高中数学抛物线最值问题

合集下载

抛物线中的最值问题

抛物线中的最值问题
例一、 例一、 在抛物线y 的最小值。 点P在抛物线 2=x上,定点 在抛物线 上 定点A(3,0),求|PA|的最小值。 求 的最小值 法一、 法一、目标函数法
解:设 = P (x, y ) ∴ y
2 2
Q P 点在抛物线上, 点在抛物线上, PA = = = (x − 3)2 + y x 2 − 6x + 9 + x x 2 − 5x + 9 5 2 11 (x − ) + 2 4
例三、 例三、 已知定点M ),F是抛物线y =2x的焦点 的焦点, 已知定点M(3,2),F是抛物线y2=2x的焦点, 在此抛物线上求一点P |PM|+|PF|取得最小值 取得最小值, 在此抛物线上求一点P,使|PM|+|PF|取得最小值, 求点P 求点P的坐标
分析: ,由抛物线的定义: 如图, 分析: 如图 由抛物线的定义:
抛物线上的点到焦点的距离 与到准线的距离相等。 与到准线的距离相等。 即|PF| = |PN| ∴ |PM|+|PF|= |PM|+|PN| ∴当 M、P、N三点共 线时距离之和最小。 线时距离之和最小。
N F F
M
P M
解: 如图所示 在抛物线 y2 = 2x上任取一点 上任取一点 P’(x’,y’),作P’N’⊥准线 ,作MN 准线L, 作 交抛物线于P( , ) ⊥L ,MN交抛物线于 (x,y) 交抛物线于 由抛物线的定义得: 由抛物线的定义得: |P’F|= |P’N’|
练习: 练习:
1.已知M(a,0) 为抛物线y = 2px(p> 0)的对称轴
2
上的一个定点在抛物线上求一点N, 使得 MN 最小
2、求抛物线y2=64x上的点到直线 、求抛物线 上的点到直线 4x+3y+46=0 距离最小值,并求取得最小值 距离最小值, 时抛物线上的点的坐标

关于抛物线的十个最值问题-模板

关于抛物线的十个最值问题-模板

关于抛物线的十个最值问题本文用初等方法讨论了与抛物线有关的若干几何最值问题,得到了十个有趣的结论.为方便读者摘用, 现用定理形式叙述如下: 定理 1.抛物线的所有焦半径中,以过顶点的焦半径为最短. 证明:不妨设抛物线的极坐标方程为ρ= ,则显然有ρ≥,其中等号成立当且仅当θ=2kπ+π(k∈Z)即焦半径通过抛物线的顶点时.证毕. 定理 2.抛物线的过焦点的所有弦中,以抛物线的通径为最短. 证明:设抛物线极坐标方程为ρ= ,焦点弦为AB,且设A(ρ1,θ),B(ρ2,θ+π),则有│AB│=ρ1+ρ2 = +=≥ 2p =通径长, 其中等号成立当且仅当θ=kπ+π/2 (k∈Z) 即弦AB为通径时.证毕. 定理 3.设A(a,0)是抛物线 y2=2px(p>0)的对称轴上的定点,M(x,y)是抛物线上的动点,则│MA│m in =证明:由│MA│2= (x-a)2+y2=(x-a)2+2px = x2-2(a-p)x+a2 = [x-(a-p)]2+p(2a-p),并且注意到x∈[0,+∞),立知结论成立.证毕. 定理4.设A(a,b)是抛物线 y2=2px(p>0)内一定点, F是焦点,M 是抛物线上的动点,则y (│MA│+│MF│)min=a+p/2.Q MA(a,b) 证明:如图1所示,作AQ⊥准线L:x=-p/2于Q,则知O Fx (│MA│+│MF│)m in =│AQ│= a-(-p/2)=a+p/2.证毕.图1 定理5.设线段AB是抛物线y2=2px(p>0)的过焦点的弦,分别以A、B为切点的抛物线的两条切线相交于点M,则三角形ABM的面积的最小值为p2. 证明:设A(x1,y1),B(x2,y2),则由A、F、B三点共线可得:x1y2-x2y1=p/2·(y2-y1)……………(1)于是利用(1)式由两切线方程yAM:y1y=p(x+x1),A BM:y2y=p(x+x2),M Fx 易得M的坐标(x,y)适合:B∵ kMF·kAF=-1, ∴MF⊥AB,即│MF│是△MAB的AB边上的高. 图2 ∵ │MF│≥│FK│(焦点F到准线x=-p/2的距离)=p, 又由定理2知│AB│≥2p(通径长), ∴ S△MAB=1/2·│AB│·│MF│≥1/2·2p·p=p2,因其中等号当且仅当AB⊥x 轴时成立,故三角形MAB的最小值为p2.证毕. 定理6.过抛物线y2=2px的顶点O引两条互相垂直的动弦OA和OB,则三角形OAB的面积的最小值为4p2.y 证明:设A(x1,y1),B(x2,y2),则由OA⊥OB 得A x1x2+y1y2=0 ……………………………………(1) Ox 将y12=2px1, y22=2px2代入(1)立得: x1x2=4p2 (2)于是B (S△OAB) 2=1/4·│OA│2·│OB│2 图3 =1/4·(x12+y12)·(x22+y22)=1/4·(x12+2px1)·(x22+2px2)=1/4·[(x1x2)2+2px1x2(x1+x2)+4p2x1x2] ≥1/4·[(x1x2)2+2px 1x2 (2√x1x2)+4p2x1x2]………………………………………(3)将(2)式代入(3)则得(S△OAB)2≥16p4,从而S△OAB≥4p2,因其中等号当x1=x2=2p时取到,故三角形OAB的面积的最小值为4p2。

