=10,则y与x的函数图像大致是()A. B. C. D.9. 下列命题正确的是()A. 一元二次方程一定有两个实数根B. 对于反比例函数,y随x的增大而减小C. 对角线互相平分的四边形是平行四边形D. 矩形的对角线互相垂直平分10. 如图,在△ABC中,点D、E分别在边AB、AC上,如果DE//BC,且∠DCE=∠B,那么下列说法中,错误的是()A. △ADE∽△ABCB. △ADE∽△ACDC. △DEC∽△CDBD. △ADE∽△DCB11. 如图,甲、乙两盏路灯相距30米,一天晚上,当小刚从路灯甲底部向路灯乙底部直行25米时,发现自己的身影顶部正好接触到路灯乙的底部,已知小刚的身高为1.5米,那么路灯甲的高为()A. 9米B. 8米C. 7米D. 6米12. 如图,是二次函数y=ax2+bx+c(a≠0)的图象,则下列四个结论中正确的有几个?().①abc>0;②b2>4ac;③2c<3b;④4a+2b+c>0;A. 1个B. 2个C. 3个D. 4个二、填空题13. 若,则=_________.14. 一个不透明的盒子中装有10个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有________个.15. 将抛物线y=x-2x+2先向右平移2个单位,再向上平移3个单位,得到一条新的抛物线,则这条新的抛物线的解析式为_____________16. 如图,矩形ABCD的两个顶点A、B分别落在x、y轴上,顶点C、D位于第一象限,且OA=3,OB=2,对角线AC、BD交于点G,若曲线y经过点C、G,则k=__________.三、判断题17. 计算:18. 解方程:x2-x-12=019. 现有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字-1、-2和1.小明从A布袋中随机取出一个小球,记录其标有的数字为x,在从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点P的一个坐标(x,y):(1)用列表或画树状图的方法列出点P的所有可能坐标;(2)求点P落在直线y=x-3上的概率.20. 如图,正方形ABCD的边长为2,以BC为边向正方形内作等边△BCE,连接AE、DE.(1)请直接写出∠AEB的度数,∠AEB=_________;(2)将AED沿直线AD向上翻折,得△AFD.求证:四边形AEDF是菱形;(3)连接EF,交AD于点O,试求EF的长?21. 某商场销售一种学生用计算器,进价为每台20元,售价为每台30元,每周可卖160台,如果每台售价每上涨2元,每周就会少卖20元,但厂家规定最高每台售价不能超过33元,设每台售价上x元,每周的销售利润为y元.(1)直接写出y与x之间的函数关系式;(2)当计算器定价为多少元时,商场每周的利润恰好为1680元?22. 如图,△ABC中,点P在AB边上自点A向终点B运动,运动速度为每秒1个单位长度,过点P作PD//AC,交BC于点D,过D点作DE//AB,交AC于点E,且AB=10,AC=5,设点P运动的时间为t秒(0<t<10).(1)填空:当t=______秒时,△PBD≌△EDC;(2)当四边形APDE是菱形时.试求t的值?(3)如图,若△ABC的面积为20,四边形APDE的面积为S,试问S是否有最大值?如果有最大值,请求出最大值,如果没有请说明理由。
广东省深圳市宝安区2019届九年级(上)期末数学模拟题(一)(解析版)
广东省深圳市宝安区2018-2019学年九年级(上)期末模拟题(一)一.选择题(共12小题,满分36分)1.方程x(x﹣1)=x的解是()A. x=0B. x=0、x=1C. x=2D. x=0或x=2【答案】D【解析】【分析】用因式分解法可以快速求解.【详解】x(x﹣1)-x=0x(x-2)=0∴x=0或x=2,故选:D【点睛】本题考查一元二次方程的求解,属于简单题,选择正确的方法是解题关键.2.下列图形中,主视图为①的是()A. B. C. D.【答案】B【解析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.3.已知(a≠0,b≠0),下列变形错误的是()A. B. 2a=3b C. D. 3a=2b【答案】B【解析】【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.4.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有()A. 15个 B. 20个 C. 10个 D. 25个【答案】A【解析】分析:设白球的数量为x个,根据概率列出方程,从而得出答案.详解:设白球的数量为x个,根据题意可得:,解得:x=15,故选A.点睛:本题主要考查的是概率的计算法则,属于基础题型.理解概率的计算法则是解决这个问题的关键.5.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A. k>﹣2B. k<﹣2C. k<2D. k>2【答案】D【解析】【分析】根据一元二次方程有两个不相等的实数根,得△即可求解.【详解】∵一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△解得k>2.故选:D.【点睛】本题考查一元二次方程△与参数的关系,列不等式是解题关键.6.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. 80(1+x)2=100B. 100(1﹣x)2=80C. 80(1+2x)=100D. 80(1+x2)=100【答案】A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.7.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A. y=B. y=C. y=D. y=【答案】C【解析】试题解析:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴y与x的函数关系式为:故选C.点睛:根据三角形的面积公式列出即可求出答案.8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD 于点E,则DE的长是()A. 5B.C.D.