模块 固定翼飞机的结构及飞行原理
某型固定翼航模的设计制作及其飞行研究

某型固定翼航模的设计制作及其飞行研究固定翼航模是一种模拟真实飞机结构和飞行原理的模型飞机,通常由轻质材料制成,在无人机领域和航模爱好者中备受青睐。
本文将以某型固定翼航模的设计、制作及其飞行研究为主题,介绍其设计和制作的流程,并结合飞行研究进行分析。
一、设计制作1. 确定机型和材料设计制作一架固定翼航模首先要确定机型和所选用的材料。
在机型选择上,可以根据自己的兴趣和实际需求来决定,比如选择一款经典的教练机型,如Cessna 172或者Piper J-3 Cub。
至于材料选择,一般使用轻质的泡沫板作为主要材料,结合碳纤维、玻璃纤维等材料来增加强度。
2. 结构设计和制作在确定了机型和材料后,就可以进行结构设计了。
首先是绘制机翼、机身、尾翼等部件的设计图纸,确定各部件的尺寸和比例。
然后根据设计图纸进行切割、钻孔、粘贴等制作过程,将各部件按照设计图纸进行制作和组装。
需要注意的是,制作过程中需要保证各部件的对称性和整体的平衡性,以确保飞行时的稳定性和安全性。
3. 电子设备安装在完成结构制作后,还需要安装电子设备,如电机、电调、舵机、遥控设备等。
这些电子设备将负责提供动力和操控,因此安装时需要注意电路的连接和布局,确保各部件能够正常工作。
二、飞行研究1. 飞行测试在完成固定翼航模的设计制作后,需要进行飞行测试,以验证其飞行性能和稳定性。
在测试前需要对飞行场地、天气和飞行过程进行充分的规划和准备。
在飞行测试中,可以对起飞、空中飞行、滑翔、下降、着陆等不同环节进行测试,观察其表现并记录相关数据。
2. 数据分析和改进通过飞行测试收集到的数据可以进行分析和比对,从而找出存在的问题和不足之处。
比如飞行中是否存在抖动、不稳定、过大的下滑角等问题。
在分析的基础上,可以对固定翼航模进行改进,如调整重心、改变机翼形状、调整舵机位置等,以提升其飞行性能和稳定性。
3. 飞行技巧与操控研究在飞行研究中,还可以对飞行技巧和操控进行深入研究。
固定翼飞机飞行原理简介

固定翼飞机飞⾏原理简介固定翼飞机飞⾏原理简介固定翼飞机通常包括⽅向、副翼、升降、油门、襟翼等控制舵⾯,通过舵机改变飞机的翼⾯,产⽣相应的扭矩,控制飞机转弯、爬升、俯冲、横滚等动作。
⼀般来说,在姿态平稳时,控制⽅向舵会改变飞机的航向,通常会造成⼀定⾓度的横滚,在稳定性好的飞机上,看起来就像汽车在地⾯转弯⼀般,可称其为测滑。
⽅向舵是最常⽤做⾃动控制转弯的⼿段,⽅向舵转弯的缺点是转弯半径相对较⼤,较副翼转弯的机动性略差。
副翼的作⽤是进⾏飞机的横滚控制。
固定翼飞机当产⽣横滚时,会向横滚⽅向进⾏转弯,同时会掉⼀定的⾼度。
升降舵的作⽤是进⾏飞机的俯仰控制,拉杆抬头,推杆低头。
拉杆时飞机抬头爬升,动能朝势能的转换会使速度降低,因此在控制时要监视空速,避免因为过分拉杆⽽导致失速。
油门舵的作⽤是控制飞机发动机的转速,加⼤油门量会使飞机增加动⼒,加速或爬升,反之则减速或降低。
了解了各舵的控制作⽤,我们开始讨论⼀下升降舵和油门的控制。
固定翼飞机都有⼀个最低时速被称做失速速度,当低于这个速度的时候飞机将由于⽆法获得⾜够的升⼒⽽导致舵效失效,飞机失控。
通过飞机的空速传感器我们可以实时获知飞机的当前空速,当空速降低时必须通过增加油门或推杆使飞机损失⾼度⽽换取空速的增加,当空速过⾼时减⼩油门或拉杆使飞机获得⾼度⽽换取空速的降低。
因此固定翼飞机有两种不同的控制模式,根据实际情况的使⽤⽽供⽤户选择:第⼀种控制⽅式是,根据设定好的⽬标空速,当实际空速⾼于⽬标空速时,控制升降舵拉杆,反之推杆;那空速的⾼低影响了⾼度的⾼低,于是采⽤油门来控制飞机的⾼度,当飞⾏⾼度⾼于⽬标⾼度时,减⼩油门,反之增加油门。
由此我们可以来分析,当飞机飞⾏时,如果低于⽬标⾼度,飞控控制油门增加,导致空速增加,再导致飞控控制拉杆,于是飞机上升;当飞机⾼度⾼于⽬标⾼度,飞控控制油门减⼩,导致空速减⼩,于是飞控再控制推杆,使⾼度降低。
这种控制⽅式的好处是,飞机始终以空速为第⼀因素来进⾏控制,因此保证了飞⾏的安全,特别是当发动机熄⽕等异常情况发⽣时,使飞机能继续保持安全,直到⾼度降低到地⾯。
固定翼飞机基础知识