抛物线的最大最小值怎么求

抛物线的最大最小值怎么求

抛物线的最大最小值怎么求
概述
在数学中,我们经常要求解抛物线函数的最大值和最小值,这对于确定函数的
凹凸性和函数图像的特点都具有重要意义。

本文将介绍如何求解抛物线函数的最大值和最小值的方法。

抛物线函数的一般形式
抛物线函数通常表示为y=ax2+bx+c的形式,其中a eq0。

其中,a控制
了抛物线开口的方向,正值表示开口向上,负值表示开口向下;b控制了抛物线的
位置;c是y轴的截距。

最大最小值的求解
对于抛物线函数y=ax2+bx+c,它的最大值或最小值发生在顶点处。

因此,我们只需找到抛物线的顶点坐标即可求解最大最小值。

求解顶点坐标
抛物线的顶点坐标可以通过公式 $x = -\\frac{b}{2a}$ 求解得到。

将x的值代入
抛物线函数中即可得到对应的y值,从而确定顶点坐标。

确定最大最小值
通过观察a的正负性可以确定抛物线的开口方向,若a>0,则抛物线开口向上,顶点为最小值点;若a<0,则抛物线开口向下,顶点为最大值点。

示例
假设有抛物线函数y=2x2−4x+3,我们按照上述方法求解其最大最小值。

1. 求解顶点坐标: $x = -\\frac{-4}{2*2} = 1$,将x=1代入函数得到y=2∗12−
4∗1+3=1,所以顶点坐标为(1,1)。

2. 确定最大最小值:由于a=2>0,故
顶点为最小值点,最小值为1。

结论
通过以上方法,我们可以求解任意抛物线函数的最大最小值,进而帮助我们理
解函数的特性和性质。

抛物线函数的最大最小值计算在数学建模和实际问题求解中具有广泛的应用。

抛物线最值问题

抛物线最值问题
( x - 3) + 4 x
2
= x2 - 2x + 9
= ( x - 1) 2 + 8
min
x³ 0
= 2 2, 此时M (1, 2)
变3
\ 当x = 1时,

变式训练:
已知点M 在抛物线y = 4 x上运动, 点Q在圆(x - 3) + y = 1上运动,则 MQ 的最小值是
.
2 2 2
小组讨论、交流:
只需求出动点M到圆心 A(3,0)距离最小值再 减去圆半径即可。
y
M
F
练习
A
Q .
x
所以 MQ min = 2 2 - 1
2
的最小值是多少?
小组讨论、交流:
y
M
F
x
l
已知点F为抛物线 y 2 = 4 x 的焦点,A(3,2) 为定点,点M 是抛物线上任意一点,则 MA + MF 的最小值是 ,此时点M的 坐标是
小组活动:

探究2
y
M A
讨论解决方案
F
x
探究3
已知抛物线y =4x和定点A(7,8), 抛物线上有一动点M,点M到点A 的距离为d1,点M到抛物线准线距离 为d 2,则d1+d 2的最小值是 .
2 2 最小值为AF =(7-1) +(8-0) =10
y M F
A
M
x
思考:已知点A30,点 ( , ) M在抛物线y2=4x 上运动,求 MA 的最小值,及此时点M的坐标.
解:设点M( x, y)是抛物线y 2=4x 上任一点,则y = 4 x
AM =
=
2
y M F Ax

第15讲 抛物线(七大题型)(教师版)-2024年高中数学新高二暑期衔接讲义

第15讲 抛物线(七大题型)(教师版)-2024年高中数学新高二暑期衔接讲义
抛物线 x2 20 y 的一次项为 20 y ,故其焦点在 y 轴上,且开口向负方向(向下)
③抛物线标准方程中一次项的系数是焦点的对应坐标的 4 倍. ④从方程形式看,求抛物线的标准方程仅需确定一次项系数。用待定系数法求抛物线的标准方程时, 首先根据已知条件确定抛物线的标准方程的类型(一般需结合图形依据焦点的位置或开口方向定型),然后求 一次项的系数,否则,应展开相应的讨论. ⑤在求抛物线方程时,由于标准方程有四种形式,易混淆,可先根据题目的条件作出草图,确定方程 的形式,再求参数 p,若不能确定是哪一种形式的标准方程,应写出四种形式的标准方程来,不要遗漏某一
解得 p 1 或 p 4 , 2
故抛物线的标准方程为 y2 x 或 x2 = -8 y ,
故选:C
例 10.(2023·宁夏石嘴山·高二平罗中学校考期中)若抛物线 y2 2 px p 0 上一点 P 2, y0 到其准线的距离
为 3,则抛物线的标准方程为( )
A. y2 4x
B. y2 6x
x p 2
|
MF
|
p 2
x0
e=1
y p 2
|
MF
|
y0
p 2
y p 2
|
MF
|
p 2
y0
知识点诠释: (1)与椭圆、双曲线不同,抛物线只有一个焦点、一个顶点、一条对称轴,一条准线;
(2)标准方程中的参数 p 的几何意义是指焦点到准线的距离;p>0 恰恰说明定义中的焦点 F 不在准线 l 上
这一隐含条件;参数 p 的几何意义在解题时常常用到,特别是具体的标准方程中应找到相当于 p 的值,才
所以点 P 到抛物线焦点的距离为 y0 2 3.
故选:B