【答案】C【解析】【分析】先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.【详解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=,∴DE=8﹣=,故选:C.【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.9.已知坐标平面上有两个二次函数y=a(x﹣1)(x+7),y=b(x+1)(x﹣15)的图象,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图象依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A. 向左平移8单位 B. 向右平移8单位C. 向左平移10单位D. 向右平移10单位【答案】A【解析】二次函数的对称轴为,二次函数的对称轴为,因,所以将图形向左平移四个单位,对称轴才能重叠.故选A.10.圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A. 0.36π平方米B. 0.81π平方米C. 2π平方米D. 3.24π平方米【答案】B【解析】试题分析:如图设C,D分别是桌面和其地面影子的圆心,依题意可以得到△OBC∽△OAD,然后由它们的对应边成比例可以得,再把OD=3,CD=1代入可求出OC= OD-CD=3-1=2,BC=×1.2=0.6,然后求出地面影子的半径AD=0.9,这样可以求出阴影部分的面积S⊙D=π×0.92=0.81πm2,这样地面上阴影部分的面积为0.81πm2.故选:B考点:1、相似三角形的性质,2、圆的面积11.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A. B. C. D.【答案】A【解析】【分析】根据各项系数与图像的关系即可解题.【详解】当a一次函数过一、二、三象限,二次函数开口向上,对称轴在y轴左侧,当a一次函数过一、三、四象限,二次函数开口向下,对称轴在y轴右侧,当a一次函数过一、二、四象限,二次函数开口向上,对称轴在y轴右侧,当a一次函数过二、三、四象限,二次函数开口向下,对称轴在y轴左侧,综上,A正确.【点睛】本题考查了系数对函数图像位置的影响,熟悉概念是解题关键.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A. B. C. D.【答案】C【解析】【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.二.填空题(共4小题,满分12分,每小题3分)13.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色兵乓球的个数是__________.【答案】6【解析】分析:直接利用摸到黄色乒乓球的概率为,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.详解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.点睛:此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.14.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x 是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.【答案】﹣2【解析】分析:根据题意可以得到交换函数,由顶点关于x轴对称,从而得到关于b的方程,可以解答本题.详解:由题意函数y=2x2+bx的交换函数为y=bx2+2x.∵y=2x2+bx=,y=bx2+2x=,函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,∴﹣=﹣且,解得:b=﹣2.故答案为:﹣2.点睛:本题考查了二次函数的性质.理解交换函数的意义是解题的关键.15.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k=_____.【答案】1【解析】试题解析:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∴CO⊥AB则∵∴∠DAO=∠COE,又∵∴△AOD∽△OCE,∴∴∵点A是双曲线在第二象限分支上的一个动点,∴∴即∴又∵∴故答案为:1.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为__________.【答案】【解析】分析:如图所示,过O作OF⊥BC,过A作AM⊥OF,证明△AOM≌△BOF,根据全等三角形的可得AM=OF,OM=FB,再证明四边形ACFM为矩形,根据矩形的性质可得AM=CF,AC=MF=,在等腰直角三角形△OCF 中,根据勾股定理求得CF=OF=1,再求得FM=,根据BC=CF+BF即可求得BC的长.详解:如图所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=1,∴FB=OM=OF-FM=1-=,则BC=CF+BF=.故答案为:.点睛:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,以及等腰直角三角形的判定与性质,利用了转化的数学思想,根据题意作出相应的辅助线是解本题的关键.三.解答题(共7小题,满分42分)17.计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.【答案】3.【解析】【分析】直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案.【详解】原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=3.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.18.解方程:x2+3x+2=0.【答案】x1=﹣1,x2=﹣2【解析】试题分析:十字相乘法解方程.试题解析:解:分解因式得:(x+1)(x+2)=0,可得x+1=0或x+2=0,解得:x1=﹣1,x2=﹣2.19.某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.