(华师版初中数学教案全)第二十二章二次根式

合集下载

第二十二 二次根式导学案 华师

第二十二 二次根式导学案 华师

22.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。

三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。

(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。

(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34,5-,)0(3≥a a ,12+x 2、计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a , )0()(2≥=a a a 的意义是 。

2)3(________)(2=a 43、当a为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。

所以,在二次根式中,字母a 必须满足 ,才有意义。

(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义? ①43-x ②223x + ③ 2、(1)若33a a ---有意义,则a 的值为___________.(2)若 在实数范围内有意义,则x 为( )。

华师大版数学九年级数学教案:22.2 二次根式的乘除

华师大版数学九年级数学教案:22.2  二次根式的乘除

22.2 二次根式的乘除(1)a≥0,b≥0)a≥0,b≥0)及其运用.教学目标:1a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简2a≥0,b≥0)并运用它进行计算; (a≥0,b≥0)并运用它进行解题和化简.教学重难点关键1a≥0,b≥0)(a≥0,b≥0)及它们的运用.2a≥0,b≥0).a⨯3(a<0,b<0)=b.教学过程:一、设疑自探——解疑合探自探.(学生活动)请同学们完成下列各题.1.填空:(1=____;(2=_____=________.(3.参考上面的结果,用“>、<或=”填空.×_____,×_____,×________2.利用计算器计算填空(1,(2(3(4,(5.(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:合探1. 计算:(1,(2,(3,(4a≥0,b≥0)计算即可.合探2 化简(1,(2,(3,(4,(5(a≥0,b≥0)直接化简即可.二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!三、应用拓展:判断下列各式是否正确,不正确的请予以改正:(1(2=4四、巩固练习(1)计算(生练,师评)①②×(2) 化简: ; ;五、归纳小结(师生共同归纳)本节课掌握:(1(a≥0,b≥0)(a≥0,b≥0)及运用.六、作业设计(写在小黑板上)(一)、选择题1, 那么此直角三角形斜边长是()A.B.C.9cm D.27cm2.化简).A B C.D.x-=)311A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A.=8 B.×;C.D.×(二)、填空题:1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)、综合提高题探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==,……通过上述探究你能猜测出:(a>0),并验证你的结论.七、反思及感想:22.2 二次根式的乘除(2)=a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.教学目标;1、a≥0,b>0)a≥0,b>0)及利用它们进行运算.2、利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1a≥0,b>0)a≥0,b>0)及用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程; 一、设疑自探——解疑合探自探.(学生活动)请同学们完成下列各题:1.填空(1=____;(2;(3;(4.2.利用计算器计算填空:(1,(2=_____,(3=____,(4=_____.每组推荐一名学生上台阐述运算结果.(老师点评),根据大家的练习和回答,我们进行合探:二次根式的除法规定:一般地,对二次根式的除法规定:下面我们利用这个规定来计算和化简一些题目.合探1.计算:(1(2 (3 (4分析:上面4a ≥0,b>0)便可直接得出答案.合探2.化简:(1 (2 (3 (4(a ≥0,b>0)就可以达到化简之目的. 二、应用拓展=,且x 为偶数,求(1+x 的值.a ≥0,b>0时才能成立. 因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x=8.三、归纳小结(师生共同归纳)a ≥0,b>0(a ≥0,b>0)及其运用.四、作业:(写在小黑板上) (一)、选择题:1的结果是( ).A .27; B .27; C ; D2====数学上将这种把分母的根号去掉的过程称作“分母有理化”).A .2B .6C .13D(二)、填空题 1.分母有理化:(1)=_________;(2) =________;(3)=______.2.已知x=3,y=4,z=5_______.(三)、综合提高题 计算AC(1·(m>0,n>0) (2)-(a>0)五、反思及感想:22.2 二次根式的乘除(3)教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标:1、理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.2、通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键:1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式. 教学过程一、设疑自探——解疑合探自探1.(学生活动)请同学们完成下列各题(请三位同学上台板书) 计算(1(2,(3=自探2. 观察上面计算题的最后结果,可以发现这些式子中的二次根式有什么特点?(有如下两个特点:1.被开方数不含分母; 2.被开方数中不含能开得尽方的因数或因式.)我们把满足上述两个条件的二次根式,叫做最简二次根式.合探 1. 把下面的二次根式化为最简二次根式:(1) ;(2);(3)合探2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.132====6.5(cm )因此AB 的长为6.5cm .二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下! 三、应用拓展观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121=--1,=,从计算结果中找出规律,并利用这一规律计算+)+1)的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.四、归纳小结(师生共同归纳):本节课应掌握:最简二次根式的概念及其运用. 五、作业设计(写在小黑板上) (一)、选择题1(y>0)是二次根式,那么,化为最简二次根式是( ).A(y>0) B y>0) C y>0) D .以上都不对2.把(a -1中根号外的(a -1)移入根号内得( ).A B C . D . 3.在下列各式中,化简正确的是( )A .B .=±12C .2D .4的结果是( ) A . ; B . ; C .; D .(二)、填空题1.(x ≥0)2._________.(三)、综合提高题1.已知a不正确, 请写出正确的解答过程:a·1(a-1a-的值.2.若x、y为实数,且y x y六、反思及感想:。