思维特训(九) 抛物线背景下线段和(差)的最值问题

思维特训(九) 抛物线背景下线段和(差)的最值问题

思维特训(九) 抛物线背景下线段和(差)的最值问题类型一二次函数中的“饮马问题”基本原理:两点之间,线段最短.解题思路:利用抛物线自身的轴对称性找到抛物线上某点关于对称轴的对称点,实现化“折”为“直”,再结合函数的相关知识解决.1.如图9-1,抛物线y=ax2+bx+c 经过A(-1,0),B(3,0),C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的解析式;(2)设P 是直线l 上的一个动点,当PA+PC 最小时,求点P 的坐标.图9-12.如图9-2,抛物线y=ax2+bx+3 经过A(1,0),B(4,0)两点.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点P,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;若不存在,请说明理由.图9-23.如图9-3,已知抛物线y=ax2+bx+c 经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l 与x 轴交于点H.(1)求该抛物线的解析式;(2)PQ 是该抛物线对称轴l 上的动线段,且PQ=1,求PC+QB 的最小值.图9-3类型二二次函数中线段差的最大值问题基本原理:三角形任何两边之差小于第三边.解题思路:先根据原理确定线段差的最值问题时的图形,再根据已知条件进行求解.4.如图9-4,抛物线y=x2+bx+c 过点A(3,0),B(1,0),交y 轴于点C,P 是该抛物线上一动点,点P 从点C 沿抛物线向点A 运动(点P 不与点A,C 重合),过点P 作PD∥y 轴交直线AC 于点D.(1)求抛物线的解析式.(2)当D 在线段AC 上运动时,求点P 在运动的过程中线段PD 长度的最大值.(3)在抛物线的对称轴上是否存在点M,使|MA-MC|的值最大?若存在,请求出点M 的坐标;若不存在,请说明理由.图9-45.2016·眉ft已知:如图9-5,在平面直角坐标系xOy 中,A,B,C 分别为坐标轴上的三个点,且OA=1,OB=3,OC=4,(1)求经过A,B,C 三点的抛物线的解析式.(2)在平面直角坐标系xOy 中是否存在一点P,使得以点A,B,C,P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)若M 为该抛物线上一动点,在(2)的条件下,请求出当|PM-AM|取最大值时点M 的坐标,并直接写出|PM-AM|的最大值.图9-56.已知:如图9-6,在平面直角坐标系xOy 中,直线y 3+6 与x 轴、y 轴的交点=-4x分别为A,B,将∠OBA 对折,使点O 的对应点H 落在直线AB 上,折痕交x 轴于点C.(1)直接写出点C 的坐标,并求经过A,B,C 三点的抛物线的解析式.(2)若(1)中抛物线的顶点为D,在直线BC 上是否存在点P,使得四边形ODAP 为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由.(3)若把(1)中的抛物线向左平移3.5 个单位长度,则图象与x 轴交于G,N(点G 在点N 的左侧)两点,交y 轴于点E,则在此抛物线的对称轴上是否存在一点Q,使点Q 到E,N 两点的距离之差最大?若存在,请求出点Q 的坐标;若不存在,请说明理由.图9-63 典题讲评与答案详析 1.解:(1)∵抛物线 y =ax 2+bx +c 经过 C (0,3),∴c =3.∵抛物线 y =ax 2+bx +3 经过 A (-1,0),B (3,0),⎧0=a -b +3, ∴⎨ ⎧a =-1, 解得⎨⎩0=9a +3b +3, ⎩b =2,∴抛物线的解析式为 y =-x 2+2x +3. (2)∵y=-x 2+2x +3=-(x -1)2+4,∴对称轴为直线 x =1.∵A ,B 是抛物线与 x 轴的交点,∴点 A ,B 关于直线 l 对称,∴PA +PC 最小时,点 P 就是直线 BC 与直线 l 的交点(如图).∵B (3,0),C (0,3),∴直线 BC 的解析式为 y =-x +3.∵点 P 在直线 l 上,∴点 P 可设为(1,m ).将(1,m )代入 y =-x +3,可得 m =2,∴P (1,2).2.解:(1)由已知,得⎧a +b +3=0, ⎧a =4, ⎨ 解得⎨ 15 ⎩16a +4b +3=0, ⎩b =- 4 . ∴抛物线的解析式为 y 3 2 15+3.=4x - 4 x(2)∵A ,B 关于对称轴对称,如图,连接 BC ,∴BC 与对称轴的交点即为所求的点 P ,此时 PA +PC =BC ,∴四边形 PAOC 的周长的最小值为 OC +OA +BC .∵A (1,0),B (4,0),C (0,3), ∴OA =1,OC =3,BC = OB 2+OC 2=5,∴OC +OA +BC =3+1+5=9,∴在抛物线的对称轴上存在点 P ,使得四边形 PAOC 的周长最小,四边形 PAOC 周长的最小值为 9.3. 解:(1)∵抛物线 y =ax 2+bx +c 经过 C (0,3),∴c =3.∵抛物线 y =ax 2+bx +3 经过 A (-3,0),B (1,0),⎧0=a +b +3, ∴⎨ ⎧a =-1, ∴⎨⎩0=9a -3b +3, ⎩b =-2,∴抛物线的解析式为 y =-x 2-2x +3.(2)过点 C 作直线 l 的对称点 E ,过点 E 作 EG ⊥AB 于点 G ,过点 Q 作 QF ∥PE ,交 EG 于点 F ,连接 FB ,如图,则有 PC =PE ,EF ∥PQ .∵EF ∥PQ ,QF ∥PE ,∴四边形 EFQP 是平行四边形,∴EF =PQ =1,PE =FQ ,∴PC =FQ ,∴PC +QB =FQ +QB ,根据两点之间线段最短可得 FQ +QB (即 PC +QB )的最小值为 FB .∵抛物线 y =-x 2-2x +3 的对称轴为直线 x =-1,C (0,3),∴点 E 的坐标为(-2,3), ∴点 F 的坐标为(-2,2).