高三调研考试
2025届江门市高三上学期10月调研测试地理试卷+答案

内部资料·注意保存试卷类型:A 江门市2025届普通高中高三调研测试地理本试卷共 6 页,19 小题,满分 100 分。
考试时间 75 分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.做选择题时,必须用 2B 铅笔将答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.答非选择题时,必须用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上作答无效。
5.考试结束后,将答题卡交回。
一、单项选择题(本题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的)重庆,简称“渝”,别称山城、江城,地处长江上游与嘉陵江的交汇处,拥有 3000 余年的建城史。
作为巴蜀地区的门户关口,重庆在历史上发挥了重要的作用。
图 1 为宋朝重庆古城位置图。
据此完成 1-2 题。
图 11.古代,重庆作为巴蜀地区主要门户关口的优势条件是①水运便利②良田充足③水源充沛④易守难攻A.①②B.②③C.①④D.③④2.推测古代商品贸易主要位于A.太平门B.朝天门C.洪崖门D.镇西门高三地理试题第 1 页(共 6 页)南京先锋书店以学术、文化沙龙、咖啡、创意等多种形式相结合的经营模式,为读者提供公共和独立阅读空间的民营书店。
近年该书店的业务拓展主要由城市转向乡村。
2023 年广东省首家先锋书店在开平市塘口镇建成---先锋天下粮仓书店(该书店由上世纪 60 年代的旧筒状粮仓改造而成)。
图2 为先锋天下粮仓书店改建前后对比图。
据此完成 3-5 题。
图23.近年来,先锋书店的业务拓展主要由城市转向乡村的原因是,城市A.融资困难B.市场饱和C.政策收紧D.人口减少4.先锋书店选址开平市塘口镇的主要原因是当地A.消费人口多B.交通条件好C.资源价值高D.消费水平高5.先锋天下粮仓书店的成功运营,有利于①提高城镇化率②促进乡村振兴③保护历史建筑④改善人居环境A.①②B.②③C.①④D.③④中国正在逐步进入深度老龄化阶段,老年人口迁移已逐渐成为人口迁移流动的重要组成。
黄冈市2024-2025学年高三上学期9月调研考试 历史 含答案

黄冈市2024年高三年级9月调研考试历史本试卷共6页,19题。
全卷满分100分。
考试用时75分钟。
祝考试顺利注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并认真核准准考证号条形码上的以上信息,将条形码粘贴在答题卡上的指定位置。
2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑:非选择题用黑色签字笔在答题卡上作答:字体工整,笔迹清楚。
4.考试结束后,请将试卷和答题卡一并上交。
一、选择题:本题共15小题,每小题3分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.考古发现,二里头遗址中心区有多条道路和墙垣,把都邑分为多个方正、规整的网格区域,祭祀区、宫城区和作坊区恰好在中路,且宫城区居于中心,其它重要遗存拱卫在宫城区的周围。
这主要反映出当时A.礼制文化走向成熟B.城市布局凸显专制色彩C.具备王朝国家特征D.交通改善助推经济发展2.甘肃武威磨咀子六号汉墓出土了大量简牍,其中一简背后有“河平(成帝年号)口年四月四日,诸文学弟子出谷五千余斛”一语。
学者认为“本简之墓主人深通礼经,应为西汉末年武威郡之文学官”。
据此可知,西汉后期A.人才选拔促进民族交往B.政府重视边疆地区的社会治理C.厚葬之风契合主流思想D.中央推行因俗而治的民族政策3.《论语》记载,孔子曾赞许曾点对“谦”的领悟和积极向上的生活态度。
但魏晋士人对“谈”的解读聚焦于孔子可能怀有的豁达隐逸之情,并将曾点类化成一位超然脱俗的世外高人。
这一现象出现的主要原因是A.文学自觉和审美观念的更新B.人生态度和价值取向转变C.门阀政治消解士人参政热情D.政治环境和社会思想变化4.下表为刘宋至隋初岭南地区人口数变化情况统计表。
这反映岭南地区省区刘宋时期人口数(公元464年)阶代初期人口数(公元609年)人口效密度(人/平方公里占全国人口%人口数密度(人/平方公里占全国人口%广东375744 1.7 1.25659889 2.99 1.28广西2283600.990.76956345 4.14 1.86合计604104 2.011616234 3.14A.土地兼并程度日益加深B.地域经济差别缩小C.农业生产条件得到改善D.人地矛盾日益突出5.封建和郡县之争实际上处处都和政治现实息息相关。
2024届四川省成都市高三阶段性调研考试试题

2024届四川省成都市高三阶段性调研考试试题一、单选题 (共7题)第(1)题图为核电站的反应堆示意图,下列说法正确的是( )A.水泥防护层主要起保温作用B.镉棒的作用是使快中子变成慢中子C.反应堆放出的热量可直接全部转化为电能D.核反应堆中的核废料需要装入特定的容器深埋地下第(2)题某物理兴趣小组的两位同学对波的干涉特别感兴趣,利用课余时间进行了如下实验探究。
两位同学以相同频率分别在两端甩动水平细绳,形成两列简谐横波甲、乙,已知甲、乙两波源相距8m,甲、乙两波的波速均为,完成一次全振动的时间均为2s,距离乙波源3m的O点处串有一颗红色珠子。
某一时刻的波形图如图所示,从该时刻开始计时。
则下列说法正确的是( )A.两列波的波长均为0.25mB.甩动细绳6s后,红色珠子开始向左传播C.该时刻细绳两端的振动情况相反D.当两列波在O点相遇时,该点的振动加强第(3)题某均匀介质中两持续振动的振源P、Q分别位于x轴上和处,时刻两振源同时开始振动,时刻在x轴上第一次形成如图所示的波形。
则下列说法正确的是( )A.振源P的振动方程为B.振源Q起振方向沿y轴正方向C.两列波在处相遇后,该质点的振动始终加强D.两列波在处相遇后,该质点的振动始终加强第(4)题质量为的物体在4个共点力作用下处于静止状态,其中最大的一个力大小为,最小的一个力大小为。
下列判断正确的是( )A.其他两个力的合力大小可能等于B.其他两个力的合力大小一定为或C.若保持其他力不变,只撤除,物体运动的加速度大小一定是D.若保持其他力不变,瞬间把的方向改变60°,物体由静止开始运动,在最初1秒内的位移大小是第(5)题医学影像诊断设备PET/CT是借助于示踪剂可以聚集到病变部位的特点来发现疾病。
示踪剂常利用同位素作示踪原子标记,其半衰期仅有20min。
可由小型回旋加速器输出的高速质子流轰击获得,下列说法正确的是( )A.用高速质子轰击,生成的同时释放出中子B.用高速质子轰击,生成的同时释放出粒子C.1g的经40min后,剩余的质量为0.75gD.将置于回旋加速器中,其半衰期可能发生变化第(6)题如图所示,一充电后的平行板电容器的两极板相距l.在正极板附近有一质量为M、电荷量为q(q>0)的粒子;在负极板附近有另一质量为m、电荷量为-q的粒子.在电场力的作用下,两粒子同时从静止开始运动.已知两粒子同时经过一平行于正极板且与其相距l的平面.若两粒子间相互作用力可忽略,不计重力,则M∶m为( )A.3∶2B.2∶1C.5∶2D.3∶1第(7)题如图甲所示,在同一介质中,波源分别为与的频率相同的两列机械波在时刻同时起振。
江苏省南京市2024-2025学年高三9月学情调研考试 数学 含答案

南京市2025届高三年级学情调研数 学 2024.09.19 注意事项:1.本试卷考试时间为120分钟,试卷满分150分.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.已知集合A ={x |x -3>0},B ={x |x 2-5x +4>0},则A ∩B =A .(-∞,1)B .(-∞,3)C .(3,+∞)D .(4,+∞)2.已知a x =4,log a 3=y ,则a x +y =A .5B .6C .7D .123.已知|a |=3,|b |=1.若(a +2b )⊥a ,则cos<a ,b >=A .-32B .-33C .33D .324.已知数列{a n }为等差数列,前n 项和为S n .若S 3=6,S 6=3,则S 9=A .-18B .-9C .9D .185.若a 是第二象限角,4sin2α=tan α,则tan α= A .-7 B .-77 C .77D .7 6.甲、乙、丙、丁共4名同学参加某知识竞赛,已决出了第1名到第4名(没有并列名次).甲、乙、丙三人向老师询问成绩,老师对甲和乙说:“你俩名次相邻”,对丙说:“很遗憾,你没有得到第1名”.从这个回答分析,4人的名次排列情况种数为A .4B .6C .8D .127.若正四棱锥的高为8,且所有顶点都在半径为5的球面上,则该正四棱锥的侧面积为A .24B .32C .96D .1288.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,点P 在C 上,点Q 在l 上.若PF =2QF ,PF ⊥QF ,则△PFQ 的面积为A .254B .25C .552D .55二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z ,下列命题正确的是A .若z +1∈R ,则z ∈RB .若z +i ∈R ,则z 的虚部为-1C .若|z |=1,则z =±1D .若z 2∈R ,则z ∈R10.