概率论与数理统计:假设检验的两类错误
概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。
由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。
概率论与数理统计-假设检验

14
若
取伪的概率较大.
15
/2
0.12 0.1
0.08 0.06 0.04 0.02
/2 H0 真
60 62.5 65 67.5 70 72.5 75
0.12 0.1
0.08 0.06 0.04 0.02
H0 不真
67.5 70 72.5 75 77.5 80 82.5
16
现增大样本容量,取n = 64, = 66,则
41
两个正态总体
设 X ~ N ( 1 1 2 ), Y ~ N ( 2 2 2 )
两样本 X , Y 相互独立, 样本 (X1, X2 ,…, Xn ), ( Y1, Y2 ,…, Ym ) 样本值 ( x1, x2 ,…, xn ), ( y1, y2 ,…, ym )
显著性水平
42
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布拒绝域 Nhomakorabea1 – 2 = 1 – 2
1 – 2 1 – 2 <
1 – 2 1 – 2 > ( 12,22 已知)
43
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
1 – 2 = 1 – 2
拒绝域
1 – 2 1 – 2 <
1 – 2 1 – 2 >
12, 22未知
12
=
2 2
其中
44
(2)
关于方差比
2 1
/
2 2
的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x p p ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
二项分布模型中的合并估计与假设检验

二项分布模型中的合并估计与假设检验二项分布是概率论与数理统计中常用的一种离散概率分布模型。
在实际应用中,我们经常需要对二项分布的参数进行估计,并进行假设检验。
合并估计和假设检验是二项分布模型中重要的研究内容,本文将就这两个方面进行探讨。
一、合并估计合并估计是指在统计推断中,当我们有多个独立二项分布的数据集时,如何通过合并这些数据来得到总体参数的估计结果。
这样的估计方法可以有效提高参数估计的精度。
假设我们有两组数据集,分别是$n_1$次和$n_2$次独立重复试验的结果。
对于每一组数据集,我们都有一个二项分布参数$p_1$和$p_2$,需要对这两个参数进行估计。
合并估计的核心思想是将这两组数据看作一个总体,采用最大似然估计法来估计总体参数。
最大似然估计法是一种常用的参数估计方法,通过选择使得观测数据出现的可能性最大化的参数值来进行估计。
对于合并估计,我们可以构造一个新的数据集,其中包含$n_1+n_2$次试验的结果。
对于每次试验,成功的次数仍然服从二项分布。
因此,我们可以将这个合并数据集的参数估计问题转化为一个单一数据集的参数估计问题。
通过最大似然估计法,可以得到合并数据集的二项分布参数估计结果。
二、假设检验假设检验是统计推断中常用的方法之一。
它通过对样本数据进行分析,判断所观察到的现象是否符合某种假设。
在二项分布模型中,我们经常需要对某个参数的取值进行假设检验。
假设检验的基本步骤包括假设建立、统计量的选择、计算统计量的取值、给出拒绝域和作出决策等步骤。
其中,拒绝域是根据显著性水平和检验类型确定的。
对于二项分布模型的假设检验,一般有两种类型的检验:单样本检验和两样本检验。
单样本检验是指对于一个已知二项分布的数据集,我们需要判断总体参数是否等于某个给定值。
两样本检验是指对于两个独立二项分布的数据集,我们需要判断两个总体参数是否相等。
在进行假设检验时,常常会遇到两类错误:第一类错误和第二类错误。
第一类错误指的是拒绝了一个正确的假设,而第二类错误指的是接受了一个错误的假设。
假设检验的概述及单总体均值的假设检验