在 Rt △FGB 中,FG =2,GB =1-(-2)=3,根据勾股定理可得 FB = FG 2+GB 2= 13.∴PC +QB 的最小值为 13.4.解:(1)∵抛物线 y =x 2+bx +c 过点 A (3,0), B (1,0), ⎧9+3b +c =0, ⎧b =-4, ∴⎨ ⎩1+b +c =0, 解得⎨ ⎩c =3, ∴抛物线的解析式为 y =x 2-4x +3. (2)令 x =0,则 y =3,∴点 C (0,3), 则直线 AC 的解析式为 y =-x +3. 设点 P (x ,x 2-4x +3).∵PD ∥y 轴, ∴D (x ,-x +3), ∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x =-(x 3 2 9 .∵a =-1<0,∴当 x 3 -2) +4(0<x <3) PD 的长度有最大值9=2时,线段 4.(3)∵抛物线的对称轴垂直平分 AB ,∴MA =MB .由三角形的三边关系,可知|MB -MC |<BC ,∴当 M ,B ,C 三点共线时,|MB -MC |的值最大,为 BC 的长度. 设直线 BC 的解析式为 y =kx +m (k ≠0),⎧k +m =0, ⎧k =-3, 则⎨ ⎩m =3, 解得⎨⎩m =3,∴直线 BC 的解析式为 y =-3x +3.∵抛物线 y =x 2-4x +3 的对称轴为直线 x =2,∴当 x =2 时,y =-3×2+3=-3,∴M (2,-3),即抛物线的对称轴上存在点 M (2,-3),使|MA -MC |的值最大.5.解:(1)设抛物线的解析式为 y =ax 2+bx +c .3 ⎧ =-4, , ⎨ 由题意易知 A (1,0),B (0,3),C (-4,0),⎧a +b +c =0, ∴⎨c =3, ⎩16a -4b +c =0,⎧a 3 解得⎨b9 ⎩=-4, c =3, ∴经过 A ,B ,C 三点的抛物线的解析式为 y =-3 2 9 +3.(2)存在.∵OB =3,OC =4,OA =1,∴BC =AC =5,AB = 10. 如图,当 BP 綊 AC 时,四边形 ACBP 为菱形,∴BP =AC =5,且点 P 到 x 轴的距离等于 OB ,∴点 P 的坐标为(5,3).4x -4x当点 P 在第二、三象限时,以点 A ,B ,C ,P 为顶点的四边形只能是平行四边形,不 是菱形,∴当点 P 的坐标为(5,3)时,以点 A ,B ,C ,P 为顶点的四边形为菱形.(3)设直线 PA 的解析式为 y =kx +m (k ≠0).∵点 A (1,0),P (5,3)在直线 PA 上,⎧k = , ⎧5k +m =3,4 ∴⎨ ⎩k +m =0, 解得⎨ ⎩m =-3 4 ∴直线 PA 的解析式为 y 3 3=4x -4.当点 M 与点 P ,A 不在同一直线上时,根据三角形的三边关系,知|PM -AM |<PA , 当点 M 与点 P ,A 在同一直线上时,|PM -AM |=PA ,∴当点 M 与点 P ,A 在同一直线上时,|PM -AM |的值最大,即 M 为直线 PA 与抛物线的交点. 3 3 y = x - , 解方程组 4 4 3 9 ⎩y =-4x 2-4x +3, ⎧x 1=1,⎧⎪x 2=-5, 得⎨ ⎨ 9 ⎩y 1=0,⎪⎩y 2=-2, ∴点 M 的坐标为(1,0)或(-59 时,|PM -AM |的值最大.此时|PM -AM |的最大值 为 5.6.解:(1)如图①,连接 CH .,-2)由轴对称的性质,得 CH ⊥AB ,BH =BO ,CH =CO ,∴在 Rt △CHA 中,由勾股定理,得4 AC 2=CH 2+AH 2. ∵直线 y 3 +6 与 x 轴、y 轴的交点分别为 A ,B , =-4x ∴当 x =0 时,y =6,当 y =0 时,x =8, ∴B (0,6),A (8,0), ∴BO =6,OA =8, 在 Rt △AOB 中,由勾股定理,得 AB =10. 设 C (p ,0),则 OC =p , ∴CH =p ,AH =4,AC =8-p , ∴(8-p )2=p 2+42,解得 p =3,∴C (3,0). 设抛物线的解析式为 y =ax 2+bx +c . ⎧a 1 ⎧6=c , =4, 由题意,得⎨64a +8b +c =0,解得⎨b 11 ⎩0=9a +3b +c , =- , ⎩c =6, ∴抛物线的解析式为 y 1 2 11x +6. =4x - 41 2 11 1⎛x 11⎫ (2)不存在.理由:如图②,设抛物线对称轴交 x 轴于点 F .∵y =4x - 4 x +6=4⎝ - 2 ⎭ 2 25 -16, ∴ 11 25 25 D ( 2 ,-16),∴DF =16. 设直线 BC 的解析式为 y =kx +b ′,则有 ⎧6=b ′, ⎨ ⎧k =-2, 解得⎨ ⎩0=3k +b ′, ⎩b ′=6, ∴直线 BC 的解析式为 y =-2x +6. 设存在点 P 使四边形 ODAP 是平行四边形,P (m ,n ). 过点 P 作 PM ⊥OA 于点 M , 则∠PMO =∠AFD =90°,PO =DA ,PO ∥DA , ∴∠POM =∠DAF ,∴△OPM ≌△ADF , ∴PM =DF =n 25 25 2m +6, =16,∴16=- ∴m 71 =32, 但 OM =AF =8 11 5 71 - 2 =2≠32, ∴点 P 不在直线 BC 上,即直线 BC 上不存在满足条件的点 P . (3)由题意得,平移后的抛物线的解析式为 y 1 -2)225 为直线 x =2.=4(x -16,∴平移后抛物线的对称轴1 9∴⎨9当x=0 时,y=-16;当y=0 时,01(x-2)225=41 9解得x1=-,x2=.-16,2 2∵点G 在点N 的左侧,∴G(19 9-2,0),E(0,-16),N(2,0).如图③,连接EG,直线EG 交直线x=2 于点Q,则此时点Q 到E,N的距离之差最大.设直线EG 的解析式为y=k0x+b0,则⎧0=-2k0+b0,⎧k0=-8,⎨9 解得⎨9⎩b0=-16,⎩b0=-16,∴直线EG 的解析式为y=-9 9⎧y 9 9 8x-16,⎧x=2,⎪=-8x-16,⎪解得⎨ 45⎪⎩x=2,∴Q(2 45 .⎪⎩y=-16,,-16)。