九年级数学上册 第22章(课) 二次根式教案 第1课时教学

九年级数学上册 第22章(课) 二次根式教案 第1课时教学
五、 应用拓展 例 1 计算
学生独自完成,在全体订 正答案.
1.( x 1 )2(x≥0) 2.( a2 )2 3.( a2 2a 1 )2
4.( 4x2 12x 9 )2
例 2 在实数范围内分解下列因式:
(1)x2-3 (2)x4-4
(3) 2x2-3
3
教师活动 本节课要掌握:
学生活动
(2)若 a 1 + b 1 =0,求 a +b 2004 2004 的值.(答案: 2 ) 5
三. a (a≥0) 是一个什么数呢?
老师点评:根据学生讨论和上面的练习,我们可以得出 ( 9 )2=______;
a (a≥0)是一个非负数.
( 3 ) 2= _______ ;
老师点评: 4 是 4 的算术平方根,根据算术平方 根的意义,
纵坐标相等的点 的坐标是___________.
同学们独立完成这些问 题:
A
问题 2:如图,在直角三角形 ABC 中,AC=3,BC=1,∠C=90 那
么 AB 边的长是__________.
二、例题讲解
B
C
很明显 3 、 10 ,都是一些正数的算术平方根.像这样一些
正数的算术平方根的式子,我们就把它称二次根式.因此,一
(5) x y
4.计算下列各式的值:
( 18 )2 ( 2 )2 ( 9 )2 ( 0 )2 (4 7 )2
3
4
8
1
(3 5)2 (5 3)2
时间 要求
15 分钟 方法 认真阅读 弄清二次根式的概念,认真完成预习作业
二、教学过程设计:
教师活动
学生活动
一、课堂引入
问题 1:已知反比例函数 y= 3 ,那么它的图象在第一象限横、 x

华师大九年级(上)教案 第22章 二次根式(全)

华师大九年级(上)教案 第22章 二次根式(全)