【答案】(1)见解析(2)选择摇奖【解析】试题分析:(1)画树状图列出所有等可能结果,再让所求的情况数除以总情况数即为所求的概率;(2)算出相应的平均收益,比较大小即可.试题解析:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率=;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖.【点睛】主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.【答案】(1)证明见解析;(2)【解析】试题分析:(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,即可列方程求得.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(4﹣x)2+22,解得:x=,答:MD长为.考点:菱形的判定与性质;线段垂直平分线的性质;矩形的性质.21.某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.【答案】25%【解析】试题分析:首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%22.如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y 轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【答案】(1)①直线AB的解析式为y=﹣x+3;理由见解析;②四边形ABCD是菱形,(2)四边形ABCD 能是正方形,理由见解析.【解析】分析:(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),进而得出A(4-t,+t),即:(4-t)(+t)=m,即可得出点D(4,8-),即可得出结论.详解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=-x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4-=,PC=-4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4-t,+t),∴(4-t)(+t)=m,∴t=4-,∴点D的纵坐标为+2t=+2(4-)=8-,∴D(4,8-),∴4(8-)=n,∴m+n=32.点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求k的值和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.②连接BN,当∠PBN=45°时,求m的值.【答案】⑴, ⑵⑶有两解,N点在AB的上方或下方, m=与m=【解析】整体分析:(1)把A(3,0)代入y=kx+2中求k值,把x=0代入y=kx+2,求出B点的坐标,由A,B的坐标求二次函数的解析式;(2)①用含m的式子表示出NP的长,由平行四边形的性质得OB=PN列方程求解;②连接BN,过点B作BN 的垂线交x轴于点G,过点G作BA的垂线,垂足为点H, 设GH=BH=t,由,用t表示AH,AG,由AB=,求t的值,求直线BG,BN的解析式,分别与抛物线方程联立求解.解:⑴,二次函数的表达式为⑵如图,设M(m,0),则p(m,),N(m,==由于四边形OBNP为平行四边形得PN=OB=2,解方程.即⑶有两解,N点在AB的上方或下方,m=与m=.如图连接BN,过点B作BN的垂线交x轴于点G,过点G作BA的垂线,垂足为点H.由得,从而设GH=BH=t,则由,得AH=,由AB=t+=,解得t=,从而OG=OA-AG=3-=.即G()由B(0,2),G()得.将分别与联立, 解方程组得m=,m=.故m=与m=.。
2019-2020年广东省深圳市宝安区九年级上册期末数学试卷含解析-优质资料
广东省深圳市宝安区九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程2=3的解为( )A .=3B .=0C .1=0,2=﹣3D .1=0,2=32.(3分)下面左侧几何体的左视图是( )A .B .C .D .3.(3分)如果=2,则的值是( ) A .3 B .﹣3 C . D .4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n 个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值约为( )A .20B .30C .40D .505.(3分)关于的一元二次方程a 2+3﹣2=0有两个不相等的实数根,则a 的值可以是( )A .0B .﹣1C .﹣2D .﹣36.(3分)中国“一带一路”战略给沿线国家和地区带很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为,可列方程为( )A .300(1+%)2=950B .300(1+2)=950C .300(1+2)=950D .300(1+)2=9507.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数(为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y= D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=2的图象向上平移2个单位,得到二次函数y=(+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=a+c的图象如图所示,则二次函数y=a2++c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE ⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(﹣1)(+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(>0)上,过点A作AB⊥轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)2﹣8+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了元.