历年高三数学高考考点之抛物线必会题型及答案

历年高三数学高考考点之抛物线必会题型及答案

历年高三数学高考考点之<抛物线>必会题型及答案体验高考1.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( ) A.(1,3) B.(1,4)C.(2,3) D.(2,4) 答案 D解析 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),当直线l 的斜率不存在时,符合条件的直线l 必有两条;当直线l 的斜率k 存在时,如图x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB 得,k ·y 0-0x 0-5=-1,y 0·k =5-x 0, 2=5-x 0,x 0=3,即M 必在直线x =3上, 将x =3代入y 2=4x ,得y 2=12, ∴-23<y 0<23, ∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D.2.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 答案 A解析 由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1. 3.(2016·四川)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.33B.23C.22D.1 答案 C 解析 如图,由题意可知F ⎝ ⎛⎭⎪⎫p 2,0,设P 点坐标为⎝ ⎛⎭⎪⎫y 202p ,y 0,显然,当y 0<0时,k OM <0;y 0>0时,k OM >0,要求k OM 的最大值,不妨设y 0>0.则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝ ⎛⎭⎪⎫y 26p +p 3,y 03,k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22,当且仅当y 20=2p 2时等号成立.故选C.4.(2016·课标全国乙)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2B.4C.6D.8 答案 B解析 不妨设抛物线C :y 2=2px (p >0),则圆的方程可设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝ ⎛⎭⎪⎫-p2,5, 点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0, ① 点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2, ②点D ⎝ ⎛⎭⎪⎫-p2,5在圆x 2+y 2=r 2上,∴⎝ ⎛⎭⎪⎫p 22+5=r 2, ③联立①②③,解得p =4,即C 的焦点到准线的距离为p =4,故选B.5.(2015·上海)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =______. 答案 2解析 根据抛物线的性质,我们知道当且仅当动点Q 运动到原点的时候,才与抛物线焦点的距离最小,所以有|PQ |min =p2=1⇒p =2.高考必会题型题型一 抛物线的定义及其应用例1 已知P 为抛物线y 2=6x 上一点,点P 到直线l :3x -4y +26=0的距离为d 1.(1)求d 1的最小值,并求此时点P 的坐标;(2)若点P 到抛物线的准线的距离为d 2,求d 1+d 2的最小值. 解 (1)设P (y 206,y 0),则d 1=|12y 20-4y 0+26|5=110|(y 0-4)2+36|,当y 0=4时,(d 1)min =185,此时x 0=y 206=83,∴当P 点坐标为(83,4)时,(d 1)min =185.(2)设抛物线的焦点为F , 则F (32,0),且d 2=|PF |,∴d 1+d 2=d 1+|PF |,它的最小值为点F 到直线l 的距离|92+26|5=6110,∴(d 1+d 2)min =6110.点评 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.变式训练1 (1)(2016·浙江)若抛物线y 2=4x 上的点M 到焦点的距离为10,则点M 到y 轴的距离是________.(2)已知点P 在抛物线y 2=4x 上,那么点P 到Q (2,1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A.(14,1) B.(14,-1)C.(1,2) D.(1,-2) 答案 (1)9 (2)B解析 (1)抛物线y 2=4x 的焦点F (1,0).准线为x =-1,由M 到焦点的距离为10,可知M 到准线x =-1的距离也为10,故M 的横坐标满足x M +1=10,解得x M =9,所以点M 到y 轴的距离为9.(2)抛物线y 2=4x 焦点为F (1,0),准线为x =-1, 作PQ 垂直于准线,垂足为M ,根据抛物线定义,|PQ |+|PF |=|PQ |+|PM |,根据三角形两边之和大于第三边,直角三角形斜边大于直角边知:|PQ |+|PM |的最小值是点Q 到抛物线准线x =-1的距离. 所以点P 纵坐标为-1,则横坐标为14,即(14,-1).题型二 抛物线的标准方程及几何性质例2 (2015·福建)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.方法一 (1)解 由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明 因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 方法二 (1)解 同方法一.(2)证明 设以点F 为圆心且与直线GA 相切的圆的半径为r . 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0.解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0. 从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0.所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.点评 (1)由抛物线的标准方程,可以首先确定抛物线的开口方向、焦点的位置及p 的值,再进一步确定抛物线的焦点坐标和准线方程.