22.1. 二次根式(1)教学内容二次根式的概念及其运用 教学目标a ≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题. 教学过程 回顾当a 是正数时,a 表示a 的算术平方根,即正数a 的正的平方根. 当a 是零时,a 等于0,它表示零的平方根,也叫做零的算术平方根. 当a 是负数时,a 没有意义.概括a (a ≥0)表示非负数a 的算术平方根,也就是说,a (a ≥0)是一个非负数,它的平方等于a .即有:(1)a ≥0(a ≥0);(2)2)(a =a (a ≥0). 形如a (a ≥0)的式子叫做二次根式.注意在二次根式a 中,字母a 必须满足a ≥0,即被开方数必须是非负数.例 x 是怎样的实数时,二次根式1-x 有意义?分析 要使二次根式有意义,必须且只须被开方数是非负数. 解被开方数x-1≥0,即x ≥1.所以,当x ≥1时,二次根式1-x 有意义.思考2a 等于什么?我们不妨取a 的一些值,如2,-2,3,-3,……分别计算对应的a2的值,看看有什么规律:概括:当a ≥0时,a a =2; 当a <0时,a a -=2.这是二次根式的又一重要性质.如果二次根式的被开方数是一个完全平方,运用这个性质,可以将它“开方”出来,从而达到化简的目的.例如:22)2(4x x ==2x (x ≥0); 2224)(x x x ==.练习1.x 取什么实数时,下列各式有意义.(1)x 43-; (2)23-x ;(3)2)3(-x ; (4)x x 3443-+-拓展例当x 11x +在实数范围内有意义?分析:要使+11x +在实数范围内有意义,必须同时满足0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例(1)已知,求xy的值.(答案:2)(2),求a2004+b 2004的值.(答案:25)归纳小结(学生活动,老师点评) 本节课要掌握:1a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.布置作业1.教材P41.222.1 二次根式(2)教学内容1a≥0)是一个非负数;2.2=a(a≥0).教学目标a≥02=a(a≥0),并利用它们进行计算和化简.a≥0)是一个2=a(a≥0);最后运用结论严谨解题.教学重难点关键1a≥0)是一个非负数;2=a(a≥0)及其运用.2a≥0)是一个非负数;•2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0a<0[老师点评(略).]二、探究新知议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:2=_______;2=_______;2=______2=_______;2=______;2=_______;2=_______.4的算术平方根,根据算术平方根的意义,42=4.同理可得:2=2,2=9,2=3,2=13,2=72,2=0,所以例1 计算1.2 2.(23.2 4.)2分析2=a (a ≥0)的结论解题.解:2 =32,(2 =32²2=32²5=45,2=56,274 . 三、巩固练习计算下列各式的值:2222(222-四、应用拓展例2 计算1.()2(x≥0)2.()23.()24.2分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2²2x²3+32=(2x-3)2≥0.所以上面的42=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0,2=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2 , 又∵(a+1)2≥0,∴a2+2a+1≥0 2+2a+1(4)∵4x2-12x+9=(2x)2-2²2x²3+32=(2x-3)2 , 又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9 例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3五、归纳小结本节课应掌握:1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P4.3.422.1 二次根式(3)教学内容a (a ≥0)教学目标 (a ≥0)并利用它进行计算和化简.(a ≥0),并利用这个结论解决具体问题.教学重难点关键1a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0a 才成立. 教学过程一、复习引入老师口述并板收上两节课的重要内容;1a ≥0)的式子叫做二次根式;2a ≥0)是一个非负数;3.2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:=_______=______;. (老师点评):根据算术平方根的意义,我们可以得到:=2;=0.01;=110;=23;=0;3.7例1 化简(1(2(3(4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1(2=4(3(4三、巩固练习教材P4.3.4.四、应用拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?分析(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0时,-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,即使a>a所以a不存在;当a<0,即使-a>a,a<0综上,a<0例3当x>2五、归纳小结(a≥0)及其运用,同时理解当a<0=-a的应用拓展.六、布置作业1.先化简再求值:当a=9时,求解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│22.2 二次根式的乘除第一课时教学内容a≥0,b≥0),a≥0,b≥0)及其运用.教学目标a≥0,b≥0)a≥0,b≥0),并利用它们进行计算和化简a≥0,b≥0)并运用它进行计算;•a≥0,b≥0)并运用它进行解题和化简.教学重难点关键a≥0,b≥0)a≥0,b ≥0)及它们的运用.a≥0,b≥0).a⨯,关键:a<0,b<0)=b教学方法三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动)请同学们完成下列各题.1.填空(1;(2=_______.(3.参考上面的结果,用“>、<或=”填空.³_____,³_____,³2.利用计算器计算填空(1(2(3(4(5.(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来合探1. 计算(1(2(3(4分析:a≥0,b≥0)计算即可.合探2 化简(1(2(3(4(5(a≥0,b≥0)直接化简即可.二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!三、应用拓展判断下列各式是否正确,不正确的请予以改正:(1=(2四、巩固练习(1)计算(学生练习,老师点评)①②³(2) 化简五、归纳小结(师生共同归纳)本节课应掌握:(1(a≥0,b≥0)(a≥0,b≥0)及其运用.六、作业设计一、选择题1,•那么此直角三角形斜边长是(). A...9cm D.27cm2.化简).A..3=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A..C..二、填空题 1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==通过上述探究你能猜测出:(a>0),并验证你的结论.教后反思:22.2 二次根式的乘除第二课时教学内容a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.教学目标a≥0,b>0a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学方法三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动)请同学们完成下列各题:1.填空(1=____;(2=_____;(3)=_____,=_____;(4)=________,.2.利用计算器计算填空:(1,(2,(3,(4.每组推荐一名学生上台阐述运算结果.(老师点评)刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们进行合探:二次根式的除法规定:一般地,对二次根式的除法规定:下面我们利用这个规定来计算和化简一些题目.(2(3(4)合探1.计算:(1分析:上面4a≥0,b>0)便可直接得出答案.合探2.化简:(1(2(3 (4a ≥0,b>0)就可以达到化简之目的. 三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展=,且x 为偶数,求(1+x分析:a ≥0,b>0时才能成立. 因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.