请解答以下问题:(1)填空:每天可售出书本(用含的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(>0,>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC =S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=a2+b+c(a<0)与轴交于A(﹣2,0)、B (4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=+1(>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.广东省深圳市宝安区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程2=3的解为( )A .=3B .=0C .1=0,2=﹣3D .1=0,2=3【解答】解:∵2﹣3=0,∴(﹣3)=0,则=0或﹣3=0,解得:=0或=3,故选:D .2.(3分)下面左侧几何体的左视图是( )A .B .C .D .【解答】解:从左面看,是一个长方形.故选C .3.(3分)如果=2,则的值是( ) A .3 B .﹣3 C . D . 【解答】解:∵=2,∴a=2b ,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为,可列方程为()A.300(1+%)2=950 B.300(1+2)=950 C.300(1+2)=950 D.300(1+)2=950【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为,那么根据题意得2018年年收入为:300(1+)2,列出方程为:300(1+)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数(为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y= D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=2的图象向上平移2个单位,得到二次函数y=(+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=2的图象向上平移2个单位,得到二次函数y=2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=a+c的图象如图所示,则二次函数y=a2++c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=a+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=a2++c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE ⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(﹣1)(+2)的对称轴方程是=﹣.【解答】解:y=﹣(﹣1)(+2)=﹣(2+﹣2)=﹣(+)2+,∴二次函数y=﹣(﹣1)(+2)的对称轴为=﹣,故答案为:=﹣.15.(3分)如图,点A在曲线y=(>0)上,过点A作AB⊥轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为 4 .【解答】解:∵点A在曲线y=(>0)上,AB⊥轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=AD=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=, ∴=,∴AG=3,∴GH=AH ﹣AG=,在Rt △EGH 中,EG==. 故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)2﹣8+12=0.【解答】解:2﹣8+12=0,分解因式得(﹣6)(﹣2)=0,∴﹣6=0,﹣2=0,解方程得:1=6,2=2,∴方程的解是1=6,2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a 个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a 的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了元.请解答以下问题:(1)填空:每天可售出书300﹣10 本(用含的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了元,∴每天可售出书(300﹣10)本.故答案为:300﹣10.(2)设每本书上涨了元(≤10),根据题意得:(40﹣30+)(300﹣10)=3750,整理,得:2﹣20+75=0,解得:1=5,2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC 的一个顶点与坐标原点重合,OA 边落在轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(>0,>0)的图象经过点C ,与AB 交于点D ,连接AC ,CD .(1)试求反比例函数的解析式;(2)求证:CD 平分∠ACB ;(3)如图2,连接OD ,在反比例的函数图象上是否存在一点P ,使得S △POC =S △COD ?如果存在,请直接写出点P 的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C 作CE ⊥轴于E ,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C (2,2),∵点C 在反比例函数图象上,∴=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D 作DG ⊥轴于G ,交BC 于F ,∵CB∥轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC =S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=+2⑤,联立④⑤解得,或(舍),∴P'(﹣1,+1).