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.变式训练2 已知抛物线C 的顶点在坐标原点O ,其图象关于y 轴对称且经过点M (2,1). (1)求抛物线C 的方程;(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;(3)过点M 作抛物线C 的两条弦MA ,MB ,设MA ,MB 所在直线的斜率分别为k 1,k 2,当k 1+k 2=-2时,试证明直线AB 的斜率为定值,并求出该定值. 解 (1)设抛物线C 的方程为x 2=2py (p >0), 由点M (2,1)在抛物线C 上,得4=2p , 则p =2,∴抛物线C 的方程为x 2=4y .(2)设该等边三角形OPQ 的顶点P ,Q 在抛物线上, 且P (x P ,y P ),Q (x Q ,y Q ), 则x 2P =4y P ,x 2Q =4y Q ,由|OP |=|OQ |,得x 2P +y 2P =x 2Q +y 2Q , 即(y P -y Q )(y P +y Q +4)=0.又y P >0,y Q >0,则y P =y Q ,|x P |=|x Q |, 即线段PQ 关于y 轴对称. ∴∠POy =30°,y P =3x P , 代入x 2P =4y P ,得x P =43,∴该等边三角形边长为83,S △POQ =48 3. (3)设A (x 1,y 1),B (x 2,y 2), 则x 21=4y 1,x 22=4y 2,∴k 1+k 2=y 1-1x 1-2+y 2-1x 2-2=14x 21-1x 1-2+14x 22-1x 2-2=14(x 1+2+x 2+2)=-2.∴x 1+x 2=-12,∴k AB =y 2-y 1x 2-x 1=14x 22-14x 21x 2-x 1=14(x 1+x 2)=-3.题型三 直线和抛物线的位置关系例3 已知圆C 1的方程为x 2+(y -2)2=1,定直线l 的方程为y =-1.动圆C 与圆C 1外切,且与直线l 相切.(1)求动圆圆心C 的轨迹M 的方程;(2)直线l ′与轨迹M 相切于第一象限的点P ,过点P 作直线l ′的垂线恰好经过点A (0,6),并交轨迹M 于异于点P 的点Q ,记S 为△POQ (O 为坐标原点)的面积,求S 的值. 解 (1)设动圆圆心C 的坐标为(x ,y ),动圆半径为R , 则|CC 1|=x 2+(y -2)2=R +1,且|y +1|=R , 可得x 2+(y -2)2=|y +1|+1.由于圆C 1在直线l 的上方,所以动圆C 的圆心C 应该在直线l 的上方, ∴有y +1>0,x 2+(y -2)2=y +2,整理得x 2=8y ,即为动圆圆心C 的轨迹M 的方程.(2)设点P 的坐标为(x 0,x 208),则y =x 28,y ′=14x ,k l ′=x 04,k PQ =-4x 0,∴直线PQ 的方程为y =-4x 0x +6.又k PQ =x 208-6x 0,∴x 208-6x 0=-4x 0,x 20=16,∵点P 在第一象限,∴x 0=4,点P 的坐标为(4,2),直线PQ 的方程为y =-x +6.联立⎩⎪⎨⎪⎧y =-x +6,x 2=8y ,得x 2+8x -48=0,解得x =-12或4,∴点Q 的坐标为(-12,18). ∴S =12|OA |·|x P -x Q |=48.点评 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.变式训练3 (2015·课标全国Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a(x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.高考题型精练1.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线l ′于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A.y 2=9x B.y 2=6x C.y 2=3x D.y 2=3x 答案 C解析 如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得: |BC |=2a ,由定义得:|BD |=a , 故∠BCD =30°. 在直角三角形ACE 中,∵|AF |=3,∴|AE |=3,|AC |=3+3a , ∴2|AE |=|AC |,∴3+3a =6, 从而得a =1,∵BD ∥FG , ∴1p =23,求得p =32, 因此抛物线方程为y 2=3x ,故选C.2.已知抛物线y 2=2px (p >0)的焦点为F ,P 、Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( ) A.2±3B.2+3C.3±1D.3-1 答案 A解析 依题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 212p ,y 1,Q ⎝ ⎛⎭⎪⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p 2,∴y 21=y 22,∴y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝ ⎛⎭⎪⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2±3,故选A.3.设F 为抛物线y 2=8x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|的值是( ) A.6B.8C.9D.12 答案 D解析 由抛物线方程,得F (2,0),准线方程为x =-2. 设A ,B ,C 坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),则由抛物线的定义,知|FA |+|FB |+|FC |=x 1+2+x 2+2+x 3+2=x 1+x 2+x 3+6. 因为FA →+FB →+FC →=0,所以(x 1-2+x 2-2+x 3-2,y 1+y 2+y 3)=(0,0), 则x 1-2+x 2-2+x 3-2=0,即x 1+x 2+x 3=6, 所以|FA →|+|FB →|+|FC →|=|FA |+|FB |+|FC | =x 1+x 2+x 3+6=12,故选D.4.