弱电源电网低频振荡分析

合集下载

电力系统低频振荡分析与抑制

电力系统低频振荡分析与抑制

由于在特定情况下系统提供的负阻尼作用抵消了系统电机、励磁绕组和机械等所产生的正阻尼,在欠阻尼的情况下扰动将逐渐被放大,从而引起系统功率的振荡。

还有一种比拟特殊的欠阻尼情况,假设系统阻尼为零或者较小,那么由于扰动的影响,出现不平衡转矩,使得系统的解为一等幅振荡形式,当扰动的频率和系统固有频率相等或接近时,这一响应就会因共振而被放大,从而引起共振型的低频振荡。

这种低频振荡具有起振快、起振后保持同步的等幅振荡和失去振荡源后振荡很快衰减等特点,是一种值得注意的振荡产生机理。

2、模态谐振机理电力系统的线性与模态性质随系统参数的变化而变化,当两个或多个阻尼振荡模态变化至接近或相同状态,以至相互影响,导致其中一个模态变得不稳定,假设此时系统线性化模型是非对角化的,就称之为强谐振状态;反之为弱谐振状态。

强谐振状态是导致发生低频振荡的先导因素。

当出现或接近强谐振状态时,系统模态变得非常敏感,反响在复平面上,随着参数变化,特征值迅速移动,变化接近,这样,对于频率接近的系统特征值在强谐振之后,阻尼很快变得不同,其中一个特征值穿过虚轴,从而引起振荡。

3、发电机的电磁惯性引起的低频振荡由于发电机励磁绕组具有电感,那么由励磁电压在励磁绕组中产生的励磁电流将是一个比它滞后的励磁电流强迫分量,这种滞后将产生一个滞后的控制,而这种滞后的控制在一定条件下将引起振荡。

而且由于发电机的转速变化,引起了电磁力矩变化与电气回路藕合产生机电振荡,其频率为0.2-2 Hz。

4、过于灵敏的励磁调节引起低频振荡为了提高系统稳定,在电力系统中广泛采用了数字式、高增益、强励磁倍数的快速励磁系统,使励磁系统的时间常数大大减小。

这些快速励磁系统可以对系统运行变化快速作出反响,从而对其进行灵敏快速的调节控制,从控制方面来看,过于灵敏的调节,会对较小的扰动做出过大的反响,这些过大的反响将对系统进行超出要求的调节,这种调节又对系统产生进一步的扰动,如此循环,必将导致系统的振荡。