即:点P的坐标为(﹣1,+1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=a2+b+c(a<0)与轴交于A(﹣2,0)、B (4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=+1(>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=a2+b+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(+2)(﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(+2)(﹣4)或y=﹣2++4或y=﹣(﹣1)2+.(2)如图1中,作PE⊥轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=+1(>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=+1中,得到=,∴直线DP的解析式为y=+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=+1,PQ⊥PD,∴直线PQ的解析式为y=﹣+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(,0),则QD2=2+1,QP2=(﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴2+1+(﹣2)2+16=13,整理得2﹣2+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。
深圳市宝安区2019届九年级上期末调研测试数学试题含答案
2019~2019学年第一学期宝安区期末调研测试卷九年级 数学 一、选择(12*3=36分)1、一元二次方程12=x 的根是( )A 、1=xB 、1-=xC 、11=x ,02=xD 、11=x ,12-=x2、如图1,该几何体的左视图是( )3、一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口袋中有红球大约多少只?( ) A 、8只 B 、12只 C 、18只 D 、30只4、菱形的边长为5,一条对角线长为8,则此菱形的面积是( )A 、24B 、 30C 、40D 、485、若2=x 是关于x 的一元二次方程022=+-ax x 的一个根,则a 的值为( )A 、3B 、-3C 、1D 、-16、如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为( )A 、x y 10=B 、x y 5=C 、x y 20=D 、20x y = 7、下列命题中,正确的是( )A 、对角线垂直的四边形是菱形B 、矩形的对角线垂直且相等C 、对角线相等的矩形是正方形D 、位似图形一定是相似图形8、二次函数c bx ax y ++=2(0≠a )的大致图象如图2,关于该二次函数,下列说法错误的是 ( ) A 、函数有最小值 B 、当31<<-x 时,0>y C 、当1<x 时,y 随x 的增大而减小 D 、对称图是直线1=x 9、某公司前年缴税20万元,今年缴税24.2万元。
若该公司这两年的年均增长率相同,设这个增长率为x ,则列方程为( )A 、2.24)1(203=+xB 、2.24)1(202=-xC 、2.24)1(20202=++xD 、2.24)1(202=+x10、如图3,每个小正方形的边长均为1,ABC ∆和DEF ∆的顶点均在“格点”上,则=∆∆周长周长ABC DEC ( ) x y -2-132O -111图 2CA B E D 图3A 、21B 、31C 、41D 、32 11、如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,边点O 与AD 上的一点E 作直线OE ,交BA 的延长线于点F ,若AD=4,DC=3,AF=2,则AE 的长是( ) A 、87 B 、58 C 、78 D 、2312、如图5,抛物线x x y 42-=与x 轴交于点O 、A ,顶点B ,连接AB 并延长,交y 轴于点C ,则图中阴影部分的面积和为( )A 、4B 、8C 、16D 、32 二、填空(4*3=12分)13、抛物线2)1(22-+-=x y 的顶点从标是 。
2019年深圳市宝安区九年级上册期末模拟试卷(一)(有答案)-(数学)-精品推荐
广东省深圳市宝安区九年级(上)期末模拟题(一)一.选择题(共12小题,满分36分)1.方程(﹣1)=的解是()A.=0B.=0、=1C.=0和=2D.=0或=22.下列图形中,主视图为图①的是()A.B.C.D.3.已知=(a≠0,b≠0),下列变形错误的是()A. =B.2a=3b C. =D.3a=2b4.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有()A.15个B.20个C.10个D.25个5.一元二次方程2﹣2+2﹣+2=0有两个不相等的实数根,则的取值范围是()A.>﹣2B.<﹣2C.<2D.>26.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为,则可列方程为()A.80(1+)2=100B.100(1﹣)2=80C.80(1+2)=100D.80(1+2)=1007.如果等腰三角形的面积为10,底边长为,底边上的高为y,则y与的函数关系式为()A.y=B.y=C.y=D.y=8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5B.C.D.9.已知坐标平面上有两个二次函数y=a(﹣1)(+7),y=b(+1)(﹣15)的图象,其中a、b 为整数.判断将二次函数y=b(+1)(﹣15)的图象依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移8单位B.向右平移8单位C.向左平移10单位D.向右平移10单位10.圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.在同一平面直角坐标系中,函数y=a+b与y=b2+a的图象可能是()A.B.C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.14.我们定义:关于的函数y=a2+b与y=b2+a(其中a≠b)叫做互为交换函数.如y=32+4与y=42+3是互为交换函数.如果函数y=22+b与它的交换函数图象顶点关于轴对称,那么b= .15.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则= .16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为.三.解答题(共7小题,满分42分)17.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|. 18.(5分)解方程:2+3+2=0.19.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.20.(8分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB=2,AD=4,求MD 的长.21.(8分)某初级中学对毕业班学生三年参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.如图,直线y=+2与轴交于点A(3,0),与y轴交于点B,抛物线y=﹣2+b+c经过点A,B.(1)求的值和抛物线的解析式;(2)M(m,0)为轴上一动点,过点M且垂直于轴的直线与直线AB及抛物线分别交于点P,N.①若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.②连接BN,当∠PBN=45°时,求m的值.参考答案一.选择题1.解:方程移项得:(﹣1)﹣=0,分解因式得:(﹣2)=0,解得:=0或=2,故选:D.2.解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.3.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.4.解:设袋中白球有个,根据题意,得: =0.25,解得:=15,经检验:=15是分式方程的解,所以袋中白球有15个,故选:A.5.解:∵方程2﹣2+2﹣+2=0有两个不相等的实数根,∴△=(﹣2)2﹣4(2﹣+2)=4﹣8>0,解得:>2.故选:D.6.解:由题意知,蔬菜产量的年平均增长率为,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+)吨,2018年蔬菜产量为80(1+)(1+)吨,预计2018年蔬菜产量达到100吨,即:80(1+)(1+)=100或80(1+)2=100.故选:A.7.解:∵等腰三角形的面积为10,底边长为,底边上的高为y,∴y=10,∴y与的函数关系式为:y=.故选:C.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:∵y=a(﹣1)(+7)=a2+6a﹣7a,y=b(+1)(﹣15)=b2﹣14b﹣15b,∴二次函数y=a(﹣1)(+7)的对称轴为直线=﹣3,二次函数y=b(+1)(﹣15)的对称轴为直线=7,∵﹣3﹣7=﹣10,∴将二次函数y=b(+1)(﹣15)的图形向左平移10个单位,两图形的对称轴重叠.故选:C.10.解:如图,根据常识桌面与地面平行,所以,△ADE∽△ABC,∴=,即=,解得BC=1.8,所以,地面上阴影部分的面积=π•()2=0.81π平方米.故选:B.11.解:若a>0,b>0,则y=a+b经过一、二、三象限,y=b2+a开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=a+b经过二、三、四象限,y=b2+a开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=a+b经过一、三、四象限,y=b2+a开口向下,顶点在y轴右侧,故A正确;故选:A.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.14.解:∵由题意函数y=22+b的交换函数为y=b2+2,∵函数y=22+b与它的交换函数图象顶点关于轴对称,两个函数的对称轴相同,∴﹣=﹣,解得b=﹣2或2,∵互为交换函数a≠b,故答案为:﹣2.15.解:如图,连接CO,过点A作AD⊥轴于点D,过点C作CE⊥轴于点E,由题可得AO=BO,AC=BC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,∴Rt△AOC中,OC:AO=1:,∵∠AOD+∠COE=90°,∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=()2=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴S=|﹣3|=,△AOD=×=,即||=,∴S△OCE∴=±1,又∵>0,∴=1.故答案为:1.16.解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=1,∴FB=OM=OF﹣FM=1﹣=,则BC=CF+BF=1+=.故答案为:.三.解答题(共7小题,满分42分)17.解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=3.18.解:分解因式得:(+1)(+2)=0,可得+1=0或+2=0,解得:1=﹣1,2=﹣2.19.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率==;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖.20.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为,则MB=DM=,在Rt△AMB中,BM2=AM2+AB2即2=(4﹣)2+22,解得:=,答:MD长为.21.