固定翼飞机基础知识
固定翼飞机是一种通过翼面产生升力以支持自身重量并在空气
中飞行的飞行器。
它由机身、机翼、机尾、机头、发动机和其他组件构成。
机翼产生升力,机身和机尾提供稳定性和控制,发动机提供动力。
固定翼飞机的飞行原理是利用翼面产生的升力来支持自身重量,并通过控制机翼的角度和方向来改变飞行方向和高度。
机翼的升力是由飞机在飞行过程中向下推出的空气流在机翼上产生的,这种流动称为翼型流。
固定翼飞机的飞行控制有三个基本动作:滚转、俯仰和偏航。
滚转是指机翼绕飞机中心轴旋转,使飞机向左或向右转弯;俯仰是指机翼绕飞机前后轴旋转,使飞机上升或下降;偏航是指飞机绕垂直轴旋转,使飞机向左或向右侧倾。
固定翼飞机的类型有很多,例如单发、多发、高翼、低翼、双翼、三翼和斜翼等。
每种类型的飞机都有其特点和用途。
固定翼飞机的飞行安全是非常重要的,需要遵守各项飞行规定和标准操作程序,定期进行维护和检修,确保飞机安全可靠。
- 1 -。
固定翼飞机飞行原理简介(精)

固定翼飞机飞行原理简介飞行原理简介(一)要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。
这些问题将分成几个部分简要讲解。
一、飞行的主要组成部分及功用到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成:1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。
在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。
机翼上还可安装发动机、起落架和油箱等。
不同用途的飞机其机翼形状、大小也各有不同。
2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。
3. 尾翼——尾翼包括水平尾翼和垂直尾翼。
水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。
垂直尾翼包括固定的垂直安定面和可动的方向舵。
尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。
飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。
二、飞机的升力和阻力飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。
在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。
流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。
固定翼飞机飞行原理知识

固定翼飞机飞行原理知识1.升力固定翼飞机产生升力的机制是通过机翼上的气动力来实现的。
当飞机在飞行时,机翼上的气流会受到曲面的影响,产生上、下表面的气压差。
根据伯努利原理,流速越大的地方气压越低,而流速越小的地方气压越高。
因此,机翼上表面的气压较低,下表面的气压较高,产生的气压差会使机翼产生向上的升力。
2.推力3.阻力阻力是固定翼飞机飞行中需要克服的力量,它是由空气对飞机运动的阻碍产生的。
阻力主要包括以下几个方面:气动阻力、重量阻力和滚动阻力。
-气动阻力:由于飞机在飞行过程中与空气摩擦而产生的阻力。
气动阻力与飞机的速度、机翼的形状和横截面积、空气密度等有关。
通常情况下,飞机的气动阻力随着速度的增加而增加。
-重量阻力:是由于飞机自身质量产生的阻力。
重量阻力可以通过升力产生的垂直向上的力来抵消。
-滚动阻力:由于飞机与地面之间的摩擦而产生的阻力。
滚动阻力主要取决于飞机的重量、地面状况和速度。
4.控制固定翼飞机的控制主要通过机翼和尾翼来实现。
通过改变机翼的迎角,可以调节升力的大小。
水平尾翼和垂直尾翼的倾斜角度可以用来控制飞机的俯仰和偏航运动。
飞机在飞行过程中,飞行员通过改变这些控制面的运动状态来实现飞机的操纵。
此外,固定翼飞机还存在一种重要的特性,即稳定性和机动性。
-稳定性:固定翼飞机的稳定性是指在受到外部扰动或飞行条件变化时,能够恢复到稳定飞行状态的能力。
稳定性分为纵向稳定性、横向稳定性和方向稳定性。
-机动性:固定翼飞机的机动性是指飞机改变飞行状态的能力,包括上升、下降、俯仰、滚转和偏航等。
机动性取决于飞机的结构设计、动力性能和操纵系统的灵活性。
总结起来,固定翼飞机的飞行原理主要涉及升力、推力、阻力和控制等方面。
通过合理的设计和控制,固定翼飞机可以在空中保持稳定飞行,并实现各种机动动作。
固定翼飞机的飞行原理为人类的航空事业做出了重要贡献。
固定翼飞机飞行原理