电力系统低频振荡的原因

电力系统低频振荡的原因

电力系统低频振荡的原因引言电力系统是现代社会不可或缺的基础设施,它为我们提供了稳定的电能供应。

然而,有时候电力系统会出现低频振荡问题,给系统的稳定运行带来困扰。

本文将探讨电力系统低频振荡的原因,以及可能导致这些振荡的因素。

低频振荡概述低频振荡是指电力系统中频率较低的周期性波动。

一般情况下,电力系统的标准工作频率为50Hz或60Hz,而低频振荡往往发生在0.1Hz到1Hz范围内。

这种振荡可能导致电网不稳定、设备损坏甚至停电。

常见原因动力系统负载变化动力系统负载变化是引起低频振荡的常见原因之一。

当负载突然增加或减少时,会导致发电机和负载之间的失衡,从而引起低频振荡。

这种失衡可能是由于大型工业设备启动或停止、大规模用电设备切换等原因引起的。

发电机调节不当发电机是电力系统的核心组成部分,它负责将机械能转换为电能。

发电机调节不当可能导致低频振荡。

如果发电机的调节系统响应缓慢或不灵敏,就会导致频率波动,从而引起低频振荡。

线路参数变化电力系统中的线路参数变化也可能导致低频振荡。

线路的阻抗、电感和电容等参数会受到温度、湿度和环境条件等因素的影响而发生变化。

这些变化可能导致系统的谐振现象,从而引起低频振荡。

控制系统故障控制系统是保持电力系统稳定运行的关键组成部分。

控制系统故障可能导致低频振荡。

自动发电机控制器(AVR)故障可能导致发电机输出功率不稳定,从而引起低频振荡。

高压直流输电系统干扰高压直流输电系统在长距离输送大功率时具有优势,但它也可能对交流输电网产生干扰。

由于高压直流输电系统的存在,可能会引起电力系统中的低频振荡。

振荡的影响低频振荡对电力系统的影响是严重的。

它可能导致设备损坏,包括发电机、变压器和开关设备等。

低频振荡可能导致电网不稳定,从而引起停电和能源供应中断。

低频振荡还可能对用户造成经济损失,并对社会生活产生负面影响。

预防和控制为了预防和控制低频振荡问题,需要采取一系列措施。

应确保发电机和负载之间的平衡。

电力系统的低频振荡问题分析及处理措施

电力系统的低频振荡问题分析及处理措施

电力系统的低频振荡问题分析及处理措施发布时间:2022-06-01T07:50:30.742Z 来源:《新型城镇化》2022年10期作者:谢福梅[导读] 现代社会的发展决定了电力资源成为国家经济的重要命脉之一,电力系统是否能够安全稳定运行将直接关乎人民社会生活的健康与可持续发展,因此保证电网正常可靠运行具有重大意义。

然而,大规模跨区互联电网的形成必然将给电网运行方式和结构参数带来巨大变化。

其中,长距离、重负荷输电通道的出现无疑将对电力系统低频振荡问题带来严重影响,加之如今发电机更多地采用高放大倍数和快速励磁控制系统,低频振荡问题将会更加恶化以致严重威胁电网的安全稳定运行。

为此,重点研究电网大规模跨区互联阶段下出现的低频振荡现象迫切并且极具现实意义。

谢福梅国网四川阿坝州电力有限责任公司四川阿坝州 623200摘要:现代社会的发展决定了电力资源成为国家经济的重要命脉之一,电力系统是否能够安全稳定运行将直接关乎人民社会生活的健康与可持续发展,因此保证电网正常可靠运行具有重大意义。

然而,大规模跨区互联电网的形成必然将给电网运行方式和结构参数带来巨大变化。

其中,长距离、重负荷输电通道的出现无疑将对电力系统低频振荡问题带来严重影响,加之如今发电机更多地采用高放大倍数和快速励磁控制系统,低频振荡问题将会更加恶化以致严重威胁电网的安全稳定运行。

为此,重点研究电网大规模跨区互联阶段下出现的低频振荡现象迫切并且极具现实意义。

关键词:电力系统;低频振荡问题;处理措施目前低频振荡危害已经成为影响电力系统安全稳定运行的首要因素,对日益普遍的电力联网状况提出了更加严峻的挑战。

为了更好地推进西电东送、南北互供、全国联网的电力发展战略,强化对电力系统低频振荡的控制方法的分析,是促进国家电力事业稳定健康发展的关键途径。

1 电网振荡的分类1.1按照相关机组分类(1)地区振荡模式:地区振荡模式为少数机组之间或少数机组对整个电网之间的振荡模式。

低频振荡问题综述

低频振荡问题综述

电力系统低频振荡分析综述1. 低频振荡概念电力系统在某一正常状态下运行时,系统的状态变量具有一个稳态值,但是电力系统几乎时刻都受到小的干扰影响,如负荷的随机变化或风吹架空线摆动等。

当系统经受扰动后,其运行状态会偏离原来的平衡点,这时希望系统在阻尼的影响下经历一个振荡过程,回到稳定的平衡运行点。

在这一过程中,如果系统的阻尼不足则会出现或观测到电力系统的低频振荡现象。

所谓的低频振荡,一般有如下的定义描述。

电力系统中的发电机经输电线路并列运行时,在某种扰动作用下,发生发电机转子之间的相对摇摆,当系统缺乏正阻尼时会引起持续的振荡,输电线路上的功率也发生相应的振荡。

这种振荡的频率很低,范围一般是0.2-2.5Hz,称其为低频振荡[1]。

在互联电力系统中,低频振荡是广泛存在的现象。

根据当今电力系统中出现过的低频振荡现象来看,功率振荡的频率越低时,涉及到的机组相对地就越多。

研究中,按低频振荡的频率大小和所涉及的范围将其分为两类[2]或者说两种形式。

一种为区域内的振荡模式,涉及同一电厂内的发电机或者电气距离很近的几个发电厂的发电机,它们与系统内的其余发电机之间的振荡,振荡的频率约为0.7-2.0Hz。

另一种为互联系统区域间的振荡模式,是系统的一部分机群相对于另一部分机群的振荡,由于各区域的等值发电机具有很大的惯性常数,因此这种模式的振荡频率要比局部模式低,其频率范围约为0.1-0.7Hz。

关于这两种分类,可以在应用发电机经典二阶模型,并利用小干扰分析法说明低频振荡的过程中,通过讨论机组间的电气距离定性地分析出来,在本文后面的简单数学模型分析中将有说明。