一、问题的提出
[例1] 某厂有一批产品,共 200 件,须经检验合格 才能出厂,按国家标准,次品率不得超过 1%,今 在其中任意抽取 5 件,发现这 5 件中含有次品,问 这批产品是否能出厂?
[例2] 至 1984 年底,南京市开办了有奖储蓄以 来,13 期对奖号码中诸数码的频数汇总如下:
t /2 (n 1)
右边检验问题 H 0 : 0 , H1 : 0
拒绝域
x 0
s/ n
t
(n 1)
左边检验问题 H 0 : 0 , H1 : 0
拒绝域
x 0
s/ n
t (n 1)
[例5] 某部门对当前市场的价格情况进行调查。以鸡 蛋为例,所抽查的全省20个集市上,售价分别为(单 位:元/500克) 3.05 3.31 3.34 3.82 3.30 3.16 3.84 3.10 3.90 3.18 3.88 3.22 3.28 3.34 3.62 3.28 3.30 3.22 3.54 3.30 已知往年的平均售价一直稳定在3.25元/500克左右, 全省鸡蛋价格服从正态分布 N(, 2 ) ,在显著性水 平 0.05下,能否认为全省当前的鸡蛋售价明显高 于往年?
本方差,下面讨论未知参数 的假设检验问题。
1、已知方差 ,检验假设
(Z检验)
一个正态总体 N , 2 , 2 已知, 未知。
检验目标是 H0 : 0 。 我们可以提出如下三个假设检验问题:
H0 : 0, H1 : 0 H0 : 0, H1 : 0 H0 : 0, H1 : 0
是否成立?
表 8-2
x 8 9 10 11 12 13 14 15 16 17 18 19 20
频数 4 1 7 8 6 12 9 10 17 7 19 14 22
概率论与数理统计习题

一 、名词解释1、样本空间:随机试验E 的所有可能结果组成的集合,称为E 的样本空间。
2、随机事件:试验E 的样本空间S 的子集,称为E 的随机事件。
3、必然事件:在每次试验中总是发生的事件。
4、不可能事件:在每次试验中都不会发生的事件。
5、概率加法定理:P(A ∪B)=P(A)+P(B)-P(AB)6、概率乘法定理:P(AB)=P(A)P(B │A)7、随机事件的相互独立性:若P(AB)=P(A)P(B)则事件A,B 是相互独立的。
8、实际推断原理:概率很小的事件在一次试验中几乎是不会发生的。
9、条件概率:设A ,B 是两个事件,且P(A)>0,称P(B │A)=()()A P AB P 为在事件A 发生的条件下事件B 发生的条件概率。
10、全概率公式: P(A)=())/(1B B i A P ni i P ∑=11、贝叶斯公式: P(Bi │A)= ()()∑=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ni j A P j P i A P i P B B B B 112、随机变量:设E 是随机试验,它的样本空间是S=﹛e ﹜。
如果对于每一个e ∈S,有一个实数X(e)与之对应,就得到一个定义的S 上的单值实值函数X=X(e),称为随机变量。
13、分布函数:设X 是一个随机变量,χ是任意实数,函数F(χ)=P(X ≤χ)称为X 的分布函数。
14、随机变量的相互独立性:设(χ,у)是二维随机变量 ,如果对于任意实数χ,у,有F(χ,у)=F x (χ)·F y (у)或 f (χ,у)= f x (χ)·f y (у)成立。
则称为X 与Y 相互独立。
15、方差:E ﹛〔X-E(χ)〕2〕16、数学期望:E(χ)= ()dx x xf ⎰∞-+∞(或)= i p i i x ∑+∞=117、简单随机样本:设X 是具有分布函数F 的随机变量,若χ1 , χ2 … , χn 是具有同一分布函数F 的相互独立的随机变量,则称χ1 , χ2 … , χn 为从总体X 得到的容量为n 的简单随机样本。
《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。
能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。
当然由于样本的随机性,这种推断只能具有⼀定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。
由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。
第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。
例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。
现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。
问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。
即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。
另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。
这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性⽔平05.0=α。
在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。
概率论和数理统计 假设检验