解:设这两年中获奖人次的平均年增长率为, 根据题意得:48+48(1+)+48(1+)2=183,解得:1==25%,2=﹣(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%.22.解:(1)①如图1,∵m=4,∴反比例函数为y=,当=4时,y=1,∴B (4,1),当y=2时,∴2=,∴=2,∴A (2,2),设直线AB 的解析式为y=+b ,∴,∴,∴直线AB 的解析式为y=﹣+3;②四边形ABCD 是菱形,理由如下:如图2,由①知,B (4,1),∵BD ∥y 轴,∴D (4,5),∵点P 是线段BD 的中点,∴P(4,3),当y=3时,由y=得,=,由y=得,=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当=4时,y==,y==∴B(4,),D(4,),∴P(4,),∴A(,),C(,)∵AC=BD,∴﹣=﹣,∴m+n=3223.解:(1)把A(3,0)代入y=+2中得,0=3+2,=﹣,∴直线AB的解析式为:y=﹣+2,∴B(0,2),把A(3,0)和B(0,2)代入抛物线y=﹣2+b+c中,则,解得:,二次函数的表达式为:y=﹣;(2)①设M (m ,0),则P (m ,﹣m+2),N (m ,﹣) 有两种情况:①当N 在P 的上方时,如图1,∴PN=y N ﹣y P =(﹣)﹣(﹣m+2)=﹣+4m , 由于四边形OBNP 为平行四边形得PN=OB=2,∴+4m=2,解得:m=或; ②当N 在P 的下方时,同理可得:PN=(﹣m+2)﹣(﹣)=﹣4m=2,解得:m=;综上,m=或; ②有两解,N 点在AB 的上方或下方, 如图2,过点B 作BN 的垂线交轴于点G , 过点G 作BA 的垂线,垂足为点H .由∠PBN=45° 得∠GBP=45°,∴GH=BH ,设GH=BH=t ,则由△AHG ∽△AOB ,得AH=t ,GA=,由AB=AH+BH=t+t=,解得t=,∴AG=×=,从而OG=OA ﹣AG=3﹣=,即G (,0)…………(7分) 由B (0,2),G (,0)得:直线BG :y=﹣5+2,直线BN :y=0.2+2.则,解得:1=0(舍),2=,即m=;则,解得:1=0(舍),2=;即m=;故m= 与m=为所求.…………(9分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省深圳市宝安区九年级(上)期末模拟题(一)一.选择题(共12小题,满分36分)1.方程(﹣1)=的解是()A.=0B.=0、=1C.=0和=2D.=0或=22.下列图形中,主视图为图①的是()A.B.C.D.3.已知=(a≠0,b≠0),下列变形错误的是()A. =B.2a=3b C. =D.3a=2b4.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有()A.15个B.20个C.10个D.25个5.一元二次方程2﹣2+2﹣+2=0有两个不相等的实数根,则的取值范围是()A.>﹣2B.<﹣2C.<2D.>26.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为,则可列方程为()A.80(1+)2=100B.100(1﹣)2=80C.80(1+2)=100D.80(1+2)=1007.如果等腰三角形的面积为10,底边长为,底边上的高为y,则y与的函数关系式为()A.y=B.y=C.y=D.y=8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5B.C.D.9.已知坐标平面上有两个二次函数y=a(﹣1)(+7),y=b(+1)(﹣15)的图象,其中a、b 为整数.判断将二次函数y=b(+1)(﹣15)的图象依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移8单位B.向右平移8单位C.向左平移10单位D.向右平移10单位10.圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.在同一平面直角坐标系中,函数y=a+b与y=b2+a的图象可能是()A.B.C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.14.我们定义:关于的函数y=a2+b与y=b2+a(其中a≠b)叫做互为交换函数.如y=32+4与y=42+3是互为交换函数.如果函数y=22+b与它的交换函数图象顶点关于轴对称,那么b= .15.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则= .16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为.三.解答题(共7小题,满分42分)17.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.18.(5分)解方程:2+3+2=0.19.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.21.(8分)某初级中学对毕业班学生三年参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.如图,直线y=+2与轴交于点A(3,0),与y轴交于点B,抛物线y=﹣2+b+c经过点A,B.(1)求的值和抛物线的解析式;(2)M(m,0)为轴上一动点,过点M且垂直于轴的直线与直线AB及抛物线分别交于点P,N.①若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.②连接BN,当∠PBN=45°时,求m的值.参考答案一.选择题1.解:方程移项得:(﹣1)﹣=0,分解因式得:(﹣2)=0,解得:=0或=2,故选:D.2.解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.3.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.4.解:设袋中白球有个,根据题意,得: =0.25,解得:=15,经检验:=15是分式方程的解,所以袋中白球有15个,故选:A.5.解:∵方程2﹣2+2﹣+2=0有两个不相等的实数根,∴△=(﹣2)2﹣4(2﹣+2)=4﹣8>0,解得:>2.故选:D.6.