固定翼飞机飞行原理固定翼飞机是一种能够在大气层中飞行的航空器,其飞行原理主要基于空气动力学和牛顿力学的基本原理。
在这篇文档中,我们将深入探讨固定翼飞机的飞行原理,包括升力、推进力、阻力和重力等重要概念。
首先,我们来讨论固定翼飞机的升力原理。
当飞机在飞行时,飞机的机翼会受到空气的作用力,产生一个向上的升力。
这是因为机翼的上表面比下表面要凸起,当空气流经机翼时,上表面的气流要比下表面的气流要快,根据伯努利定律,气流速度越快的地方气压就越小,所以机翼上表面的气压就比下表面的气压小,这样就形成了一个向上的升力。
而这个升力正好可以克服飞机的重力,使得飞机能够在空中飞行。
其次,我们要了解固定翼飞机的推进力原理。
固定翼飞机的推进力主要来自于发动机产生的动力,通过推进器将动力转化为推进力,从而推动飞机向前飞行。
推进力的大小和方向会影响飞机的速度和飞行方向,是飞机飞行中必不可少的力量。
同时,阻力也是固定翼飞机飞行中需要克服的重要力量。
阻力来自于空气对飞机运动的阻碍,它会使飞机的速度减小,需要消耗额外的动力来克服。
因此,设计飞机外形和减小阻力是飞机设计中需要考虑的重要因素之一。
最后,我们要提到的是重力。
重力是地球对飞机的吸引力,是飞机在空中飞行时需要克服的力量。
飞机需要产生足够的升力来克服重力,才能保持在空中飞行。
总的来说,固定翼飞机的飞行原理涉及到升力、推进力、阻力和重力等多个重要概念。
通过合理的设计和控制,飞机能够在大气层中实现稳定、高效的飞行。
对于飞行员和飞行工程师来说,深入理解固定翼飞机的飞行原理是非常重要的,这不仅有助于提高飞行安全性,还可以为飞机设计和改进提供重要的理论基础。
希望本文对您有所帮助,谢谢阅读!。
固定翼飞机基础知识

固定翼飞机基础知识固定翼飞机是指靠机翼产生升力进行飞行的飞机,它是航空工程中的主要研究对象之一。
固定翼飞机的设计、制造、试飞和运行需要很多知识和经验,下面将介绍一些基础知识。
1.飞行原理固定翼飞机能够飞行的原理是利用机翼产生的升力来克服重力和空气阻力。
当飞机在空气中以一定速度飞行时,机翼上方的气流速度较快,下方的气流速度较慢,由于差速产生升力,使飞机保持在空中。
2.构造固定翼飞机主要由机翼、机身、机尾和动力装置组成。
机翼是飞机的主要承载部件,包括前缘、后缘、上表面、下表面、翼展和翼面积等;机身是飞机的主要载人载货部分,包括座舱、货舱、机舱、机尾和前部舱门等;机尾包括水平尾翼、垂直尾翼和方向舵,用于控制飞机的平衡和姿态;动力装置包括发动机和螺旋浆,提供动力驱动飞机前进。
3.操纵和控制固定翼飞机的操纵和控制可以分为三个部分,即飞行控制、动力控制和设备控制。
飞行控制主要包括升降舵、副翼和方向舵,用于控制飞机的升降、转向和横滚;动力控制主要包括油门和可变步进器,用于调节发动机输出的动力和推力;设备控制主要包括襟翼、襟纵调和抗襟翼,用于改变机翼的形状和角度,以及调节飞机的速度和升力。
4.机翼类型固定翼飞机的机翼类型可以分为直翼、梭形翼、三角翼、后掠翼和变形翼等。
直翼是最简单、最常用的一种机翼类型,具有结构简单、升力大、稳定性好等优点;梭形翼是一种流线型的机翼,具有阻力小、速度快等优点;三角翼一般用于高速飞行,具有高升阻比、良好的机动性等优点;后掠翼可以减小飞机的纵向稳定性,提高机动性和机速性能;变形翼可以改变机翼的形状和角度,适应不同的飞行任务。
固定翼飞机飞行原理