五、归纳小结(师生共同归纳)a ≥0,b>0a ≥0,b>0)及其运用.六、作业设计 一、选择题1 ).A .27.27C2.====数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化). A .2 B .6 C .13 D 二、填空题 1.分母有理化:(1)=_________;(2)2.已知x=3,y=4,z=5_______.三、综合提高题 计算(1²(m>0,n>0)(2)(a>0)教后反思:22.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学方法三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动)请同学们完成下列各题(请三位同学上台板书)计算(1(2,(3自探2.观察上面计算题的最后结果,可以发现这些式子中的二次根式有什么特点?(有如下两个特点:1.被开方数不含分母; 2.被开方数中不含能开得尽方的因数或因式.)AC我们把满足上述两个条件的二次根式,叫做最简二次根式.合探1.把下面的二次根式化为最简二次根式:(1)合探2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.AB==132====6.5(cm ) 因此AB 的长为6.5cm .三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121=-,32=-从计算结果中找出规律,并利用这一规律计算)的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的. 五、归纳小结(师生共同归纳)本节课应掌握:最简二次根式的概念及其运用. 六、作业设计 一、选择题 1(y>0)是二次根式,那么,化为最简二次根式是( ).A (y>0)B y>0)C y>0)D .以上都不对2.把(a-1a-1)移入根号内得( ).A .. 3.在下列各式中,化简正确的是( )A ±12C 2.4 )A .B .C .. 二、填空题1.(x ≥0)2._________.三、综合提高题1.已知a 判断是否正确?若不正确,•请写出正确的解答过程:²1a(a-12.若x 、y 为实数,且的值.教后反思:22.3 二次根式的加减(1)第一课时教学内容二次根式的加减教学目标理解和掌握二次根式加减的方法.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学方法三疑三探教学过程一、设疑自探——解疑合探自探(学生活动):计算下列各式.(1)(2)(3(4)因此,二次根式的被开方数相同是可以合并的,如看是不相同的,但它们可以合并吗?可以的.(板书)所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.合探1.计算(1(2分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.合探2.计算(1)(2))+三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展已知4x2+y2-4x-6y+10=0,求(2+y-(x)的值.分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=12,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值. 五、归纳小结(师生共同归纳) 本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并. 六、作业设计 一、选择题1类二次根式的是( ).A .①和②B .②和③C .①和④D .③和④2.下列各式:①17;). A .3个 B .2个 C .1个 D .0个二、填空题1是同类二次根式的有________.2.计算二次根式________. 三、综合提高题1 2.236-(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27. 教后反思:22.3 二次根式的加减(2)第二课时教学内容利用二次根式化简的数学思想解应用题.教学目标运用二次根式、化简解应用题.重难点关键讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.教学方法三疑三探教学过程一、设疑自探——解疑合探上节课,我们已经学习了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们研究三道题以做巩固.自探1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)ACQ P(分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,•根据三角形面积公式就可以求出x的值.解:设x 后△PBQ的面积为35平方厘米.则有PB=x,BQ=2x依题意,得:12x²2x=35 x2PBQ的面积为35平方厘米.===PBQ的面积为35平方厘米,PQ的距离为)自探2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?(分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,•只需知道这四段的长度.BAC2m1m4mD解:由勾股定理,得===所需钢材长度为≈3³2.24+7≈13.7(m ) 答:要焊接一个如图所示的钢架,大约需要13.7m 的钢材.)三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展若最简根式3a 、b 的值.(•同类二次根式就是被开方数相同的最简二次根式) 分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简成|b|²,才由同类二次根式的定义得3a-•b=•2,2a-b+6=4a+3b .由题意得432632a b a b a b +=-+⎧⎨-=⎩ ∴24632a b a b +=⎧⎨-=⎩ ∴a=1,b=1五、归纳小结(师生共同归纳)本节课应掌握运用最简二次根式的合并原理解决实际问题. 六、作业设计 一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(•结果用最简二次根式) A ...以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A...二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)三、综合提高题1.2n求m、n的值.2.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=2,5=2,你知道是谁的二次根式呢?下面我们观察:(-1)2=()2-2²12反之,)2∴)2求:(1(2(3(4,则m、n与a、b的关系是什么?并说明理由.教后反思:22.3 二次根式的加减(3)第三课时教学内容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学方法三疑三探教学过程一、设疑自探——解疑合探自探1.(学生活动):请同学们完成下列各题:1.计算(1)(2x+y)²zx (2)(2x2y+3xy2)÷xy2.计算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式³单项式;(2)单项式³多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.自探2.计算:(1)(2)(分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.自探3.计算:(1))( (2) 分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展已知x b a-=2-x a b-,其中a 、b 是实数,且a+b ≠0,分析=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x 的值,代入化简得结果即可.解:原式2=2(1)x x +-+2(1)x x+-=(x+1) =4x+2 ∵x b a-=2-x a b - ∴b (x-b )=2ab-a (x-a ) ∴bx-b 2=2ab-ax+a 2∴(a+b )x=a 2+2ab+b 2∴(a+b )x=(a+b )2∵a+b ≠0 ∴x=a+b∴原式=4x+2=4(a+b )+2五、归纳小结(师生共同归纳)本节课应掌握二次根式的乘、除、乘方等运算. 六、作业设计 一、选择题1. ).A .203.23C .23.2032).A.2 B.3 C.4 D.1二、填空题1.(-1)2的计算结果(用最简根式表示)是________.22.((-()2的计算结果(用最简二次根式表示)是_______.3.若,则x2+2x+1=________.4.已知a2b-ab2=_________.三、综合提高题1的值.(结2.当果用最简二次根式表示)教后反思:。

