(2020年整理)渗流稳定计算.doc
尾矿库渗流计算

XXX金矿渗流计算渗流稳定计算:1)尾矿坝渗流稳定计算模型:计算模型按二维建立,按平面应变问题分析,采用三角形划分网格单元,数值模型如图2.3 所示图2.3 数值模型2)现状水位条件下稳定性分析渗流分析图谱:图2.4 总水头等值线及流速矢量图图2.5 空隙水压力等值线图稳定分析图谱:图2.6 瑞典圆弧法滑裂面(2-2 最大断面)图2.7 瑞典圆弧法滑裂面(1-1)图2.8 瑞典圆弧法滑裂面(3-3) 3)洪水运行条件下稳定性分析渗流分析图谱:图2.9 总水头等值线及流速矢量图图2.10 空隙水压力等值线图稳定分析图谱:图2.11 瑞典圆弧法滑裂面(2-2 最大断面)图2.12 瑞典圆弧法滑裂面(1-1)图2.13 瑞典圆弧法滑裂面(3-3)4)特殊运行条件下稳定性分析图2.14 瑞典圆弧法滑裂面(2-2 最大断面)图2.15 瑞典圆弧法滑裂面(1-1)图2.16 瑞典圆弧法滑裂面(3-3)④计算结果及分析运用上述所述计算参数和运行情况,采用瑞典圆弧法进行尾矿坝渗流稳定分析,计算结果见表2-1。
尾矿稳定计算成果表表2-1项目规范值1-1 断面2-2 断面3-3 断面现状水位 1.15 1.35 1.31 1.64 洪水运行 1.05 1.29 1.05 1.60 特殊运行 1.00 1.20 0.99 1.55从上表可以看出洪水运行期,2-2 断面抗滑稳定安全系数与规范值相同,但安全储备不足,而特殊运行期则略小于规范值,所以现状尾矿库在特殊运行条件下是不稳定的。
⑤结论及建议1)本次渗流分析结果显示在现状水位运行工况和洪水位运行工况下坝体内部各土层渗透比降均较小,渗流稳定满足要求。
2)根据坝体的应力变形分析,坝体内部应力较小且分布均匀,坝体在现有坝高的垂直沉降量最大为0.20m。
坝体已经运行多年,沉降基本终止。
3)对坝体典型的三个断面做了抗滑稳定分析,结果显示最大2-2断面、1-1 断面和3-3 断面在现状水位、洪水位运行工况下的安全系数大于等于规范允许值,但最大2-2 断面在特殊运行工况下坝体安全系数比规范最小允许安全系数略小。
土坝渗流计算和抗滑稳定计算实例分析

土坝渗流计算和抗滑稳定计算实例分析作者:刘颖来源:《城市建设理论研究》2013年第39期【摘要】根据《碾压式土石坝设计规范》SL274-2001规定,土坝计算和分析主要包括渗流计算、渗透稳定计算、稳定计算、应力和变形计算,小(1)型以下的水库主要进行渗流计算、渗透稳定计算、稳定计算,笔者结合设计实例,简要介绍计算过程。
【关键词】碾压式土石坝设计规范渗流计算渗透稳定计算稳定计算Abstract: According to the "design specification" rolled earth-rock dam calculation and analysis of the provisions of SL274-2001, including calculation of seepage, seepage stability calculation, stability calculation, calculation of stress and deformation, small (1) reservoir below the main seepage, seepage stability calculation, stability calculation, the author combined with design example, introduces calculation process.Key words: rolled earth dam design; seepage; seepage calculation; stability calculation 中圖分类号:P343.3 文献标识码A 文章编号1 概述柳树水库位于吉林省长春市双阳区山河街道办事处柳树村境内的柳树河上游,地理坐标为东经125°40′,北纬43°50′,是一座以防洪灌溉为主,结合养鱼等综合利用的小(Ⅰ)型病险水库。
AutoBank计算某水库大坝渗流计算资料