由扰动引发的低频振荡受许多因素的影响,研究认为,当今电力系统发生低频振荡问题大多是由系统的阻尼不足引起。

而一般来说,发电机转子在转动过程中受到机械阻尼作用,转子闭合回路、转子的阻尼绕组会产生电气阻尼作用。

从互联系统自身来看,系统本身具有的自然正阻尼微弱性是发生低频振荡的内在因素。

电力系统低频振荡的原因及抑制方法分析

电力系统低频振荡的原因及抑制方法分析

电力系统低频振荡的原因及抑制方法分析电力系统低频振荡的原因及抑制方法分析随着电力系统低频振荡对系统稳定性危害的逐渐显现,对系统低频振荡的分析越来越受到关注,本文分析了系统低频振荡产生的原因,比拟了常见的抑制低频振荡的措施,比照了优缺点,对柔性交流输电系统技术在抑制低频振荡中的应用进行展望。

【关键词】低频振荡抑制措施电力系统电力系统联网开展初期,发电厂同步发电机联系较为紧密,阻尼绕组会产生足够大的阻尼,抑制振荡开展,低频振荡在那时少有产生。

随着电网规模互联的不断扩大,出现了大型电力系统之间的互联,电力系统联系因而变得越来越密切,世界许多地区电网都发现了0.2Hz至2.5Hz范围内的低频振荡,低频振荡问题逐渐受到业内关注。

电力系统低频振荡一旦发生,如果没有及时抑制,将会导致电网不稳定乃至解列,严重威胁电力系统的稳定平安运行,甚至诱发联锁事故,造成严重后果。

1 低频振荡产生的原因1.1 负阻尼导致低频振荡有文献记载了运用阻尼转矩的方法,针对单机无穷大系统分析低频振荡的原因,最主要的原因是系统中产生负阻尼因素,从而抵消系统自有的正阻尼性,导致系统的总阻尼很小甚至为负值。

如果系统阻尼很小,在受到扰动后,系统中功率振荡始终难以平息,就会造成等幅或减幅的低频振荡。

如果系统阻尼为负值,在受到扰动后,低频振荡会不断积累增加,影响系统稳定。

1.2 发电机电磁惯性导致低频振荡电力系统中励磁控制是通过调整励磁电压来改变励磁电流,从而到达调整发电机运行工况的目的。

控制励磁电流就是在调整气隙合成磁场,它使得发电机机端的电压调整为所需值,同时也调整了电磁转矩。

故改变励磁电流大小便可以调整电磁转矩和机端电压。

在励磁自动控制时,因发电机励磁绕组有电感,励磁电流比励磁电压滞后,故会产生一个滞后的控制,滞后的控制在一定因素下会引起系统低频振荡。

1.3 电力系统非线性奇异现象导致低频振荡依据小扰动分析法,系统的特征根中有一个零根或一对虚根时,系统处在稳定边界;系统的特征根都为负实部时,系统处于稳定的;系统特征根中有一对正实部的复数或一个正实数时,系统处于不稳定。