对于随机事件A ,B ,若P (A )=25,P (B )=35,P (B |A )=14,则 A .P (AB )=320 B .P (A |B )=16 C .P (A +B )=910 D .P (―AB )=1211.设函数f (x )=1|sin x |+8|cos x |,则 A .f (x )的定义域为{x |x ≠k π2,k ∈Z } B .f (x )的图象关于x =π4对称 C .f (x )的最小值为5 5 D .方程f (x )=12在(0,2π)上所有根的和为8π三、填空题:本题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上.12.(2x +1x)4展开式中的常数项是 ▲ . 13.与圆柱底面成45°角的平面截圆柱得到如图所示的几何体.截面上的点到圆柱底面距离的最大值为4,最小值为2,则该几何体的体积为 ▲ .(第13题图)14.已知椭圆C 的左、右焦点分别为F 1,F 2,上顶点为B ,直线BF 2与C 相交于另一点A .当cos ∠F 1AB 最小时,C 的离心率为 ▲ .四、解答题;本大题共5小题,共77分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.15.(本小题满分13分)小王早晨7:30从家出发上班,有A ,B 两个出行方选择,他统计了最近100天分别选择A ,B 两个出行方案到达单位的时间,制成如下表格:(1)判断并说明理由:是否有95%的把握认为在8点前到单位与方案选择有关;(2)小王准备下周一选择A方案上班,下周二至下周五选择B方案上班,记小王下周一至下周五这五天中,8点前到单位的天数为随机变量X.若用频率估计概率,求P(X=3).附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d,16.(本小题满分15分)如图,在四面体ABCD中,△ACD是边长为3的正三角形,△ABC是以AB为斜边的等腰直角三角形,E,F分别为线段AB,BC的中点,→AM=2→MD,→CN=2→ND.(1)求证:EF∥平面MNB;(2)若平面ACD⊥平面ABC,求直线BD与平面MNB所成角的正弦值.(第16题图)已知数列{a n },{b n },a n =(-1)n +2n ,b n =a n +1-λa n (λ>0),且{b n }为等比数列.(1)求λ的值;(2)记数列{b n ⋅n 2}的前n 项和为T n .若T i ⋅T i +2=15T i +1(i ∈N *),求i 的值.18.(本小题满分17分)已知 F 1,F 2是双曲线线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,F 1F 2=26,点T (26,10)在C 上.(1)求C 的方程;(2)设直线l 过点D (1,0),且与C 交于A ,B 两点.①若→DA =3→DB ,求△F 1F 2A 的面积;②以线段AB 为直径的圆交x 轴于P ,Q 两点,若|PQ |=2,求直线l 的方程.已知函数f(x)=e x-a+ax2-3ax+1,a∈R.(1)当a=1时,求曲线y=f(x)在x=1处切线的方程;(2)当a>1时,试判断f(x)在[1,+∞)上零点的个数,并说明理由;(3)当x≥0时,f(x)≥0恒成立,求a的取值范围.。
湖南省长沙市2024-2025学年高三上学期调研考试(一)数学试题(解析版)

2025届高三第一次调研考试数学(答案在最后)本试题卷共4页.时量120分钟,满分150分.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}320,20A x x xB x x x =-==--<∣∣,则A B = ()A.{}0,1 B.{}1,0- C.{}0,1,2 D.{}1,0,1-【答案】A 【解析】【分析】由因式分解分别求出高次方程和二次不等式的解集,再由集合的运算得出两个集合的交集。
【详解】∵()()3110x x x x x -=+-=∴{}1,0,1A =-∵()()22210x x x x --=-+<∴()1,2B =-∴{}0,1A B = 故选:A2.已知,m n 是两条不同的直线,,αβ是两个不同的平面,则m ∥α的一个充分条件是()A.m ∥,n n ∥αB.m ∥,βα∥βC.,,m n n m αα⊥⊥⊄D.,m n A n ⋂=∥,m αα⊄【答案】C 【解析】【分析】根据题意,由空间中线面关系以及线面平行的判定定理逐一判断,即可得到结果.【详解】对于A ,由m ∥,n n ∥α可得m α⊂或m ∥α,故A 错误;对于B ,由m ∥,βα∥β可得m α⊂或m ∥α,故B 错误;对于C ,由,,m n n m αα⊥⊥⊄可得m ∥α,故C 正确;对于D ,由,m n A n ⋂=∥,m αα⊄可得,m α相交或m ∥α,故D 错误;故选:C3.20252x ⎫-⎪⎭的展开式中的常数项是()A.第673项B.第674项C.第675项D.第676项【答案】D 【解析】【分析】根据题意,求得展开式的通项公式,结合通项公式,即可求解.【详解】由二项式20252x ⎫-⎪⎭的展开式为20253202521202520252C ()(2)C rrrr r rr T x x--+=-=-⋅,令202530r -=,解得675r =,此时()67567567620252C T =-⋅,所以二项式20252x ⎫⎪⎭的展开式的常数项为第676项.故选:D.4.铜鼓是流行于中国古代南方一些少数民族地区的礼乐器物,已有数千年历史,是作为祭祀器具和打击乐器使用的.如图,用青铜打造的实心铜鼓可看作由两个具有公共底面的相同圆台构成,上下底面的半径均为25cm ,公共底面的半径为15cm ,铜鼓总高度为30cm.已知青铜的密度约为38g /cm ,现有青铜材料1000kg ,则最多可以打造这样的实心铜鼓的个数为()(注:π 3.14≈)A .1B.2C.3D.4【答案】C【解析】【分析】先根据圆台的体积公式计算求解铜鼓的体积,然后根据材料体积求解即可.【详解】依题意圆台的上底面半径为15cm ,下底面半径为25cm ,高为15cm ,所以铜鼓的体积()221215251525π153V =⨯⨯++⨯⨯≈38465()3cm,又10000003.25384658≈⨯,故可以打造这样的实心铜鼓的个数为3.故选:C5.已知定义在()0,∞+上的函数()f x 满足()()()1f x x f x <-'(()f x '为()f x 的导函数),且()10f =,则()A.()22f <B.()22f >C.()33f <D.()33f >【答案】D 【解析】【分析】由已知可得()()21xf x f x x x ->',令()()ln f x g x x x=-,可得()g x 在(0,)+∞上单调递增,进而可得()n 33l 3f >,()n 22l 2f >,可得结论.【详解】由题意可得()()xf x f x x '->,即()()21xf x f x x x->',令()()ln f x g x x x=-,则()()()210xf x f x g x x x-'=->',所以()g x 在(0,)+∞上单调递增,因为()10f =,所以()()11ln10g f =-=,所以()()310g g >=,所以()3ln 303f ->,所以()3ln 333f >>,所以()()210g g >=,所以()2ln 202f ->,所以()n 22l 2f >,又2ln 22<,故()2f 与2的大小关系不确定.故选:D.6.已知过抛物线2:2(0)C y px p =>的焦点F 且倾斜角为π4的直线交C 于,A B 两点,M 是AB 的中点,点P 是C 上一点,若点M 的纵坐标为1,直线:3230l x y ++=,则P 到C 的准线的距离与P 到l 的距离之和的最小值为()A.26 B.26C.13D.26【答案】D 【解析】【分析】首先联立AB 与抛物线方程,结合已知、韦达定理求得p ,进一步通过抛物线定义、三角形三边关系即可求解,注意检验等号成立的条件.【详解】由题得C 的焦点为,02p F ⎛⎫⎪⎝⎭,设倾斜角为π4的直线AB 的方程为2p y x =-,与C 的方程22(y px =联立得2220y py p --=,设1,1,2,2,则1222,1y y p p +===,故C 的方程为212,,02y x F ⎛⎫=⎪⎝⎭.由抛物线定义可知点P 到准线的距离等于点P 到焦点F 的距离,联立抛物线2:2C y x =与直线:3230l x y ++=,化简得291090x x ++=,由Δ1004992240=-⨯⨯=-<得C 与l 相离.,,Q S R 分别是过点P 向准线、直线:3230l x y ++=以及过点F 向直线:3230l x y ++=引垂线的垂足,连接,FP FS ,所以点P 到C 的准线的距离与点P 到直线l 的距离之和PQ PS PF PS FS FR +=+≥≥,等号成立当且仅当点P 为线段FR 与抛物线的交点,所以P 到C 的准线的距离与P 到l 的距离之和的最小值为点1,02F ⎛⎫⎪⎝⎭到直线:323l x y ++=0的距离,即26FR ==.故选:D.7.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭,对于任意的x ∈R ,ππ1212f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,()π02f x f x ⎛⎫+-= ⎪⎝⎭都恒成立,且函数()f x 在π,010⎛⎫- ⎪⎝⎭上单调递增,则ω的值为()A.3B.9C.3或9D.