已知抛物线C :y 2=8x 的焦点为F ,点M (-2,2),过点F 且斜率为k 的直线与C 交于A ,B 两点,若∠AMB =90°,则k 等于( )A.2B.22C.12D.2 答案 D解析 抛物线C :y 2=8x 的焦点为F (2,0),由题意可知直线AB 的斜率一定存在,所以设直线方程为y =k (x -2),代入抛物线方程可得 k 2x 2-(4k 2+8)x +4k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k2,x 1·x 2=4, 所以y 1+y 2=8k,y 1·y 2=-16, 因为∠AMB =90°,所以MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=16k 2-16k+4=0, 解得k =2,故选D.5.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12B.23C.34D.43答案 D解析 抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k 8y 2-y +2k +3=0(k ≠0),①由于Δ=1-4×k 8(2k +3)=0,所以k =-2或k =12. 因为切点在第一象限,所以k =12. 将k =12代入①中,得y =8,再代入y 2=8x 中得x =8, 所以点B 的坐标为(8,8),所以直线BF 的斜率为86=43. 6.已知A (x 1,y 1)是抛物线y 2=8x 的一个动点,B (x 2,y 2)是圆(x -2)2+y 2=16上的一个动点,定点N (2,0),若AB ∥x 轴,且x 1<x 2,则△NAB 的周长l 的取值范围是( )A.(6,10)B.(10,12)C.(8,12)D.(8,10)解析 抛物线的准线l :x =-2,焦点F (2,0),由抛物线定义可得|AF |=x 1+2,圆(x -2)2+y 2=16的圆心为(2,0),半径为4,又定点N (2,0),∴△NAB 的周长即为△FAB 的周长=|AF |+|AB |+|BF |=x 1+2+(x 2-x 1)+4=6+x 2, 由抛物线y 2=8x 及B (x 2,y 2)在圆(x -2)2+y 2=16上,∴x 2∈(2,6),∴6+x 2∈(8,12),故选C.7.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x -y -10=0上的点N ,经直线反射后又回到点M ,则x 0=________.答案 6解析 由题意得P (2,4),F (2,0)⇒Q (2,-4),因此N (6,-4),因为QN ∥PM ,所以MN ⊥QN ,即x 0=6.8.已知直线l 过点(0,2),且与抛物线y 2=4x 交于A (x 1,y 1),B (x 2,y 2)两点,则1y 1+1y 2=_____.答案 12解析 由题意可得直线的斜率存在且不等于0,设直线l 的方程为y =kx +2,代入抛物线y 2=4x 可得y 2-4k y +8k=0, ∴y 1+y 2=4k ,y 1y 2=8k ,∴1y 1+1y 2=y 1+y 2y 1y 2=12. 9.已知抛物线y 2=4x 与经过该抛物线焦点的直线l 在第一象限的交点为A ,A 在y 轴和准线上的投影分别为点B ,C ,|AB ||BC |=2,则直线l 的斜率为________.解析 设A (x 0,y 0),则|AB |=x 0,|BC |=1,由|AB ||BC |=x 01=2,得x 0=2,y 0=4×2=22, 又焦点F (1,0),所以直线l 的斜率为k =222-1=2 2. 10.已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.答案 0或-8解析 因为点M ,N 关于直线y =x +m 对称,所以MN 的垂直平分线为y =x +m ,所以直线MN 的斜率为-1.设线段MN 的中点为P (x 0,x 0+m ),直线MN 的方程为y =-x +b ,则x 0+m =-x 0+b ,所以b =2x 0+m .由⎩⎪⎨⎪⎧ y =-x +b ,x 2-y 23=1得2x 2+2bx -b 2-3=0, 所以x M +x N =-b ,所以x 0=-b 2,所以b =m2, 所以P (-m 4,34m ). 因为MN 的中点在抛物线y 2=18x 上,所以916m 2=-92m ,解得m =0或m =-8. 11.(2016·课标全国丙)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. (1)证明 由题意知,F ⎝ ⎛⎭⎪⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a=-b =k 2. 所以AR ∥FQ .(2)解 设过AB 的直线为l ,l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题意可得|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=1,x 1=0(舍去),设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =y x -1(x ≠1).而a +b 2=y , 所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0)满足y 2=x -1.所以,所求轨迹方程为y 2=x -1.12.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=p 24; (2)1|AF |+1|BF |为定值; (3)以AB 为直径的圆与抛物线的准线相切.证明 (1)由已知得抛物线焦点坐标为(p 2,0). 由题意可设直线方程为x =my +p 2,代入y 2=2px , 得y 2=2p ⎝⎛⎭⎪⎫my +p 2,即y 2-2pmy -p 2=0.(*) 则y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2. 因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24. (2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24. 因为x 1x 2=p 24,x 1+x 2=|AB |-p , 代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值). (3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |.所以以AB 为直径的圆与抛物线的准线相切.。