电力系统中的低频振荡特性研究方法研究

电力系统中的低频振荡特性研究方法研究

电力系统中的低频振荡特性研究方法研究电力系统是现代社会运转的核心基础设施之一,它的稳定性和可靠性对于保障国家经济的正常运行至关重要。

然而,电力系统中存在一些不稳定性问题,例如低频振荡,会给电力系统带来一系列的负面影响,如电力设备的损坏、系统能量损耗的增加、供电可靠性下降等。

因此,对电力系统中的低频振荡特性进行科学研究和分析具有重要意义。

低频振荡是指电力系统中频率较低的振荡现象。

当电力系统中存在负荷变化、电力负载突变或线路短路等情况时,系统的频率可能会发生变化,从而引发低频振荡。

低频振荡会导致系统频率的不稳定、电压波动以及功率损耗的增加,严重时甚至会导致系统崩溃。

在研究电力系统中的低频振荡特性时,需要采用一系列科学的研究方法。

首先,我们可以利用仿真模型对电力系统中的低频振荡特性进行分析。

利用计算机软件建立电力系统的仿真模型,并根据实际情况设定系统参数,模拟系统运行过程中的低频振荡情况。

通过分析仿真结果,我们可以深入了解低频振荡产生的原因和机理,以及振荡在系统中的传播规律。

其次,我们可以采用实验方法来研究电力系统中的低频振荡特性。

例如,可以建立实验测量系统,通过监测电力系统中的频率和电压波动等参数的变化,来验证低频振荡的存在并分析其特性。

同时,可以通过实验调整系统的负荷和发电功率等,观察低频振荡的响应情况,揭示其对系统稳定性的影响。

另外,现在还有一些先进的监测装置和算法可以用于电力系统中低频振荡特性的研究。

例如,广泛应用于电力系统的智能传感器网络,可以实时监测系统中的频率、电压、电流等参数,并进行数据采集和分析。

利用这些数据,可以通过数据挖掘和机器学习等方法,深入挖掘低频振荡的形成机制,提高系统的抗振能力。

此外,经验法也是研究电力系统中低频振荡特性的一种重要方法。

通过对历史上发生的低频振荡事件进行分析和总结,总结出一些规律和经验,可以为今后防范低频振荡提供指导。

例如,根据过去低频振荡事件的特征和表现,可以建立一些预警指标和故障诊断模型,及时预测和识别低频振荡的发生。

电网低频振荡现场处置方案

电网低频振荡现场处置方案

电网低频振荡现场处置方案电网低频振荡是电力系统稳定性的一种常见故障。

其表现为电力系统中发生频率为0.1到1Hz之间的低频振荡现象,会对电力系统带来影响,进而危及电网的稳定运行。

因此,在低频振荡发生时,必须采取相应的应急处置措施,以保障电力系统的稳定运行。

故障原因与特征电网低频振荡的本质是由于系统的负荷变化引起的电力系统动态稳定性问题。

其主要原因包括负荷突变、抽水蓄能机组失效、输电线路烧毁、逆变器故障等。

一旦低频振荡发生,其特点包括波形半周期增幅较大、持续时间长、频率变化缓慢,且有可能伴随高频振荡等现象。

现场处置方案第一步:急停发电机组一旦发生低频振荡,首先要立即采取措施,急停发电机组。

经实践验证,急停发电机组能够有效减小电力系统中的不稳定因素,避免振荡现象进一步加剧。

具体操作包括:1.手动关闭发电机组断路器,保障发电机组不再向电网输入负荷;2.停止调速器控制,保障发电机组不再调节电网电压和频率;3.减缓发电机组旋转速度,将其逐渐降至静止状态。

第二步:减少负荷在急停发电机组之后,应该立即减少负荷,以减小电力系统的负荷变化,从而尽可能减少低频振荡的影响。

具体操作包括:1.手动关闭负荷断路器,依次将电网中的载荷逐个切断;2.对于无法切断负荷的情况,应该及时启动备用电源,并通过负荷转移等方式减少负荷。

第三步:加固电网硬件设施在减少负荷之后,应该加固电网硬件设施,以保障电力系统的稳定运行。

具体操作包括:1.对电力系统逐一进行巡视和检查,发现电线松动、绝缘子破损等情况应该立即修理;2.对于输电线路烧毁等情况,应该先进行临时补救措施,避免低频振荡加剧;3.加强对电力系统的监测和预警机制,及时发现低频振荡的迹象,避免事故的发生。