【答案】A 【解析】【分析】根据正弦型函数的单调性先确定周期的取值范围,从而缩小ω的取值范围,结合正弦型三角函数的对称性可得符合的ω的取值为3ω=或9,分类讨论验证单调性即可得结论.【详解】设函数()f x 的最小正周期为T ,因为函数()f x 在π,010⎛⎫- ⎪⎝⎭上单调递增,所以π0102T⎛⎫--≤ ⎪⎝⎭,得2ππ5T ω=≥,因此010ω<≤.由ππ1212f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭知()f x 的图象关于直线π12x =对称,则11πππ,122k k ωϕ⋅+=+∈Z ①.由()π02f x f x ⎛⎫+-= ⎪⎝⎭知()f x 的图象关于点π,04⎛⎫⎪⎝⎭对称,则22ππ,4k k ωϕ⋅+=∈Z ②.②-①得()2112πππ,,62k k k k ω⋅=--∈Z ,令21k k k =-,则63,k k ω=-∈Z ,结合010ω<≤可得3ω=或9.当3ω=时,代入①得11ππ,4k k ϕ=+∈Z ,又π2ϕ<,所以π4ϕ=,此时()π2sin 34f x x ⎛⎫=+⎪⎝⎭,因为πππ32044x -<+<,故()f x 在π,010⎛⎫- ⎪⎝⎭上单调递增,符合题意;当9ω=时,代入①得1ππ4k ϕ=-+,1k ∈Z ,又π2ϕ<,所以π4ϕ=-,此时()π2sin 94f x x ⎛⎫=- ⎪⎝⎭,因为23πππ92044x -<-<-,故()f x 在π,010⎛⎫-⎪⎝⎭上不是单调递增的,所以9ω=不符合题意,应舍去.综上,ω的值为3.故选:A .8.如图,已知长方体ABCD A B C D -''''中,2AB BC ==,AA '=,O 为正方形ABCD 的中心点,将长方体ABCD A B C D -''''绕直线OD '进行旋转.若平面α满足直线OD '与α所成的角为53︒,直线l α⊥,则旋转的过程中,直线AB 与l 夹角的正弦值的最小值为()(参考数据:4sin535︒≈,3cos535︒≈)A.310B.410- C.310+ D.310+【答案】A 【解析】【分析】求出直线OD '与C D ''的夹角,可得C D ''绕直线OD '旋转的轨迹为圆锥,求直线OD '与l 的夹角,结合图形可知,当l 与直线D E '平行时,C D ''与l 的夹角最小,利用三角函数知识求解即可.【详解】在长方体ABCD A B C D -''''中,//AB C D '',则直线AB 与l 的夹角等于直线C D ''与l 的夹角.长方体ABCD A B C D -''''中,2AB BC ==,AA '=,O 为正方形ABCD 的中心点,则2OD OC =='',又2C D ''=,所以OC D '' 是等边三角形,故直线OD '与C D ''的夹角为60︒.则C D ''绕直线OD '旋转的轨迹为圆锥,如图所示,60C D O ∠=''︒.因为直线OD '与α所成的角为53︒,l α⊥,所以直线OD '与l 的夹角为37︒.在平面C D O ''中,作D E ',D F ',使得37OD E OD F '∠=∠='︒.结合图形可知,当l 与直线D E '平行时,C D ''与l 的夹角最小,为603723C D E ∠=︒-︒=''︒,易知603797C D F ∠=︒+︒=''︒.设直线C D ''与l 的夹角为ϕ,则2390ϕ︒≤≤︒,故当23ϕ=︒时sin ϕ最小,而()sin23sin 6037sin60cos37cos60sin37︒=︒-︒=︒︒-︒︒433sin60sin53cos60cos5310-=︒︒-︒︒≈,故直线AB 与l 的夹角的正弦值的最小值为43310-.故选:A【点睛】关键点点睛:解题中在平面C D O ''中,作D E ',D F ',使得37OD E OD F '∠=∠='︒,结合图形可知,当l 与直线D E '平行时,C D ''与l 的夹角最小,为603723C D E ∠=︒-︒=''︒是关键.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某机械制造装备设计研究所为推进对机床设备的优化,成立,A B 两个小组在原产品的基础上进行不同方向的研发,A 组偏向于智能自动化方向,B 组偏向于节能增效方向,一年后用简单随机抽样的方法各抽取6台进行性能指标测试(满分:100分),测得A 组性能得分为:91,81,82,96,89,73,B 组性能得分为:737096799488,,,,,,则()A.A 组性能得分的平均数比B 组性能得分的平均数高B.A 组性能得分的中位数比B 组性能得分的中位数小C.A 组性能得分的极差比B 组性能得分的极差大D.B 组性能得分的第75百分位数比A 组性能得分的平均数大【答案】AD 【解析】【分析】根据计算公式分别计算,A B 两个小组的平均数、中位数、极差、第75百分位数,再对各选项逐一判断即可.【详解】由题意可得A 组性能得分的平均数为91818296897385.36+++++≈,B 组性能得分的平均数为73709679948883.36+++++≈,所以A 组性能得分的平均数比B 组性能得分的平均数高,A 说法正确;A 组性能得分738182899196,,,,,的中位数为828985.52+=,B 组性能得分707379889496,,,,,的中位数为798883.52+=,所以A 组性能得分的中位数比B 组性能得分的中位数大,B 说法错误;A 组性能得分的极差为967323-=,B 组性能得分的极差为967026-=,所以A 组性能得分的极差比B 组性能得分的极差小,C 说法错误;B 组性能得分707379889496,,,,,共6个数据,60.75 4.5⨯=,所以B 组性能得分的第75百分位数为94,比A 组性能得分的平均数大,D 说法正确;故选:AD10.嫁接,是植物的人工繁殖方法之一,即把一株植物的枝或芽,嫁接到另一株植物的茎或根上,使接在一起的两个部分长成一个完整的植株.已知某段圆柱形的树枝通过利用刀具进行斜辟,形成两个椭圆形截面,如图所示,其中,AC BD 分别为两个截面椭圆的长轴,且,,,A C B D 都位于圆柱的同一个轴截面上,AD 是圆柱截面圆的一条直径,设上、下两个截面椭圆的离心率分别为12,e e ,则能够保证CD ≥的12,e e 的值可以是()A.12,32e e == B.121,25e e == C.12340,27e e == D.1232,34e e ==【答案】AD 【解析】【分析】根据勾股定理,结合离心率公式可得22222212111,1r r e n e m -=-=,即可根据n ≥得222111211e e -≥-,逐一代入即可求解.【详解】设2,2,2,AD r AB m CD n ===且n ≥,故BD AC ===故12e e ==,故22222212111,1r r e n e m-=-=,由于n ≥,故222n m ≥,故222222222111211r e n m r m e n -==≥-,即222111211e e -≥-,对于A,12,32e e ==,满足2221112211e e -=≥-,故A 正确,对于B,121,25e e ==,22211142131e e -=<-,故B 错误,对于B,12,27e e ==,2221112721401e e -=<-,故C 错误,对于D,12,34e e ==,22211172121e e -=>-,故D 正确,故选:AD11.对于任意实数,x y ,定义运算“⊕”x y x y x y ⊕=-++,则满足条件a b b c ⊕=⊕的实数,,a b c 的值可能为()A.0.5log 0.3a =-,0.30.4b =,0.5log 0.4c =B.0.30.4a =,0.5log 0.4b =,0.5log 0.3c =-C.0.09a =,0.10.1b =e ,10ln 9c =D.0.10.1e a =,10ln 9b =,0.09c =【答案】BD 【解析】【分析】由a b b c ⊕=⊕,可得a b a b b c b c -++=-++,可得,b a b c ≥≥,故只需判断四个选项中的b 是否为最大值即可,利用函数函数0.5log y x =为减函数,0.4x y =为减函数可判断AB ;构造函数()()[)1e ,0,1x f x x x =-∈,利用单调性可得0.10.10.09e <,进而再构造函数()()[)ln 1,0,1ex x h x x x =+-∈,求导可得()()()21e e 1x xx h x x --'=-,再构造函数()()21e xx x ω=--,利用单调性可判断CD .【详解】由a b b c ⊕=⊕,可得a b a b b c b c -++=-++,即a b b c c a ---=-,若,a b c b ≤≤,可得a b b c c a ---=-,符合题意,若,a b c b ≤>,可得2a b b c b a c ---=--,不符合题意,若,a b c b >≤,可得a b b c a c ---=-,不符合题意,若a b c b >>,,可得2a b b c c a b ---=+-,不符合题意,综上所述0a b -≤,0b c -≥,可得,b a b c ≥≥,故只需判断四个选项中的b 是否为最大值即可.对于A ,B ,由题知0.50.50.510log 0.3log log 103-=<=,而0.3000.40.41<<=,0.50.5log 0.4log 0.51>=,所以0.30.50.5log 0.30.4log 0.4-<<.