华师大版-数学-九年级上册-22.2二次根式的乘除法(3) 教案

华师大版-数学-九年级上册-22.2二次根式的乘除法(3) 教案

华师大版 九年级(上)《第二十二章·二次根式》 第二节22.2二次根式的乘除法(3) 教案【三维教学目标】知识与技能:最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算。

过程与方法:引导-自学-探究-交流-展示(探究结果确立与班级内分享)情感态度与价值观:经历知识产生的过程,探索新知识。

教学重点:最简二次根式的运用。

教学难点:会判断这个二次根式是否是最简二次根式。

【课堂导入】 请同学们完成下列各题(请三位同学上台板书)A .计 算(1,(2,(3B .点【教学过程】A 自 学:请同学们用10---15分钟时间自学教科书上本节内容。

B 交 流: 观察上面计算题的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.C 探 究:例1.(1)解:(1) 125=215)(2222y x y x +=xy 22y x +y例2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.解:因为AB 2=AC 2+BC2 所以132====6.5(cm ) 因此AB 的长为6.5cm .例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1, BA C32=-,从计算结果中找出规律,并利用这一规律计算+))的值. 分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.解:原式= (1)=))=2002-1=2001【课堂作业】1(y>0)是二次根式,那么,化为最简二次根式是( ).A (y>0)B y>0)C (y>0)D .以上都不对2、把(a-1a-1)移入根号内得( ).A ..3、在下列各式中,化简正确的是( )A ±12C 2D .4的结果是( )A .-3 B . C ..5、已知a正确,•请写出正确的解答过程:a·1a=(a-16、若x、y为实数,且y=12x+,求yx+yx-的值。

九年级数学上册 22.2二次根式的乘除(1)教案 华东师大版

九年级数学上册 22.2二次根式的乘除(1)教案 华东师大版

二次根式的乘除(1)学习目标:1、经历二次根式乘法法则的探究过程,进一步理解乘法法则2、能运用二次根式的乘法法则:a ·b =ab (a ≥0,b ≥0)进行乘法运算3、理解积的算术平方根的意义,会用公式ab =a ·b (a ≥0,b ≥0)化简二次根式学习重、难点重点:二次根式的乘法法则与积的算术平方根的性质难点:二次根式的乘法法则与积的算术平方根的理解与运用学习过程:一、课前准备:1、什么是二次根式? 已学过二次根式的哪些性质?2、计算:(1;(2(3)2)32(×2)53(与22)53()32(⨯二、探索活动1、学生计算。