总结电网低频振荡是电力系统常见的稳定性故障,发生时必须采取相应的应急措施。

具体的处置方案包括:急停发电机组、减少负荷、加固电网硬件设施等措施,以保障电力系统的正常运行。

同时,我们应该加强对电力系统的预警和监测,提高电力系统的运行安全性,避免低频振荡事故的发生。

电力系统中低频振荡的稳定性分析

电力系统中低频振荡的稳定性分析

电力系统中低频振荡的稳定性分析引言电力系统是现代社会不可或缺的基础设施之一,它的稳定性对于保障供电的可靠性至关重要。

然而,电力系统中常常会出现一些稳定性问题,其中低频振荡是一个常见的现象。

本文将就电力系统中低频振荡的稳定性进行深入的分析。

一、低频振荡的概念在电力系统中,低频振荡指的是频率较低的振荡现象。

通常,频率低于2Hz的振荡被认为是低频振荡。

低频振荡会对电力系统的稳定性产生一定的影响,因此需要进行分析和控制。

二、低频振荡的原因低频振荡通常是由于电力系统中的系统参数失稳或失控所导致的。

下面列举了几个常见的低频振荡原因。

1. 功率系统失稳:当电力系统中的负载功率发生突变时,系统可能会出现低频振荡。

这是因为负载功率的突变会导致系统频率和功角的变化,从而引起系统的不稳定性。

2. 电力系统设备故障:电力系统中的设备故障也可能引发低频振荡。

例如,变压器的短路故障、发电机的失速等都可能导致低频振荡的发生。

3. 控制系统失效:电力系统中的控制系统对于稳定性起着至关重要的作用。

当控制系统失效时,可能会引发低频振荡。

例如,自动电压调节器(AVR)失效、励磁系统故障等都可能导致低频振荡的出现。

三、低频振荡的影响低频振荡对电力系统的影响主要表现在以下几个方面。

1. 频率稳定性影响:低频振荡会导致电力系统中的频率波动,从而影响到电力负荷的正常运行。

如果频率波动过大,可能会导致负载设备的故障甚至损坏。

2. 功率稳定性影响:低频振荡也会引起电力系统中的功率波动,导致电力传输的不稳定性。

这会降低电力系统的传输效率,并可能引发更大范围的电力系统失稳。

3. 控制系统失效:低频振荡如果长时间持续,可能会导致电力系统中的控制系统失效。

这将进一步加剧低频振荡和整个系统的不稳定性。

四、低频振荡的稳定性分析方法为了保证电力系统的稳定性,我们需要对低频振荡进行稳定性分析。

下面介绍几种常用的稳定性分析方法。

1. 功率-角稳定性分析:这种方法通过分析电力系统中发电机的功率-角特性曲线,来判断系统是否存在低频振荡的风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弱电源电网低频振荡分析
分析了弱电源电网低频振荡问题的形成机理,论述了振荡现象出现的原因,并如何防范和解决振荡问题,提出了相应的解决对策。

标签:低频振荡;分析;防范
随着电力系统的快速发展,远距离、负荷重输电系统已逐步投入运行,快速自动励磁调节器与快速励磁系统的应用与普及,使得电力系统面临着各类低频振荡问题,对电力系统的运行造成了很大影响。

深入分析和探索电网低频振荡问题,对于电力系统的可靠运行有着极大的现实意义。

1 低频振荡的形成机理
电力系统中,发电机经输电线路处于并列运行状态时,在扰动的影响下,发电机转子间会出现互相摇摆的现象,且在缺乏弱阻尼或是负阻尼时,其振荡频率将保持在0. 2-2. 5H,一般也叫低频振荡。

与此同时,在输电线路上,同样也会出现这样的振荡现象。

发电机电磁力矩通常可分为同步力矩(PE)与阻尼力矩两种类型,前者和转子角度变化率的相位相同,而后者则与转速偏差(也就是转子速度变化率)的相位相同。

假如同步力矩不够,则可能出现滑行失步现象;而如阻尼力矩过小,则可能引起振荡失步。

现有的研究大多表明:低频振荡的形成机理,即在某种特定情形下,系统所具有的负阻尼作用与系统电机、机械以及励磁绕组等方面的正阻尼相互抵消,导致系统总阻尼变小甚至为负,当系统阻尼较大时,自发振荡很少会出现,且在扰动后会很快消失;当系统阻尼>零,阻尼相对偏小的情况下(弱阻尼),受扰动影响,振荡可能需要较长时间后方可平息如果振荡平息前又发生了新的扰动,那么我们观察到的持续振荡现象可能会时大时小:当系统阻尼<0(负阻尼),则可能会形成自发振荡,且幅值还会慢慢上升。

2 电力系统低频振荡原因分析
迄今为止,对于低频振荡的诱因尚无确切定论,最广泛接受的是欠阻尼机理。

然而,该机理仍无法解释系统出现的各种异常动态行为。

为此,近年来强迫振荡机理和谐振机理等其他机理解释重新成为人们讨论的热点。

一是模态谐振机理,电力系统的线性和模态随参数的变化而变化,当两个或多个阻尼振荡模态变化至接近或者相同的状态,由于相互影响导致一个状态变得不稳定。

若此时系统的线性化模型是非对角化的,就称之为强谐振状态;反之,为弱谐振状态。

二是共振(强迫谐振)机理。

电力系统强迫振荡的理论指出,持续的周期性小扰动会引起系统的强迫振荡,当扰动频率接近系统固有频率时。

会引起频率谐振,导致大幅度的强迫功率振荡。

研究表明,水电厂和电网两者间之所以会出现低频振荡现象,其诱因大体有下列几种:1)水电厂和电网间产生了弱连接;2)送电距离过长;3)水电厂发电机组大多采用自并励快速励磁方式;4)在汛期满负荷时,水电厂发电时间相
对较为集中;5)快速增、无功负荷,或是大容量发电、变电设备被切除,环状电网系统骤然开环等。