(点拨:函数0.5log y x =为减函数,0.4x y =为减函数),对于A ,a b c <<;对于B ,c a b <<,故A 错误,B 正确.对于C ,D ,()0.10.10.10.090.9e 10.1e 0.1e ==-,(将0.9转化为10.1-,方便构造函数)构造函数()()[)1e ,0,1x f x x x =-∈,则()e xf x x '=-,因为[)0,1x ∈,所以()()0,f x f x '≤单调递减,因为()01f =,所以()0.11f <,即0.10.9e 1<,所以0.10.10.09e <.(若找选项中的最大值,下面只需判断0.10.1e 与10ln 9的大小即可)()10.10.10.10.10.1100.190.190.1ln ln ln ln 10.1e 9e 10e 10e -⎛⎫-=-=+=+- ⎪⎝⎭,构造函数()()[)ln 1,0,1e x x h x x x =+-∈,则()()()21e 11e 1e 1x x xx x h x x x ---=--'=-,因为[)0,1x ∈,所以()e 10xx ->,令()()21e x x x ω=--,则()()21e xx x ω=---',当[)0,1x ∈时,()()0,x x ωω'<单调递减,因为()00ω=,所以()0x ω≤,即()()0,h x h x '≤单调递减,又()00h =,所以()0.10h <,即()0.10.1ln 10.10e+-<,所以0.10.110ln e 9<.综上,0.10.1100.09ln e 9<<.对于C ,a b c <<;对于D ,c a b <<,故C 错误,D 正确.(提醒:本题要比较0.09与10ln 9的大小关系的话可以利用作差法判断,即()11090.09ln 0.10.9ln 10.90.9ln0.9910-⎛⎫-=⨯-=-⨯+ ⎪⎝⎭,构造函数()()(]1ln ,0,1g x x x x x =-+∈,则()()()221112112x x x x g x x x x x+-+-++='=-+=,因为(]0,1x ∈,所以()()0,g x g x '≥单调递增,因为()10g =,所以()0.90g <,即100.09ln 09-<,所以100.09ln 9<)故选:BD.【点睛】方法点睛:本题考查定义新运算类的题目,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,构造函数,利用函数的单调性与最值比较数的大小.三、填空题:本题共3小题,每小题5分,共15分.12.在复平面内,复数z 对应的点为()1,1,则21zz-=+______.【答案】13i 55-【解析】【分析】根据复数的几何意义可得1i z =+,即可由复数除法运算求解.【详解】由于复数z 对应的点为()1,1,所以1i z =+,故()()()()1i 2i 21i 13i 13i12i 2i 2i 555z z -----=+++-===-,故答案为:13i55-13.写出一个同时满足下列条件①②③的数列的通项公式n a =______.①m na a m n--是常数,*,m n ∈N 且m n ≠;②652a a =;③的前n 项和存在最小值.【答案】4n -(答案不唯一)【解析】【分析】根据等差数列的特征,不妨选择等差数列,然后根据题目条件利用等差基本量的运算求解通项公式,即得解.【详解】由题意,不妨取数列为等差数列,设其首项为1a ,公差为d ,由②可知()61515224a a d a a d =+==+,则13a d =-,又m na a d m n-=-是常数,满足①,由③的前n 项和存在最小值,故等差数列单调递增,取1d =,则13a =-,故4n a n =-,此时当3n =或4n =时,的前n 项和取到最小值为6-,所以同时满足条件①②③的数列的一个通项公式4n a n =-.故答案为:4n -(答案不唯一)14.清代数学家明安图所著《割圆密率捷法》中比西方更早提到了“卡特兰数”(以比利时数学家欧仁・查理・卡特兰的名字命名).有如下问题:在n n ⨯的格子中,从左下角出发走到右上角,每一步只能往上或往右走一格,且走的过程中只能在左下角与右上角的连线的右下方(不能穿过,但可以到达该连线),则共有多少种不同的走法?此问题的结果即卡特兰数122C C nn n n --.如图,现有34⨯的格子,每一步只能往上或往右走一格,则从左下角A 走到右上角B 共有__________种不同的走法;若要求从左下角A 走到右上角B 的过程中只能在直线AC 的右下方,但可以到达直线AC ,则有__________种不同的走法.【答案】①.35②.14【解析】【分析】根据题意,由组合数的意义即可得到结果,结合卡特兰数的定义,即可得到结果.【详解】从左下角A 走到右上角B 共需要7步,其中3步向上,4步向右,故只需确定哪3步向上走即可,共有37C 35=种不同的走法;若要求从左下角A 走到右上角B 的过程中只能在直线AC 的右下方(不能穿过,但可以到达该连线),则由卡特兰数可知共有4388C C 14-=种不同的走法,又到达右上角D 必须最后经过B ,所以满足题目条件的走法种数也是14.故答案为:35;14四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知M 为圆229x y +=上一个动点,MN 垂直x 轴,垂足为N ,O 为坐标原点,OMN 的重心为G .(1)求点G 的轨迹方程;(2)记(1)中的轨迹为曲线C ,直线l 与曲线C 相交于A 、B 两点,点(0,1)Q ,若点)3,0H 恰好是ABQ的垂心,求直线l 的方程.【答案】(1)()22104x y xy +=≠(2)1635y x =-【解析】【分析】(1)设()()00,,,G x y M x y ,根据G 为OMN 的重心,得00233x x y y ⎧=⎪⎪⎨⎪=⎪⎩,代入22009x y +=,化简即可求解.(2)根据垂心的概念求得l k =l 方程,与椭圆联立韦达定理,利用AH BQ ⊥得2211y x -=-,将韦达定理代入化简即可求解.【小问1详解】设()()00,,,G x y M x y ,则()0,0N x ,因G 为OMN 的重心,故有:00233x x y y ⎧=⎪⎪⎨⎪=⎪⎩,解得003,32x x y y ==,代入22009x y +=,化简得2214x y +=,又000x y ≠,故0xy ≠,所以G 的轨迹方程为()22104x y xy +=≠.【小问2详解】因H 为ABQ 的垂心,故有,AB HQ AH BQ ⊥⊥,又33HQ k ==-,所以l k =,故设直线l的方程为()1y m m =+≠,与2214x y +=联立消去y得:2213440++-=x m ,由2Δ208160m =->得213m <,设()()1122,,,A x y B x y,则2121244,1313m x x x x --+==,由AH BQ ⊥2211y x -=-,所以()211210x x mm -+++-=,所以)()21212410x x m x x m m +-++-=,所以()()()22444241130m m m m m ---+-=,化简得2511160m m +-=,解得1m =(舍去)或165m =-(满足Δ0>),故直线l 的方程为165y =-.16.如图,四边形ABDC 为圆台12O O 的轴截面,2AC BD =,圆台的母线与底面所成的角为45°,母线长,E 是 BD的中点.(1)已知圆2O 内存在点G ,使得DE ⊥平面BEG ,作出点G 的轨迹(写出解题过程);(2)点K 是圆2O 上的一点(不同于A ,C ),2CK AC =,求平面ABK 与平面CDK 所成角的正弦值.【答案】(1)答案见解析(2)47035【解析】【分析】(1)利用线面垂直的判定定理,过B 作下底面的垂线交下底面于点G ,过G 作BE 的平行线,交圆2O 于1G ,2G ,即可求出结果;(2)建立空间直角坐标系,根据条件,求出平面ABK 和平面CDK ,利用面面角的向量法,即可求出结果.【小问1详解】E 是 BD的中点,DE BE ∴⊥.要满足DE ⊥平面BEG ,需满足DE BG ⊥,又DE ⊂ 平面BDE ,∴平面BEG ⊥平面BDE 如图,过B 作下底面的垂线交下底面于点G ,过G 作BE 的平行线,交圆2O 于1G ,2G ,则线段12G G 即点G 的轨迹.【小问2详解】易知可以2O 为坐标原点,2O C ,21O O 所在直线分别为y ,z 轴建立如图所示的空间直角坐标系2O xyz -,,母线与底面所成角为45°,2AC BD =,22O A ∴=,11O B =,121O O =,取K 的位置如图所示,连接2O K,2CK AC = ,260CO K ∴∠=︒,即230xO K ∠=︒,则)K,()0,2,0A -,()0,1,1B -,()0,2,0C ,()0,1,1D ,则)AK =,)2,1BK =-,)1,0CK =-,)1DK =-.设平面ABK 的法向量为()111,,n x y z =,则00n AK n BK ⎧⋅=⎪⎨⋅=⎪⎩,即111113020y y z +=+-=,令1x =11z =,11y =-,)1,1n ∴=-.设平面CDK 的法向量为()222,,m x y z =,则00m CK m DK ⎧⋅=⎪⎨⋅=⎪⎩,即222200y z -=-=,令2x =,则23z =,23y =,)m ∴=.设平面ABK 与平面CDK 所成的角为θ,则cos 35n mn mθ⋅===⋅ ,470sin 35θ∴==.17.