稳定计算原理简介按照对附加孔隙水压力的不同考虑,稳定计算分为总应力法和有效应力法,总应力法不考虑孔隙水压力,采用总应力强度指标(快剪指标);有效应力法计入附加孔隙水压力,采用有效应力强度指标。
有效应力法是通用计算方法,适用于各种工况。
稳定渗流期认为附加孔隙水压力已经消散不予考虑,施工期和水位降落期对粘性土应该计入附加孔隙水压力。
在没有实测资料的情况下,附加孔隙水压力=孔压系数×土条有效重量的增量。
表计算方法和对应的强度指标体公式参见《碾压式土石坝设计规范》,《堤防工程设计规范》等相关文献。
计算时需要求最小安全系数的滑弧位置,有关计算由软件自动实现。
Autobank稳定计算报告1 计算选项设定值作业数量=0搜索精度=3设定滑面最小长度(m)=1设定滑面最小深度(m)=0.5土条数量=302 材料表3 各工况计算过程正常运行+死水位,正常运行期,有效应力法,死水位,u'=0,无降雨,毕肖普法,0g(向左滑动)稳定安全系数Fs=1.46693AF/F=1656/1128.79滑面类型=圆弧圆弧半径(m)=24.1132滑动方向=向左滑动外加荷载总量(KN):Fx=0,Fy=0Autobank稳定计算报告 2020.05.11 17:03:31土条宽度(m)=1.034说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=317.37Autobank稳定计算报告 2020.05.11 17:03:31正常运行+死水位,正常运行期,有效应力法,死水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.41469AF/F=2093.62/1479.84滑面类型=圆弧圆弧半径(m)=26.0648滑动方向=向右滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.2Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:31正常运行+正常蓄水位,正常运行期,有效应力法,正常蓄水位,u'=0,无降雨,毕肖普法,0g(向左滑动)稳定安全系数Fs=1.56246AF/F=1545.02/988.738滑面类型=圆弧圆弧半径(m)=25.7258滑动方向=向左滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.034Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=318.94Autobank稳定计算报告 2020.05.11 17:03:31正常运行+正常蓄水位,正常运行期,有效应力法,正常蓄水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.40225AF/F=2164.3/1543.37滑面类型=圆弧圆弧半径(m)=24.8143滑动方向=向右滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.2Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:31正常运行+设计洪水位,正常运行期,有效应力法,设计洪水位,u'=0,无降雨,毕肖普法,0g(向左滑动)稳定安全系数Fs=1.78929AF/F=1529.33/854.606滑面类型=圆弧圆弧半径(m)=24.1132滑动方向=向左滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.034说明:Autobank稳定计算报告 2020.05.11 17:03:31有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=321.5正常运行+设计洪水位,正常运行期,有效应力法,设计洪水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.37287AF/F=2118.93/1543.36滑面类型=圆弧圆弧半径(m)=24.8143滑动方向=向右滑动Autobank稳定计算报告 