固定翼飞机飞行原理固定翼飞机是一种通过翼面产生升力,依靠推进装置推进并通过舵面控制方向的飞行器。
它是目前最为广泛使用的飞行器之一,其基本原理是利用翼面产生的升力使得飞机离开地面并在空中飞行。
翼面产生升力的原理固定翼飞机的翼面是其产生升力的关键部分。
翼面的上表面较为平滑,下表面则是凸起的。
当飞机在空气中飞行时,空气会在翼面上下流动。
由于翼面上下表面的形状不同,空气在上表面流动时会形成一个比下表面快的气流,因为上表面的面积比下表面小,空气需要更快地流过翼面才能保持流量守恒。
这样一来,上表面的气流会产生低压,下表面的气流则会产生高压。
由于气体流动的物理特性,高压气体会向低压气体流动,因此空气会从下表面向上表面流动,形成一个向上的力,就是我们所说的升力。
翼面产生升力的大小与多个因素有关,包括翼面的形状、翼面的面积、空气的密度、飞机的速度等等。
升力的大小可以通过气动力学公式来计算,但一般情况下,飞机的设计师会根据经验和实验来确定翼面的形状和面积,以达到理想的升力大小。
推进装置推进飞机的原理除了翼面产生的升力外,固定翼飞机还需要推进装置来提供足够的推力,使得飞机可以在空中飞行。
推进装置的种类有很多,包括螺旋桨、喷气发动机等等。
这里以螺旋桨为例来说明推进装置的原理。
螺旋桨的原理是利用旋转的螺旋桨叶片将空气向后推进,从而产生推力。
螺旋桨的叶片形状和数量都会影响推力的大小和效率。
一般情况下,螺旋桨的叶片数目越多,推力越大,但也会带来一些不利影响,比如噪音和振动等。
因此,设计师需要在推力大小和其他因素之间进行权衡,以确定最适合的螺旋桨设计。
舵面控制方向的原理除了升力和推力,固定翼飞机还需要通过舵面来控制方向。
舵面的种类有很多,包括方向舵、升降舵、副翼等等。
这里以方向舵为例来说明舵面控制方向的原理。
方向舵位于飞机的垂直尾翼上,可以左右旋转,从而改变飞机的方向。
当方向舵向左旋转时,会产生一个向右的力矩,使得飞机向右转向;当方向舵向右旋转时,则会产生一个向左的力矩,使得飞机向左转向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.飞机的机体轴
(方向运动)
Y
X
(横侧运动)
(偏航)
Z
(俯仰运动)
Z
X
Y
上反角
上反角是為了增 加穩定性而設計 出來的,高低不 同的機翼的上反 角度也不同。
飞行操纵
➢ 俯仰——升降舵 ➢ 偏航——方向舵 ➢ 滚转——副翼
➢ 思考题:飞机转弯如何操纵?
1. 飞机的自由度: z轴
翻滚轴
y轴
俯仰轴
x轴
俯仰轴
2. 飞机的平飞:
F 升力
F 动力
f 阻力 G 重力
3. 飞机的俯仰:
水平位移下压,飞机做俯冲动作
水平位移上翘,飞机做抬升动作
升力
动力
阻力
尾翼 压力
升力
尾翼 升力
阻力
重力
动力
重力
4. 飞机的偏航:
方向舵
左副翼
右副翼
转向力
想左偏航, 需将方向舵向左打, 机尾受到向右的力, 飞机向左偏航;反之飞机向右偏航。只打方向舵 偏航时,飞机不掉高度.
§8 固定翼飞机 的结构及飞行原理
周老师
2017.9.25
教学目标
1. 知道固定翼飞机的概念及组成 2. 懂得飞机机翼产生升力的原理 3. 理解固定翼飞机飞行控制原理
教学过程
1. 固定翼飞机的概念及组成 2. 飞机机翼产生升力的原理 3. 固定翼飞机飞行控制原理
一.固定翼飞机的概念及組成
1大. 固家定观翼察飞一机下的,概图念中:飞行机器翼的位异置同角点度是固什定么不?变的飞机
2. 固定翼飞机的组成: 垂直尾翼
水平尾翼
引擎Βιβλιοθήκη 方向舵 升降舵螺旋桨 起落架
机身
副翼 机翼
3. 机翼安装位置:位置越低,稳定性越差,机动性越好
高翼机
肩翼机
中翼机
低翼机
二.飞机机翼升力产生原理
1.几伯个努实利验原:理: 流体流速越大,压强越小
2.机翼升力产生原理:
最慢
最快
较慢
原理解释
上侧气体路程较长, 流 速较快, 压强较小, 压 力小于下侧大气压力.
3. 飞机机翼的形状:
对称型 阻力系数、升阻比小,常用
在遥控特技模型飞机上
双凸型
比对称翼型的升阻比大,常用 于遥控竞速或特技模型机上
平凸型 升阻比比双凸翼型大。常用
在速度不太高的遥控飞机上
凹凸型 升阻比较大。广泛用在竞赛
留空时间的模型飞机上
S 翼形
力矩特性稳定,常用在没有 水平尾翼的模型飞机上
三.固定翼飞机飞行控制原理
5. 飞机的滚转:
升力F1小于重力
升力
F1
左副翼上翘
F2
右副翼下压
重力
重力
飞机做逆时针翻滚动作,同时向左侧偏航、掉高度。
欲使飞机绕 x 轴做翻滚动作,需要调整副翼,此 时,飞机滚转时还会向左侧偏航、掉高度.
小结
1. 固定翼飞机的概念及组成 2. 飞机机翼产生升力的原理 3. 固定翼飞机飞行控制原理