素质教育是当今教育改革的主旋律,音乐教育是素质教育的重要组成部分,对于陶冶学生的情操、增强学生的表现力和自信心、提高学生的综合素质等有重要意义.为推进音乐素养教育,培养学生的综合能力,某校开设了一年的音乐素养选修课,包括一个声乐班和一个器乐班,已知声乐班的学生有24名,器乐班的学生有28名,课程结束后两个班分别举行音乐素养过关测试,且每人是否通过测试是相互独立的.(1)声乐班的学生全部进行测试.若声乐班每名学生通过测试的概率都为p (01p <<),设声乐班的学生中恰有3名通过测试的概率为()fp ,求()f p 的极大值点0p .(2)器乐班采用分层随机抽样的方法进行测试.若器乐班的学生中有4人学习钢琴,有8人学习小提琴,有16人学习电子琴,按学习的乐器利用分层随机抽样的方法从器乐班的学生中抽取7人,再从抽取的7人中随机抽取3人进行测试,设抽到学习电子琴的学生人数为ζ,求ζ的分布列及数学期望.【答案】(1)18(2)分布列见解析,()127E ζ=【解析】【分析】(1)根据独立重复试验求出概率,再利用导数求极值;(2)先借助分层抽样确定随机变量ζ的所有可能取值,求出其分布列,最后求期望.【小问1详解】24名学生中恰有3名通过测试的概率()()213324C 1f p p p =⋅-,则()()()()()212020323322424C 31211C 3118f p p p p p p pp '⎡⎤=---=⋅--⎣⋅⎦,01p <<,令()0f p '=,得18p =,所以当108p <<时,()0f p '>,()f p 单调递增;当118p <<时,()0f p '<,()f p 单调递减,故()f p 的极大值点018p =.【小问2详解】利用分层随机抽样的方法从28名学生中抽取7名,则7名学生中学习钢琴的有1名,学习小提琴的有2名,学习电子琴的有4名,所以ζ的所有可能取值为0,1,2,3,()3337C 10C 35P ζ===,()213437C C 121C 35P ζ===,()123437C C 182C 35P ζ===,()3437C 43C 35P ζ===,则随机变量ζ的分布列为ζ0123P13512351835435()112184120123353535357E ζ=⨯+⨯+⨯+⨯=.18.已知数列为等比数列,为等差数列,且112a b ==,858a a =,48a b =.(1)求,的通项公式;(2)数列()1122241n n b ππ⎤⎛⎫-+ ⎪⎥⎝⎭⎦⎧⎫-⋅⎨⎬⎩⎭的前n 项和为n S ,集合*422N n n n S b A nt n n a ++⎧⎫⋅⎪⎪=≥∈⎨⎬⋅⎪⎪⎩⎭,共有5个元素,求实数t 的取值范围;(3)若数列{}n c 中,11c =,()22log 2114nn n a c n b =≥-,求证:1121231232n c c c c c c c c c c +⋅+⋅⋅++⋅⋅< .【答案】(1)2n n a =,2n b n =(2)147(25,]4.(3)证明见解析【解析】【分析】(1)设数列的公比为q ,数列的公差为d ,由已知易得38q =,82716b d =+=,可求n a ,n b ;(2)设数列()1122241n nn d b ππ⎤⎛⎫-+ ⎪⎥⎝⎭⎦=-⋅,可求得441424312848n n n n d d d d n ---+++=-,4nS =(6416)n n +,进而可得422(328)(2)2n n nn S b n n na ++++= ,可得(1)(2)(3)(4)()f f f f f n <>>>> ,可求t 的取值范围为147(25,]4.(3)123n c c c c ⋅⋅ 112[]!(1)!n n =-+,进而计算可得不等式成立.【小问1详解】设数列的公比为q ,数列的公差为d ,则由858a a =,38q =,所以2q =,所以112n nn a a q -==,416a =,即82716b d =+=,所以2=d ,所以1(1)2(1)22n b b n d n n =+-=+-⨯=;【小问2详解】设数列()1122241n nn d b ππ⎤⎛⎫-+ ⎪⎥⎝⎭⎦=-⋅,则22224414243441424312848n n n n n n n n d d d d b b b b n ------+++=+--=-,所以412344342314(1284880)()()2n n n n n n n S d d d d d d d d ----+=++++++++=(6416)n n =+,4222(6416)2(2)(328)(2)22n n n nn S b n n n n na +++++++== ,令(328)(2)()2n n n f n ++=,1(3240)(3)(328)(2)(1)()22n nn n n n f n f n ++++++-=-()22144113288822n nn n n n +--+---==,可得(1)(2)(3)(4)()f f f f f n <>>>> ,故当2n =时,()f n 最大,且147(1)60(5)(6)254f f f ===,,所以147254t <≤,即t 的取值范围为147(25,4.【小问3详解】由11,c =222log (2)11(1)(1)14n n n a n nc n n n n b ===≥-+--,则当2n ≥时,()()()1232311324113451n n n c c c c n n n n ⋅⋅=⨯⨯⨯⨯=⨯⨯-+⨯⨯⨯⨯⨯+ 211112[]2[](1)!(1)!!(1)!n n n n n n +-===-+++,当1n =时,11c =也满足上式,所以12*3112[](N )!(1)!n n n c n c c c =-⋅⋅∈+ ,1121231231111112[1]222!2!3!!(1)!(1)!n c c c c c c c c c c n n n =-+-++-=-⋅<++⋅+⋅⋅+⋅++ ,所以原不等式成立.19.设有n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪⋅⋅⋅ ⎪⎝⎭ ,12n b b b b ⎛⎫⎪ ⎪= ⎪⋅⋅⋅ ⎪⎝⎭ ,称1122,n n a b a b a b a b ⎡⎤=++⋅⋅⋅+⎣⎦ 为向量a 和b 的内积,当,0a b ⎡⎤=⎣⎦ ,称向量a 和b 正交.设n S 为全体由1-和1构成的n 元数组对应的向量的集合.(1)若1234a ⎛⎫⎪⎪= ⎪⎪⎝⎭,写出一个向量b ,使得,0a b ⎡⎤=⎣⎦.(2)令[]{},,n B x y x y S =∈.若m B ∈,证明:m n +为偶数.(3)若4n =,()4f 是从4S 中选出向量的个数的最大值,且选出的向量均满足,0a b ⎡⎤=⎣⎦ ,猜测()4f 的值,并给出一个实例.【答案】(1)1110b ⎛⎫⎪⎪= ⎪- ⎪⎝⎭(答案不唯一)(2)证明见解析(3)()44f =,答案见解析.【解析】【分析】(1)根据定义写出满足条件的即可;(2)根据,n x y S ∈,结合定义,求出[],x y ,即可得证;(3)利用反证法求证.【小问1详解】由定义,只需满足13420234b b b b +++=,不妨取1110b ⎛⎫⎪⎪= ⎪- ⎪⎝⎭(答案不唯一).【小问2详解】对于m B ∈,1i =,2,⋅⋅⋅,n ,存在12n x x x x ⎛⎫ ⎪ ⎪= ⎪⋅⋅⋅ ⎪⎝⎭ ,{}1,1i x ∈-,12n y y y y ⎛⎫ ⎪ ⎪= ⎪⋅⋅⋅ ⎪⎝⎭,{}1,1i y ∈-,使得[],x y m = .当=i i x y 时,1i i x y =;当≠i i x y 时,1=-i i x y .令1,0,i i i ii x y x y λ=⎧=⎨≠⎩,1λ==∑n i i k .所以[]()1,2n i i i x y x y k n k k n ===--=-∑ .所以22+=-+=m n k n n k 为偶数.【小问3详解】当4n =时,可猜测互相正交的4维向量最多有4个,即()44f =.不妨取11111a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,21111a -⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭ ,31111a -⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭ ,41111a ⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭,则有[]12,0a a = ,[]13,0a a = ,[]14,0a a = ,[]23,0a a = ,[]24,0a a = ,[]34,0a a = .若存在5a ,使[]15,0a a = ,则51111a -⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭ 或1111⎛⎫ ⎪- ⎪ ⎪ ⎪-⎝⎭或1111⎛⎫ ⎪ ⎪ ⎪- ⎪-⎝⎭.当51111a -⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭时,[]45,4a a =- ;当51111a ⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭时,[]25,4a a =- ;当51111a ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭时,[]35,4a a =- ,故找不到第5个向量与已知的4个向量互相正交.。