2020.05.11 17:03:31外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.2说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:31正常运行+校核洪水位,正常运行期,有效应力法,校核洪水位,u'=0,无降雨,毕肖普法,0g(向右滑动)稳定安全系数Fs=1.34223AF/F=2166.45/1614.03滑面类型=圆弧圆弧半径(m)=26.9612滑动方向=向右滑动外加荷载总量(KN):Fx=0,Fy=0土条宽度(m)=1.255Autobank稳定计算报告 2020.05.11 17:03:31说明:有效重:浸润线以上为自然容重,浸润线以下浮容重.总重:计算地震惯性力所用重量,浸润线以下饱和容重.渗流水重:浸润线和坡外水位之间的水流重量.增量重:土条新填筑土层的重量,用于有效应力法u:渗流水重/土条宽度坡外水位=312.09Autobank稳定计算报告 2020.05.11 17:03:314 计算结果5 附图Autobank稳定计算报告 2020.05.11 17:03:31。
渗流稳定计算(2020年整理).pdf

赤峰市红山区城郊乡防洪工程5.6稳定计算5.6.1渗流及渗透稳定计算1)渗流分析的目的(1)确定堤身浸润线及下游逸出点位置,以便核算堤坡稳定。
(2)估算堤身、堤基的渗透量。
(3)求出局部渗流坡降,验算发生渗透变形的可能。
概括以上分析,对初步拟定的土堤剖面进行修改,最后确定土堤剖面及主渗,排水设备的型式及尺寸。
2)渗流分析计算的原则(1)土堤渗流分析计算断面应具有代表性。
(2)土堤渗流计算应严格按照《堤防工程设计规范》(GB50286-981)第8.1.2条及本规范附录E的有关规定执行。
3)渗流分析计算的内容(1)核算在设计洪水持续时间内浸润线的位置,当在背水侧堤坡逸出时,应计算出逸点位置,逸出段与背水侧堤基表面的出逸比降。
(2)当堤身、堤基土渗透系数K≥10-3cm/s时,应计算渗流量。
(3)设计洪水位降落时临水侧堤身内自由水位。
4)堤防渗流分析计算的水位组合(1)临水侧为设计洪水位,背水侧为相应水位。
(2)临水侧为设计洪水位,背水侧无水。
(3)洪水降落时对临水侧堤坡稳定最不利情况。
5)渗透计算方法堤防渗流分析计算方法按照《堤防工程设计规范》(GB50286-98)附录E3的透水堤基均质土堤渗流计算即——渗流问题的水力学解法。
6)土堤渗流分析计算计算锡泊河左岸(0-468)横断面,堤高 5.05米(P=2%),半支箭左岸(0+302.25)横断面,堤高6.46米(P=2%),该两段堤防均属于 2级堤防,堤防渗流计算断面采用1个断面计算即可。
采用《堤防工程设计规范》中透水堤基均质土堤下游坡无排水设备或有贴坡式排水稳定渗流计算公式:TH L TH H D 88.0m k q q 11210++−+=)( (E.3.1)H m m b 121+−+=)(H H L (E2.1-3)11112m m H L +=∆ (E2.1-4) 当K≤k 0时h 0=a+H 2=q÷⎭⎬⎫⎩⎨⎧+++⎥⎦⎤⎢⎣⎡++++•T H a m T K H a m H m m K 44.0)(5.0)5.0()5.0(122022222+H 2 ……………(E.3.2-2) 对于各种情况下坝体浸润线均可按下式确定X=k·T 'q h y −+k '2202q h y − ……………(E.3.2-6)式中:q'= )(0211120211m 2m 2k h m H L h H −++−+0211010m k h m H L h H T −+−(E.3.2-7)k ——堤身渗透系数; k 0——堤基渗透系数;H 1——水位到坝脚的距离(m ); H 2——下游水位(m ); H ——堤防高度(m );q ——单位宽度渗流量(m 3/s·m ); m 1——上游坡坡率,m 1=3.0;m2——下游坡坡率,m2=3.0;b——坝体顶部宽度6.0m;h0——下游出逸点高度(m);锡伯河采用数据列表如下:正常工况锡伯河渗流计算结果表锡伯河防洪堤筑堤土为低液限粉土,基础为砂砾基础,强透水地基,堤身部分为相对不透水层,基础和堤身渗透系数相差100倍以上,下游无水,经计算堤身和堤脚无无出逸点,渗流稳定。