2、请同学们观察以上式子及其运算结果,看看其中有什么规律?学生分小组交流。

3、概括:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

a ·b =ab (a ≥0,b ≥0)4、由以上公式逆向运用可得: ab =a ·b (a ≥0,b ≥0)文字语言叙述:积的算术平方根,等于积中各因式的算术平方根的积。

三、例题教学例1、计算:⑴2·32 ⑵21·8 ⑶a 2·a 8(a ≥0)例2、化简: ⑴2257 ⑵8116 ⑶12⑷3a (a ≥0) ⑸a (a ≥0,b ≥0)四、课堂练习P 练习1、2五、小结1、二次根式的乘法法则是什么?用语言叙述。

2、如何进行二次根式的化简?六、作业P 67 习题3.2 1、2七、家作:1、化简:(1(2(3(4(5 (6(7(8)(9(10 (0a ≥ 0b ≥)2、计算:⑴xy ·y x 3·2xy ⑵18·24·27(33=x 的取值范围。

4、已知等腰三角形的腰为,底边为,求这个等腰三角形的面积b=ab(a≥0,b≥0)思考:a×b×c= ?。

华师大版数学九年级上册教案:21.2二次根式乘除法教案(2)

华师大版数学九年级上册教案:21.2二次根式乘除法教案(2)

华师大版九年级上册21.2二次根式乘除法教案(2)教学内容:二次根式除法教学目标:1、 理解二次根式除法法则,会二次根式除法运算。

2、 理解商的算术平方根法则,能够运算商的算术平方根的法则化简二次根式;3、 理解最简二次根的概念,会把二次根式化为最简二次根式。

4、 经历探索与发现的过程,培养学生的创新意识和能力。

教学重点:二次根式的除法,最简二次根式教学难点:把二次根式化为最简二次根式教学方法:探究学习教学准备:课件教学过程:一、复习与练习1、 计算:(1))62712(3- (2))86(211- 2、化简(1)50 (2)108二、探究学习(一)二次根式的除法1、计算(1)416÷= ,4= ;(2)436÷= ,9= ; (3)4125÷= ,100= ; (4)01.064÷= ,6400= ;(5)484.4÷= ,21.1= ;2、探索与发现(1)416÷=4(2)436÷=9(3)4125÷=100 (4)01.064÷=6400(5)484.4÷=21.13、总结规律)0,0(,>≥÷=÷b a b a b a4、二次根式的除法法则(1)符号表述:)0,0(,>≥÷=÷b a b a b a(2)文字表述:二次根式的除法法则:二次根式相除,把它们的被开方数相除。

5、法则应用例1、计算:(1)2116÷ (2)212531÷ 解:(1)原式=242116==÷ (2)原式=542516212531==÷ 练习:课后练习题第1题。

(二)商的算术平方根1、商的算术平方根法则(1)符号表述:)0,0(,>≥=b a ba b a (2)文字表述:商的算术平方根,等于算术平方根的商。

2、法则的应用例2、化简(1)95 (2)2512 解:(1)359595== (2)53225122512==练习:课后练习题第2题。

华师版九年级数学(上)教案(全册)

华师版九年级数学(上)教案(全册)

第22章二次根式22.1 二次根式教学目标1、了解二次根式的概念、2、掌握二次根式的基本性质、教学过程一、提出问题上一节我们学习了平方根和算术平方根的意义,引进了一个新的记号错误!,现在请同学们思考并回答下面两个问题:1、错误!表示什么?2、a需要满足什么条件?为什么?二、合作交流,解决问题让学生合作交流,然后回答问题(可以补充),归纳为;1、当a是正数时,错误!表示a的算术平方根,即正数a的两个平方根中的一个正数;2、当a是零时,错误!表示零,也叫零的算术平方根;3、a≥0,因为任何一个有理数的平方都大于或等于零、三、归纳特点,引入二次根式概念1、基本性质、问题1 你能用一句话概括以上3个结论吗?让一个学生回答、其他学生补充,概括为:错误!(a≥0)表示非负数a的算术平方根,也就是说,错误!(a≥0)是一个非负数,即错误!≥0(a≥0)。

问题2 (a)2(a≥0)等于什么?说说你的理由并举例验证.让学生小组讨论或自主探索得出结论:( a )2=a(a≥0),如(错误!)2=4,(错误!)2=2等、以上两个问题的结论就是基本性质,特别是(错误!)2=a(a≥0)可以当公式使用,直接应用于计算。