2024山东省实验中学高三下学期2月调研考试英语和答案

山东省实验中学2024届高三调研考试英语试题(本试卷共10页,共三部分:全卷满分120分,考试用时100分钟)注意事项:1. 答卷前,先将自己的姓名、准考证号填写在试卷和答题纸上。
2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 非选择的作答:用0. 5mm黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
第一部分阅读(共两节,满分50分)第一节(共15小题:每小题2. 5分,满分37. 5分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项。
AChoosing SubjectsWhen making course option decisions at our school, we recommend the following things be taken into consideration.Why students should choose a subjectWhy students should NOT choose asubjectAbilityThe student has a natural talent for a particular subjectarea.The student thinks that it will be an easy option.InterestThe student enjoys studying the subject, which will helpkeep them motivated when things get tough.The student’s friends are doing it so they think it will be fun.FutureIt relates to the student’s career plan and will help themdevelop relevant skills for their future.The student did not have time to research their options properly.AdviceThe student has discussed their options with their teachersand parents and they have agreed it is a good idea.The student is only doing the subject because someone else told them to do it.University entrance requirements are set by the British university admissions and will differ depending on theuniversity and courses selected. It is important to thoroughly research courses before choosing A-Level subjects and staff are available to guide students and parents in this area.Careers and future optionsStudents are given an opportunity to broaden their knowledge and understanding of the nature and demands of a variety of careers. They will receive career talks and presentations from a variety of employers and have the opportunity to visit universities.Further researchAs part of the option process. students are encouraged to carry out additional research to help them with their selection.1. What should a student consider for choosing a subject?A. Friends’ preferences.B. Difficulty of subjects.C. Teachers’ expectations.D. Relation to occupations.2. What is included in the subject-selecting process?A. Engaging students in college tours.B. Offering lectures on A-Level subjects.C. Guaranteeing a suitable future job.D Conducting various scientific research..3. Where is the text probably taken from?A. An exam paper.B. A teaching plan.C. A school brochure.D. An academic article.BDo you know how much India struggles to gather the waste plastic water bottles? According to a Central Pollution Control Board (CPCB) report from 2012, India generates 15, 000 tonnes of plastics a day, of which the gathered ones only achieve 60%. The trashed-but-not-gathered plastic waste leads to land and water pollution. posing serious threat to the environment.After seeing that, Ankur Chawla, a drink expert, undertook research to find a solution, after which he realised the biggest problem the country faced was disposing of plastic waste. To address it, he wanted to come up with a solution where they do not add to the problem of waste. Fortunately, Ankur was not alone. He met Bhrigu Seth who was into green farming. Both of them found that they shared a common goal and it didn’t take long for them to draft a plan of action. It is estimated that over 90 percent of aluminium(铝) drink cans in India are recycled.Instead, 70 percent of the cans are manufactured through recycled waste. After going through challenges at hand, the pair made up their minds.Before taking the next step. both co-founders visited five-star hotels and took samples of water in aluminium cans, asking them whether they would give it a shot if something like that comes in the market. The pair received an overwhelmingly positive response. They then determined to launch Responsible Whatr, natural spring water drink packed in an aluminium can to solve the problem of waste plastic water bottles.As one of India’s first natural spring water drink, Responsible Whatr offered an environmentally friendly and endlessly recyclable aluminium can. It’s a non-alcoholic drink that was launched with a vision for an eco-friendly future