理正渗流和稳定分析步骤

'
14 200
0 000
g
§t? w
15 489
:8
lo
计算
返回
感
点坐 标 栏 为理 正 自动 生成 坐 标 不 用修 改
二 二 渗的编土透号层X ,系定y数双义向击(的渗栏图渗透中如透系土下系数石图数坝山图地图同中质形不放资土问大料层土图中团性形 查团区可找团域国以数目看a 值为到等若软编于无号土资自(层动料如渗生则下成透都附软系为图件数02计)同算K时对x即,应为可K不区y
f
o 0 0
c
f f f
t t t
Equ Gr of of
a a
f f
ci ph ic ic
On
e e
3
Ex Ex
0
ce ce
l l
200T wo r k b o o k B i r La r y Wo r k b o o k
丛
铛中插入 任 又
对象 iA l o b e A c r o b a t 彐0 0 瑚 1e n 也
趣 焉量计算截 面 的 点数 即工游 面所有 牖 窿 岩 上 表 画所 有
点 如本例有 5 个 且 须在右边 栏输入 5 个节 点的坐 标 坐标 从第二 栏节 点坐 标 中查 找
理 正 边坡文件接 口 蓄水 位 校核洪水位等
渗 透问 有 名无分
栏 定不要忘记填入 合理 命名 如正 常 否 则无 法进 行稳 定计算
5 细砂 8 00000 8 00000
6 细砂 8 00000 8 00000
,
0 000 0 000
T 9 25 24 23 22 2 1 26 2T 2 26 21 20 32 33 2T
围堰渗流及稳定计算书(校核)

上游围堰采用土石挡水围堰,堰顶宽8m,最大堰高43m,上游边坡为1:1.8,下游边坡1:1.6,堰身采用复合土工膜防渗,基础采用C20混凝土防渗墙。
下游围堰采用土石挡水围堰,堰顶宽8m,最大堰高14.8m,堰体上、下游边坡均为1:1.6,堰身采用复合土工膜防渗,基础开挖至基岩。
2.计算内容
进行上游围堰的渗流及稳定计算。
3.渗流计算
1)计算工况
(1)正常运用:10年一遇设计洪水位稳定渗流。
2)计算采用参数
围堰渗流计算断面选取河床段最大堰体断面,计算所采用的相关参数见表3-1。
表3-1 围堰渗流计算参数表
3)计算结果
渗流计算结果见表3-2,正常蓄水位等势线图,见图3-1。
表3-2 堰体渗流计算成果表
注:渗漏量为堰体和堰基渗漏量的总和。
图3-1 10年一遇设计洪水位稳定渗流期等势线图
4.稳定计算
1)计算工况
(1)施工期上、下游坡
(2)10年一遇设计洪水位稳定渗流期上、下游坡
2)计算采用参数
计算所采用的相关参数见表4-1。
表4-1 围堰稳定计算参数表
3)计算结果
稳定计算结果见表4-2,见图4-1~4-2。
图4-1 竣工期上游围堰上、下游坡稳定计算结果图
图4-2 稳定渗流期上游围堰上、下游坡稳定计算结果图。
水闸渗流稳定及闸室稳定分析

水闸渗流稳定及闸室稳定分析◎ 常聪聪 中交四航局港湾工程设计院有限公司摘 要:水闸在水利建设中扮演着重要的角色,本文结合闸坝的具体工程实例,详细介绍了水闸渗流稳定和闸室稳定的计算原理及计算步骤,计算结果表明该项目的结构设计方案较安全但偏保守,可进一步优化方案。
本文中所涉及的相关计算可为相似工程案例提供一定的参考。
关键词:水闸;渗流;闸室稳定1.引言水闸作为一种用来调节水位、控制流量且通常水头差不超过30m的低水头水工建筑物,具备挡水和泄水的两重作用,在水利工程建设中得到广泛应用。
水闸的渗流分析和闸室的稳定分析是水闸设计中两个重要部分,国内外众多学者针对该课题做了丰富的研究。
梁佳铭[1]、王建华[2]运用可靠度理论分析了水闸安全的主要影响因素,申向东[3]分析了单孔水闸的抗滑稳定,也有众多学者结合工程实例对水闸闸室的稳定进行了计算分析[4~7]。
改进阻力系数法是计算水闸闸基渗流稳定的重要方法,适应性广,众多水闸案例以此方法为基础进行设计验算[8~10]。
学者们还将水闸渗流分析的有限元分析法和改进阻力系数法作对比[11~14],表明两种方法在计算闸基渗流问题上均可靠,有限元分析法则更偏保守。