解:由题意知,蔬菜产量的年平均增长率为,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+)吨,2018年蔬菜产量为80(1+)(1+)吨,预计2018年蔬菜产量达到100吨,即:80(1+)(1+)=100或80(1+)2=100.故选:A.7.解:∵等腰三角形的面积为10,底边长为,底边上的高为y,∴y=10,∴y与的函数关系式为:y=.故选:C.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:∵y=a(﹣1)(+7)=a2+6a﹣7a,y=b(+1)(﹣15)=b2﹣14b﹣15b,∴二次函数y=a(﹣1)(+7)的对称轴为直线=﹣3,二次函数y=b(+1)(﹣15)的对称轴为直线=7,∵﹣3﹣7=﹣10,∴将二次函数y=b(+1)(﹣15)的图形向左平移10个单位,两图形的对称轴重叠.故选:C.10.解:如图,根据常识桌面与地面平行,所以,△ADE∽△ABC,即=,解得BC=1.8,所以,地面上阴影部分的面积=π•()2=0.81π平方米.故选:B.11.解:若a>0,b>0,则y=a+b经过一、二、三象限,y=b2+a开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=a+b经过二、三、四象限,y=b2+a开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=a+b经过一、三、四象限,y=b2+a开口向下,顶点在y轴右侧,故A正确;故选:A.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴FM=a,∵AE∥FM,∴===,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.14.解:∵由题意函数y=22+b的交换函数为y=b2+2,∵函数y=22+b与它的交换函数图象顶点关于轴对称,两个函数的对称轴相同,∴﹣=﹣,解得b=﹣2或2,∵互为交换函数a≠b,故答案为:﹣2.15.解:如图,连接CO,过点A作AD⊥轴于点D,过点C作CE⊥轴于点E,由题可得AO=BO,AC=BC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,∴Rt△AOC中,OC:AO=1:,∵∠AOD+∠COE=90°,∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=()2=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,=|﹣3|=,∴S△AOD=×=,即||=,∴S△OCE∴=±1,又∵>0,∴=1.故答案为:1.16.解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=1,∴FB=OM=OF﹣FM=1﹣=,则BC=CF+BF=1+=.故答案为:.三.解答题(共7小题,满分42分)17.解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=3.18.解:分解因式得:(+1)(+2)=0,可得+1=0或+2=0,解得:1=﹣1,2=﹣2.19.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率==;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖.20.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC ,∠A=90°,∴∠MDO=∠NBO ,∠DMO=∠BNO ,∵在△DMO 和△BNO 中∴△DMO ≌△BNO (ASA ),∴OM=ON ,∵OB=OD ,∴四边形BMDN 是平行四边形,∵MN ⊥BD ,∴平行四边形BMDN 是菱形.(2)解:∵四边形BMDN 是菱形,∴MB=MD ,设MD 长为,则MB=DM=,在Rt △AMB 中,BM 2=AM 2+AB 2即2=(4﹣)2+22,解得:=,答:MD 长为.21.解:设这两年中获奖人次的平均年增长率为, 根据题意得:48+48(1+)+48(1+)2=183,解得:1==25%,2=﹣(不符合题意,舍去). 答:这两年中获奖人次的年平均年增长率为25%.22.解:(1)①如图1,∵m=4,∴反比例函数为y=,当=4时,y=1,∴B(4,1),当y=2时,∴2=,∴=2,∴A(2,2),设直线AB的解析式为y=+b,∴,∴,∴直线AB的解析式为y=﹣+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,=,由y=得,=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当=4时,y==,y==∴B(4,),D(4,),∴P(4,),∴A(,),C(,)∵AC=BD,∴﹣=﹣,∴m+n=3223.解:(1)把A (3,0)代入y=+2中得,0=3+2,=﹣,∴直线AB 的解析式为:y=﹣+2,∴B (0,2),把A (3,0)和B (0,2)代入抛物线y=﹣2+b+c 中,则,解得:,二次函数的表达式为:y=﹣; (2)①设M (m ,0),则P (m ,﹣m+2),N (m ,﹣) 有两种情况:①当N 在P 的上方时,如图1,∴PN=y N ﹣y P =(﹣)﹣(﹣m+2)=﹣+4m , 由于四边形OBNP 为平行四边形得PN=OB=2,∴+4m=2,解得:m=或;②当N 在P 的下方时,同理可得:PN=(﹣m+2)﹣(﹣)=﹣4m=2,解得:m=;综上,m=或; ②有两解,N 点在AB 的上方或下方,如图2,过点B 作BN 的垂线交轴于点G , 过点G 作BA 的垂线,垂足为点H .由∠PBN=45° 得∠GBP=45°,∴GH=BH ,设GH=BH=t ,则由△AHG ∽△AOB ,得AH=t ,GA=,由AB=AH+BH=t+t=,解得t=,∴AG=×=,从而OG=OA ﹣AG=3﹣=,即G (,0)…………(7分)由B (0,2),G (,0)得:直线BG :y=﹣5+2,直线BN :y=0.2+2.则,解得:1=0(舍),2=,即m=;则,解得:1=0(舍),2=;即m=;故m= 与m=为所求.…………(9分)。