and an agenda to reduce single-use plastic pollution.Going forward, Ankur and Bhrigu aim to cooperate with airports and ecommerce gates which would help them in directly reaching the homes of high networth individuals (HNIs). They also plan to tie up with corporate firms and cinema halls and join hands with NGOs that are fighting for the conservation of beaches and oceans.4What inspired Ankur to conduct his research?.A. Plastics remained the major bottle material.B. Uncollected plastics caused severe pollution.C. Plastics accounted for most of the daily waste.D. The amount of plastic waste was beyond control.5. What was Ankur and Bhrigu’s solution to the problem?A. Creating a new packaging design.B. Developing an alternative to plastics.C. Launching a rubbish sorting program.D. Increasing the recycling of plastic cans.6. What was Responsible Whatr aimed at?A. Removing plastic pollution.B. Promoting aluminium cans.C. Advertising non-alcoholic drinks.D. Advocating a sustainable approach.7. How do Ankur and Bhrigu plan to expand their market?A. By cooperating with NHIs.B. By introducing new products.C. By targeting profitable NGOs.D. By establishing diverse channels.CA new finding from Cambridge scientists has shown that an artificial intelligent (AI) system can acquire features of the brains of humans in order to solve tasks.“Not only is the brain great at solving complex problems, but it does so while using very little energy. In ournew work we show that considering the brains’ problem-solving abilities alongside its goal of spending as few resources as possible can help us understand why brains look like they do, ” said Jascha Achterberg, a scholar at the University of Cambridge.In a study published in Nature Machine Intelligence, Achterberg and his colleagues created an artificial system intended to model a simplified version of the brain. Instead of real neurons (神经元) in brains, the system used computational nodes(节点).The researchers gave the system a simple task to complete, where it had to combine multiple pieces of information to decide upon the shortest route to get to the destination. One of the reasons the team chose this particular task is that to complete it, the system needs to maintain a number of elements-start location, end location and intermediate steps-and once it has learned to do the task reliably, it is possible to observe, at different moments in a trial, which nodes are important.Initially, the system does not know how to complete the task and makes mistakes. But when it is given feedback it gradually learns to get better at the task. The system then repeats the task until eventually it learns to perform it correctly.Co-author Professor Duncan Astle said, “This simple task forces artificial systems to produce some quite complicated characteristics. Interestingly, they are characteristics shared by biological systems. I think that tells us something fundamental about why our brains are organised the way they are.” The team also believes their findings are likely to be of interest to the AI community, too, where they could allow for the development of more efficient systems.8. Which best describes the brains of humans according to the text?A. Intelligent.B. Efficient.C. Adaptive.D. Imaginative.9. Why did researchers assign the route-finding task?A. To require decision-making process.B. To complete it without any effort.C. To result in various node sizes.D. To involve specific procedures.10. What can we infer about the system from the last two paragraphs?A. It shows limits of artificial intelligence.B. It needs human instructions to progress.C. It performs complicated tasks by learning.D. It has much in common with human brains.11. What is the research team’s attitude toward the finding?A. Cautious.B. Enthusiastic.C. Hopeful.D. Skeptical.DMost people would be terrified of entering waters with crocodiles (鳄鱼) but not Sao Chan. Like others livingin a jungle village, the 73-year-old farmer says the Siamese crocodiles found in the waterways may look ferocious, but they should not be treated with prejudice. “If we come close to them, they just