本文结合具体工程实例,按照现行规范[15],对水闸的闸基渗流及闸室稳定进行了具体计算分析,对相似案例工程具有一定的借鉴与参考意义。
2.工程概况本工程案例为广东某水闸的重建方案,泄水闸闸孔孔数为12孔,单孔净宽14m,总净宽168m。
根据《水利水电工程等级划分及洪水标准》(SL 252-2017)和《渠化工程枢纽总体设计规范》(JTS 181-1-2009),枢纽按库容分等指标,为Ⅲ等中型工程,建筑物级别为4级。
正常蓄水位为35m,中墩厚2.5m,边墩厚2.0m,上游铺盖长15m,闸室长度25.5m,消力池长30m。
地质条件:工程区域地震活动性较弱,区域地质稳定性良好,工程范围内本枢纽的地层主要有第四系填土层(Q4ml)、第四系冲积层(Q4al)、第四系冲洪积层(Q4al+pl)及石炭系下统大塘阶石磴子段(C1ds),中风化岩物理力学性质好,岩石强度高,分布较稳定,地基承载力较高。
防洪墙渗流稳定计算

(1) 防洪墙段
防洪墙断面渗流及渗透稳定计算采用改进阻力系数法,本次选取渗透系数最大的砂基断面进行计算,桩号1+600.00,该断面临水侧为C25砼埋石挡墙,背水侧为草皮护坡,坡比为1:2,该断面10年一遇设计洪水位为 2.42m ,背水侧无水,基础为粗砂砾砂,渗透系数为k=3⨯10-2cm/s ,允许水力比降为0.2。
其渗流及渗透稳定按照如下公式进行计算。
1)地基有效深度计算
05.0L T e =或 式中:Te ——地基有效深度; Lo ——地下轮廓的水平投影长度; So ——地下轮廓的垂直投影长度。
2)各段水头损失和单宽流量计算
①进出口段阻力系数计算
②内部垂直段阻力系数计算
③水平段阻力系数计算
式中:S ——板桩或齿墙的入土深度;
T——地基透水层深度;
S1、S2——进出口段板桩或齿墙的入土深度。
3)进出口段水头修正计算
式中:β’——阻力修正系数;
T’——板桩另一侧地基透水层深度。
4)出口坡降计算
式中:S’——出口段地下轮廓垂直长度;
ho’——出口段水头损失。
表5-6 渗流计算成果表
许比降[J]=0.2,不能满足渗流稳定要求,需增加截渗墙。
经计算,当截渗墙深入基础深度为1.0m时,单宽流量为0.000078m³/s·m,下游坡出口渗流比降为0.18,小于基础允许比降,满足要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
赤峰市红山区城郊乡防洪工程
5.6稳定计算
5.6.1渗流及渗透稳定计算
1)渗流分析的目的
(1)确定堤身浸润线及下游逸出点位置,以便核算堤坡稳定。
(2)估算堤身、堤基的渗透量。
(3)求出局部渗流坡降,验算发生渗透变形的可能。
概括以上分析,对初步拟定的土堤剖面进行修改,最后确定土堤剖面及主渗,排水设备的型式及尺寸。
2)渗流分析计算的原则
(1)土堤渗流分析计算断面应具有代表性。
(2)土堤渗流计算应严格按照《堤防工程设计规范》(GB50286-981)第8.1.2条及本规范附录E的有关规定执行。
3)渗流分析计算的内容
(1)核算在设计洪水持续时间内浸润线的位置,当在背水侧堤坡逸出时,应计算出逸点位置,逸出段与背水侧堤基表面的出逸比降。
(2)当堤身、堤基土渗透系数K≥10-3cm/s时,应计算渗流量。
(3)设计洪水位降落时临水侧堤身内自由水位。
4)堤防渗流分析计算的水位组合
(1)临水侧为设计洪水位,背水侧为相应水位。
(2)临水侧为设计洪水位,背水侧无水。
(3)洪水降落时对临水侧堤坡稳定最不利情况。
5)渗透计算方法
堤防渗流分析计算方法按照《堤防工程设计规范》(GB50286-98)附录E3的透水堤基均质土堤渗流计算即——渗流问题的水力学解法。
6)土堤渗流分析计算
计算锡泊河左岸(0-468)横断面,堤高 5.05米(P=2%),半支箭左岸(0+302.25)横断面,堤高6.46米(P=2%),该两段堤防均属于 2级堤防,堤防渗流计算断面采用1个断面计算即可。
采用《堤防工程设计规范》中透水堤基均质土堤下游坡无排水设备或有贴坡式排水稳定渗流计算公式:
T
H L T
H H D 88.0m k q q 11210