反过来,把(错误!)2=a(a≥0)写成a=(错误!)2(a≥0)的形式,这说明:任何一个非负数a都可以写成一个数的平方的形式、例如:3=(错误!)2,0。

3= (错误!)2提问:(1)0=(错误!)2对不对?(2)-5=(-5 )2对不对?如果不对,错在哪里?2、二次根式概念形如错误!(a≥0)的式子叫做二次根式、说明:二次根式必须具备以下特点;(1)有二次根号;(2)被开方数不能小于0.让学生举出二次根式的几个例子,并判断错误!,错误!(a<0)、错误!、错误!(a<o)是不是二次根式。

四、范例例1、要使式子错误!有意义,字母x的取值必须满足什么条件?提问:若将式子错误!改为错误!,则字母x的取值必须满足什么条件?五、课堂练习Pl0页练习1、2、六、思考提高我们已经研究了(错误!)2(a≥0)等于a,现在研究错误!等于什么、提问:1、对于抽象问题的研究,常常采用什么策略?2、在错误!中,a的取值有没有限制?3、取一些数值来验证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二章二次根式22.1 二次根式(第1课时)
教学任务分析
板书设计
课后反思
22.1 二次根式(第2课时)
教学任务分析
板书设计
课后反思
22.1 二次根式(第3课时)
教学任务分析
板书设计
课后反思
教学过程设计
教学过程设计
教学过程设计
22.2二次根式的乘除(第1课时)
教学任务分析
板书设计
课后反思
教学过程设计
教学过程设计
教学过程设计
22.2二次根式的乘除(第2课时)
教学任务分析
板书设计
课后反思
问题与情境
师生行为
设计意图
活动一回忆对比
1.请同学们回忆
ab b a =⋅ (a ≥0,b ≥0)是如何得到的?
2.学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出: b a
b a = (a ≥0,b>0) 例1.计算:
(1)3
24; (2)
18
1
23÷. 解: (1)3
24
222483
24
=⨯===
; (2)
18
123÷ 3393182
3
18
123=⨯=⨯=÷=
使学生回忆起二次根式乘法的运算方法的推导过程.
类似地,请每个同学再举一个例子,
请学生们思考为什么b 的取值范围变小了?
与学生一起写清解题过程,提醒他们被开方式一定要开尽.
对比二次根式的乘法推导出除法的运算方法
增强学生的自信心,
并从一开始就使他们参与到推导过程中来.
对学生进一步强化
被开方数的取值范围,以及分母不能为零.
强化学生的解题格式一定要标准.
.
教学过程设计
教学过程设计
教学过程设计
22.3二次根式的加减(第1课时)
教学任务分析
板书设计
课后反思
教学过程设计
教学过程设计
教学过程设计
22.3二次根式的加减(第2课时)
教学任务分析
板书设计
课后反思
教学过程设计
问题与情境
师生行为
设计意图
活动三小试牛刀
练习1 如图21.3-2所示,两个圆的圆心相同,它们的面积分别为12.56cm 2和25.12cm 2,请你求圆环的宽度d (π取3.14).
解:求圆环的宽度d 实际上是求两圆的半径的差;因此 π
π56
.1212.25- 14
.356
.1214.312.25-=
22248-=-=(cm ) 答:圆环的宽度
d =(222-)(cm ).
活动四复习总结
1.数学来源于生活,应用于
生活,因此我们应该热爱生
活,热爱数学;
2.将实际问题转化为数学
问题,只要审清题意弄明
白,就一定可以做出来. 作业: 1.已知236.25≈,求455
44555+-的近似值. 2.如图21.3-3在平行四边形ABCD 中,得DE ⊥AB ,E 点在AB 上,DE =AE =EB =a ,求平行四边形ABCD 的周长.
学生试着自己完整的解决这道题.提醒学生们圆的面积公式,不要用错.
注意:不要忘记实际问题最后是需要答题. 请学生谈一谈自己的收获和感受,适时地加以鼓励.
E
D
C B
A
图21.3-3
利用这道题检测一下学生对将实际问题转化为数学问题的能力,以及计算能力.
激发学生的学习兴趣, 向学生渗透热爱生活的思想教育. 教学过程设计
22.3二次根式的加减(第3课时)
教学任务分析
板书设计
课后反思
教学过程设计
教学过程设计。

相关文档
最新文档