检验统计量T
X 0 S n
~ t ( n 1) —t检验法
H1 : ≠ 0 H1 : > 0 H1 : < 0
T t ( n 1);
2
T t ( n 1) T t ( n 1)
要问:两总体的均值是否有显著的差别? 应设 H0:1=2,H1: 1≠2——双边检验 要问:总体X的均值是否显著比总体Y的均值大? 应设 H0:1 ≤ 2,H1:1——单边检验 2
四、方法的步骤
13
回顾引例的解题过程 1、根据问题的要求,提出假设H0和备择假设H1。
(它的分布应不含任何未知参数,而且可以查出或算出它的分位点。)
原假设 8
二、常用的术语
备择假设
解: 今假设H0 :=0=0.5, 且记H1 :≠0=0.5,
由于X~N(0, 2),故 X ~ N ( 0 , 2 n) 当H0为真时, X 0 检验统计量 进而: U ~ N (0,1) 检 n 验 水 对于给定的 =0.05, 有
U X Y
21
1
n1
2
2 2
~
N (0,1)
n2
作为检验统计量——U检验法。 两总体X与Y的方差 12、22未知,但12=22= 2,用
T S X Y 1 1 n1 n2 ~ t ( n1 n2 2)
拒绝域
双侧检验的拒绝域取在两侧; 单边检验的拒绝域中不等式的取向与备择假设H1中不 等式的取向完全一致。
例2 在正常情况下,某工厂生产的灯泡的寿命X服从正态分布,今
测得10个灯泡寿命为: 19 1490,1440,1680,1610,1500,1750,1550,1420,1800,1580 问能否认为该工厂生产的灯泡寿命 0=1600 (=0.05)?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若H0本身是不成立的,但是检验统计量的值却落在了接受域里面,从而我们做出接受原假设的结论,这样我们就犯了取伪的错误。
(2)犯两类错误的概率:
这两类错误的概率之间是相互关联的,在样本容量相同的情况下,一类错误的减少,就会导致另外一类错误的增加,因此我们想同时减小这两类错误是不可能的。
已知改进配方前后橡胶伸长率的方差不变,问改进配方后橡胶的平均 伸长率有无显著变化。
针对上面的问题如何进行假设?
章 节 名 称
假设检验的两类错误
教 学目 标
了解假设检验的两类错误产生的原因、弃真和取伪的概念、两类错误的概率,会应用其原理设置原假设。
教 学重 点
弃真和取伪的概念、两类错误的概率,设置原假设的原则
教 学
难 点
两类错误的概率,设置原假设的原则
教学内容
一、引入新课:
我们在做假设检验的过程中,是否会犯错误呢?比如:把真的说成假的,也就是原本应该接受的假设,计算的结果却是拒绝。同样的,我们会不会把假的说成真的呢?原本该拒绝的假设,计算的结果却是接受。
也就是原假设我们更倾向于去接受他,接受他不会造成更严重的后果。有时我们也说不应随便拒绝的假设我们应该作用,我们应该选择哪个为原假设呢?我们宁愿相信新药有毒副作用,这样使用新药会更加的谨慎。所以,选择A。
再例如,在司法应用中“疑罪从无”,也可以认为将“无罪”作为原假设。这样就可以减少冤案的发生,不至于产生严重的后果。
(2)原假设应为维持现状:
有时候犯错误的后果也无所谓谁轻谁重,也就是无所谓要保护哪一个,这时我们常将维持原状作为原假设。原假设常设为“无效果”“无改进”“无差异”等。
例如:H0为该药物无效,H1为该药物有效。我们维持原状应该选H0作为原假设。
再如:在新的化肥的试验效果中有产量不变和产量提高,我们应该设产量不变为原假设。
会不会犯这样的错误?是由假设检验的依据决定的,假设检验的依据是小概率事件在一次试验中不可能发生。
但是即使是小概率事件,在一次试验中也是有可能发生的,因此假设检验有时是会犯错误。
二、讲授新课:
1、假设检验的两类错误:
(1)概念:
第一类错误是“弃真”错误
如果H0在实际中是成立的,但是检验统计量的值却落入了拒绝域,从而我们做出了拒绝原假设的结论,这样我们就犯了弃真错误。
(3)如何控制两类错误的概率:
统计学家奈曼和皮尔逊给出来了如下的做法:
他们提出先控制犯第一类错误的概率,使其较小,再控制上犯第二类错误的概率。
这就意味着犯第一类错误就很难了,但是同时犯第二类错误就会比较容易。因此我们在设置假设检验的原假设时候,我们需要遵循某些原则。
2、设置假设检验的原假设的原则:
(1)保护原假设:
三、内容小结:
1、假设检验的两类错误及概率:
第一类错误为弃真错误,概率为 ,好控制。
第二类错误为取伪错误,概率为 。
2、选取原假设的原则:
(1)保护原假设
(2)原假设为维持现状
四、思考题:
某橡胶的伸长率 ,现改进橡胶配方,对改进配方后的橡 胶取样分析,测得其伸长率如下:
0.56 0.53 0.55 0.55 0.58 0.56 0.57 0.57 0.54