上述分析的原因,在弱电源电网振荡事件中得到了有效印证;例如,贵州“H .9’’ 振荡出现前,黔江地区水电和主网知识通过220KV秀山变电站进行电气供电,且220 KV秀山变电站与150 km距离较为接近,属于距离长、弱联系送电,网架结构相对比较薄弱,振荡当天,秀山变电站1台主变检修,导致电气联系迅速被弱化,我们分析这种弱电网低频振荡现象,可能是由于快速调增发电机有功负荷所引起。

上饶地区小水电装机众多,容量小且点多分散,与主网的多是弱联系。

应注意采取低频振荡抑制措施。

3 低频振荡的抑制措施
3.1技术措施
3.1.1电力系统稳定器(SPS)
电力系统稳定器(SPS)属于发电机励磁中的附加控制单元,可在保证励磁系统电压环性能不变的基础上,有效增强系统阻尼,其对励磁系统所拥有的暂态特性也不会造成影响。

SPS具有设备少、操作简单、效果明显等优势,且因PSS和快速励磁系统的频率特性有很好的匹配性,使得SPS能获得更好的效果。

基于此,SPS对于快速励磁的小水电发电机组而言更为适宜,它能有效抑制系统的低频振荡。

3.1.2加装FACTS装置
在电网系统中,FA CTS巧元件对于维持某点的电压水平,使电力系统保持暂态稳定性,以及消除系统功率振荡问题等方面,有很好的应用效果。

因FACTS 调节迅速且较为灵活,因此其元件常被用于抑制低频振荡。

以往的FACST控制方式,多是以维持系统中某节点电压等为标准,不过在电压控制较强的情况下,能有效削弱FACTS向系统提供阻尼的能力。

基于此,FACST的控制目标还应确保其能为系统提供正阻尼,从而不断提高系统的暂态稳定性。

3.1.3高压直流输电系统(HVDC)调制
VH DC实质上是对SPS的一种有效补充。

在交直流输电线路联合运行的状态下,直流输电的功率也能得到有效控制。

基于此,我们将交流输电线路控制回路上的低频功率振荡信号迁入到直流输电线路的控制回路中,可削弱和减少低频振荡。

例如,使用双侧频率调制,则可有效提高互联电网的动态稳定性。

3.2管理措施
首先,应该推进特高压电网建设。

增设网架,缩短重负荷输电线路、缩短送和受电端两者间的电气距离。

其次,认真分析和计算地区电网动态稳定性。

了解电网主要振荡模式及其稳定水平,尤其是要认真计算分析主要电源线路检修或某些特殊的运行方式,及时制定和实施相应的运行控制与事故处理预案,为电网的
安全运行提供及时有效的指导。

在分析和计算地区电网动态稳定的前提下,还应根据地区电网主断面与电厂送出的实际控制需求,实施相应的运行方案,避免超极限运行。

值得一提的是,部署运行方式时,应尽可能避免选择大容量的单线路送电方式。

再者,探索地区电网和主网两者间的同步振荡解列措施,如地区电网同主网间出现了低频振荡现象,可通过安装振荡解列装置,或采取解列措施来将振荡源切断,将低频振荡的影响降至最低。

4 结论
远距离弱联系输电和机组快速励磁的励磁系统,都可能会带来低频振荡问题。

同样,某些运行方式的选择,也可能诱发低频振荡的发生。

我们应深入分析和探索电力系统低频振荡的发生规律,优化提升电网运行管理,采取经济有效的技术手段抑制电网低频振荡,从而避免因低频振荡而出现大范围停电现象,为保障国家安全和社会经济的发展提供稳定的电力供应。

参考文献:
[1] 徐衍会,贺仁睦,韩志勇,电力系统共振机理低频振荡扰动源分析[J].中国电机工程学报,2007,27(17):83—87.
[2] 吴复霞. 电力系统低频振荡的分析和控制[D].浙江大学,2007
[3] 薛禹胜,郝思鹏,刘俊勇,Gerard LEDWICH. 关于低频振荡分析方法的评述[J].电力系统自动化. 2009(03)
[4] 贺仁睦,韩志勇,周密,徐衍会,马进. 互联电力系统未知机理低频振荡分析[J]. 华北电力大学学报(自然科学版),2009(01)。

相关文档
最新文档