++-+=)( (E.3.1)
H m m b 121+-+=)(H H L (E2.1-3)
111
1
2m m H L +=
∆ (E2.1-4) 当K≤k 0时
h 0=a+H 2=q÷⎭
⎬⎫⎩⎨
⎧+++⎥⎦⎤⎢⎣⎡++++•T H a m T K H a m H m m K 44.0)(5.0)5.0()5.0(1220222
22
+H 2 ……………(E.3.2-2) 对于各种情况下坝体浸润线均可按下式确定
X=k·T '0q h y -+k '
22
2q h y - ……………(E.3.2-6)
式中:q'= )(021112
0211
m 2m 2k h m H L h H -++-+02110
10m k h m H L h H T -+-(E.3.2-7)
k ——堤身渗透系数; k 0——堤基渗透系数;
H 1——水位到坝脚的距离(m ); H 2——下游水位(m ); H ——堤防高度(m );
q ——单位宽度渗流量(m 3/s·m ); m 1——上游坡坡率,m 1=3.0;
m2——下游坡坡率,m2=3.0;
b——坝体顶部宽度6.0m;
h0——下游出逸点高度(m);
锡伯河采用数据列表如下:
正常工况锡伯河渗流计算结果表
锡伯河防洪堤筑堤土为低液限粉土,基础为砂砾基础,强透水地基,堤身部分为相对不透水层,基础和堤身渗透系数相差100倍以上,下游无水,经计算堤身和堤脚无无出逸点,渗流稳定。
半支箭防洪堤计算结果如下:按照《堤防工程设计规范》E.7.1中说明地基中表层土透水性较强,两层的渗透系数之比大于100即可称为双层地基,计算得知越流系数为0.008,本设计筑堤土了为低液限粉土,基础为砂砾基础,强透水地基,堤身部分为相对不透水层,下游无水,经计算堤身和堤脚无无出逸点,渗流稳定。
(采用公式为0
101
k k T T A (T 1为弱透水层厚度,T 0为强透水层厚度)
7、抗滑稳定计算 计算方法:
此堤防的稳定计算分析采用理正边坡稳定分析系统,选用复杂土层土坡稳定计算,采用碾压式土石坝设计规范,分别考虑了稳定渗流期,施工期,水位降落期三种情况。
采用圆弧滑动法,根据实际情况考虑了地震烈度7度,计算方法采用简化毕肖普法,自动搜索最危险滑裂面,求得最小安全系数。
在计算过程中,根据大坝的实际情况输入土坝的重度和饱和重度,粘聚力,内摩擦角,考虑了孔隙水压力,采用近似方法计算,不考虑渗透力的作用。
计算成果表见下面。
以下为计算过程中采用的公式: 简化毕肖普法:(1)施工期的安全因数:
[]∑∑⎭
⎬⎫⎩
⎨
⎧-+=β
φφθ
sin 1
')1('W tg m tg B W b C K (有效应力法) (5.1-24)
[]∑
∑⎭⎬
⎫⎩⎨⎧+=βφθsin 1W m Wtg b C K u u (总应力法) (5.1-25)(2)水库降落
期的总应力法:
[]∑
∑⎭⎬⎫⎩⎨⎧-+=βφθsin 1)(W m tg b u W C K cu
i cu (5.1-26)
(3)稳定渗流期或水库水位降落期有效应力法
[]∑∑+⎭⎬⎫
⎩⎨⎧-+++=βφγθsin )(1'))21(('2
1W W m tg ub Zb W W b C K w
(5.1-27)
式中:
b 条块宽度;
W 条块实重,W=W1+W2+rwZb ;
W1在坝坡外水位以上的条块实重;
W2 在坝坡外水位以下的条块浮重;
Z 坝坡外水位高出条块底面中点的距离;
Ui 水库水位降落前坝体中的孔隙压力;
U 稳定渗流期或水库降落期坝体或地基中的孔隙压力;
β条块的重力线与通过此条块底面中点的半径之间的夹角。
C’'φ施工期有效应力法中粘性土的强度指标
C u uφ施工期总应力法中的土的强度指标。
C cu,cu
φ稳定渗流期和水库水位降落期中的土的强度指标。
锡伯河堤防稳定计算成果表
安全系数符合规范要求,坝体稳定。
通过以上计算,根据《堤防工程设计规范》(GB 50286-98),两道堤防均属2级,抗滑稳定安全系数正常运用条件k允=1.25,非常运用条件Ⅰk允=1.15,由成果知上游各个工况的稳定安全系数均在允许范围内的安全系数,堤防稳定。
堤防上下游坡稳定计算简图如前页。
学海无涯
学海无涯。