抛物线最值问题

抛物线最值问题

抛物线最值问题最值训练一:例1.在抛物线y2=8x 上求一点P,使P到焦点F 的距离与到Q(4 ,1)的距离的和最小,并求最小值。

例2、在抛物线y2=64x上求一点,使它到直线L:4x+3y+46=0的距离最短,并求此距离。

跟踪训练练习1:在抛物线y2=64x上求一点,使它到直线L:4x+3y+46=0的距离最短,并求此距离。

练习2: 已知抛物线y=x2,动弦AB的长为2,求AB中点纵坐标的最小值。

练习3: 已知抛物线y=x2,动弦AB的长为2,求AB中点纵坐标的最小值。

练习4:若直线y=kx+b与抛物线x²=4y相较于A、B两点,且|AB|=4(1)试用k来表示b(2)求弦AB中点M离x轴的最短距离最值训练二:1、A、B是抛物线y²=2px (p>0)上的两点,满足OA⊥OB(O为坐标原点)。

求证:(1)A、B两点的横坐标之积,纵坐标之积分别为定值(2)直线AB经过一个定点跟踪训练:定长为5的线段AB的两端点在抛物线y²=4x上移动,试求线段AB中点M 到y轴的最短距离。

2.已知定点M(3,2),F是抛物线y²=2x的焦点,在此抛物线上求一点P,使|PM|+|PF|取得最小值,求点P的坐标。

跟踪训练1:设P是曲线y²=4(x-1)上一动点,则求点P到点(0,1)的距离和点P到y轴的距离之和的最小值。

跟踪训练2:设P为抛物线y=x²上一动点,求P到直线l:3x-4y-6=0的距离的最小值最值训练三1、已知抛物线y²=x,动弦AB长为2、求AB中点纵坐标的最小值。

跟踪训练1:点P在抛物线y²=x上,定点A(3,0),求|PA|的最小值跟踪训练2:若P为抛物线y²=x上一动点,Q为圆(x-3²+y²=1上一动点,求|PQ|的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线求最值问题(第一类)
1.已知抛物线和一条直线,求抛物线上的一点到直线与(y轴、准线、焦点)距离之和的最小值问题。

此类题常用方法转化为求焦点到直线的距离。

例题已知抛物线方程为x
y4
2=,直线l的方程为0
x,在抛物线上
-y
4=
+
有一动点P到y轴的距离为d1,P到直线l的距离为d2,则d1+d2的最小值为多少?
分析:如图点P到y轴的距离等于点P到焦点F的距离减1,过焦点F作直线x-y+4=0的垂线,此时d1+d2最小,根据抛物线方程求得F,进而利用点到直线的距离公式求得d1+d2的最小值.
解:如图点P到准线的距离等于点P到焦点F的距离,
从而P到y轴的距离等于点P到焦点F的距离减1.
过焦点F作直线x-y+4=0的垂线,此时d1+d2=|PF|+d2-1最小,∵F(1,0),则|PF|+d2==,
则d1+d2的最小值为.
抛物线求最值问题(第二类)
2.已知抛物线和一个定点,①:定点在抛物线“内”,求抛物线上的一点到定点与(焦点、准线)距离之和的最值问题;②定点在抛物线“外”,求抛物线上的一点到定点与(焦点、准线)距离之差绝对值的最值问题。

此类题常用方法转化为三点共线或者顶点到直线问题。

例题已知点P 在抛物线y2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )
A.⎪⎭⎫ ⎝⎛-1,41 B .⎪⎭⎫ ⎝⎛1,41 C .(1,2)D .(1,-2)
分析:先判断点Q 与抛物线的位置,即点Q 在抛物线内,再由点P 到抛物线焦点距离等于点P 到抛物线准线距离,根据图象知最小值在M ,P ,Q 三点共线时取得,可得到答案.
解:点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图PF+PQ=PM+PQ ,故最小值在M ,P ,Q 三点共线时取得,此时P ,
Q的纵坐标都是-1,
抛物线求最值问题(第三类)
3.已知抛物线和一条直线,求抛物线上的一点到直线距离最小值问题。

此类题常用方法:①设点转化成二次函数问题;②求导数,让抛物线上点的切线斜率等于直线斜率。

例题抛物线x
y2
2=上任一点到直线x-y+1=0的距离的最小值是多少分析:由题意可设P 为抛物线上任意一点,则P到直线x-y+1=0的距离d===,由二次函数的性质可求距离d的最小值
解:方法一由题意可设P 为抛物线上任意一点,
则P到直线x-y+1=0的距离d===
由二次函数的性质可知,当y=1即P()时,d=
故答案为:
方法二求导x
=,1
y2
1=
y
可知当y=1即P()时,d最小,故答案为:。

相关文档
最新文档