run away,” Chan says.He’s right. There have been extremely few reported attacks by Siamese crocodiles on humans in the world, and reportedly none anywhere in Cambodia. Instead, it’s the crocodiles that have every reason to fear people. Once common throughout Southeast Asia, the particularly shy Siamese crocodile, which can grow up to 10 feet long, was for decades hunted for its skin and meat to such an extent that, in the early 1990s, the species was thought to be extinct in the wild.Some of them survived in the Cardamoms, however, where populations of the reptiles, likely numbering fewer than 200 individuals in total, were rediscovered in 2000. Since then, local people have conducted regular patrols (巡逻) to protect them from threats. While the patrols and other conservation efforts have helped prevent the extinction of the Siamese crocodiles, concerns about the species’ long-term survival have remained because population numbers have stayed largely flat since their rediscovery.In 2022, conservationists have introduced more Siamese crocodiles into the wild than ever before, not just in the Cardamoms but for the first time into a wildlife reserve in the northern part of the country, where the crocodiles historically were found. Advances in genetic testing have identified crocodiles suitable for release, and satellite tracking of reintroduced crocodiles has improved protection efforts.“We have a long way to go, but the potential comeback of the Siamese crocodile could be Cambodia’s most successful conservation story,” says Pablo Sinovas, who leads a nonprofit reintroducing the animals. “Its survival isn’t just an ecological necessity, but a symbolic matter of urgency if we have any hope of preserving nature on Earth.”12. What does the underlined word “ferocious” in Paragraph 1 mean?A. Violent.B. Friendly.C. Ugly.D. Abnormal.13. What put Siamese crocodiles on the edge of extinction?A. Habitat loss. B. Water pollution.C. Human activities.D. Poor adaptability.14. Why are protectors worried about Siamese crocodiles?A They are regularly disturbed by touristsB. Their quantity isn’t increased as expected.,.C. The locals lack awareness of protecting themD. They fail to adjust to unfamiliar surroundings15. What plays a great role in crocodiles’ reintroduction?A. Frequent patrols.B. Modern technology.C. Economic advances.D. Genetic transformation.第二节(共5小题:每小题2. 5分,满分12. 5分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
2025届苏州市高三语文上学期期中调研考试卷附答案解析

2025届苏州市高三语文上学期期中调研考试卷2024.11注意事项:1.试卷满分150分,考试时间150分钟。
2.请把选择题的答案用2B铅笔填涂在答题纸的指定位置,把非选择题的答案用0.5mm黑色墨水签字笔写在答题纸上的指定位置。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:以“己”为中心,像石子一般投入水中,和别人所联系成的社会关系,不像团体中的分子一般大家立在一个平面上的,而是像水的波纹一般,一圈圈推出去,愈推愈远,也愈推愈薄。
在这里我们遇到了中国社会结构的基本特性了。
我们儒家最考究的是人伦,伦是什么呢?我的解释就是从自己推出去的和自己发生社会关系的那一群人里所发生的一轮轮波纹的差序。
在差序格局中并没有一个超乎私人关系的道德观念,超己的观念必须在团体格局中才能发生。
孝、悌、忠、信都是私人关系中的道德要素。
但是孔子却常常提到那个“仁”字。
《论语》中对于“仁”字的解释最多,但是也最难捉摸。
孔子有不少次数说“不够说是仁”,但是当他积极地说明“仁”字是什么时,他却退到了“克己复礼为仁”“恭宽信敏惠”这一套私人间的道德要素了。
孔子的困难是在“团体”组合并不坚强的中国乡土社会中并不容易具体地指出一个笼罩性的道德观念来。
仁这个观念只是逻辑上的总和,一切私人关系中道德要素的共相,但是因为在社会形态中综合私人关系的“团体”的缺乏具体性,所以凡是要具体说明时,还得回到“孝悌忠信”那一类的道德要素。
一个差序格局的社会,是由无数私人关系搭成的网络。
这网络的每一个结都附着一种道德要素,因之,传统的道德里不另找出一个笼统性的道德观念来,所有的价值标准也不能超脱于差序的人伦而存在了。
中国的道德和法律,都因之得看所施得对象和“自己”的关系而加以程度上的伸缩。
(摘自费孝通《乡土中国》)材料二:费孝通对儒家的挑战就在于发现了儒家的一个内在困难,孔子并不能“指出一个笼罩性的道德观念来”,因此儒家道德体系一直都没有完成普遍性的理论构造。
2025届广东省高三毕业班调研考试(一)数学试卷(解析)

2025届广东省普通高中毕业班调研考试(一)数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{Z |8150},{|5}A x x x B x x =Î-+£=<,则A B =I ( )A. {}3 B. {}3,4 C. {}4,5 D. {}3,4,5【答案】B 【解析】【分析】先解不等式求得集合A ,进而求得A B Ç.【详解】集合()(){}2{Z |8150}{Z |350}3,4,5A x x x x x x =Î-+£=Î--£=.而{|5}B x x =<,故{}3,4A B Ç=.故选:B2. 已知1z ,2z 是两个虚数,则“1z ,2z 均为纯虚数”是“12z z 为实数”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】设12i,i(,R z b z c b c ==Î且,0)b c ¹,可得12R z z Î,如121i 12+2i 2z z +==,可得结论.【详解】若12,z z 均为纯虚数,设12i,i(,R z b z c b c ==Î且,0)b c ¹,则12i R i z b bz c c ==Î,所以“12,z z 均为纯虚数”是12z z 是实数充分条件,当121i,22i z z =+=+,121i 12+2i 2z z +==,所以“12,z z 均为纯虚数”是12z z 是实数的不必要条件,的综上所述:“12,z z 均为纯虚数”是12z z 是实数的充分不必要条件.故选:A.3. 已知a r和b r 的夹角为150°()2a b b +×=r r r ( )A. 9-B. 3- C. 3 D. 9【答案】C 【解析】分析】根据向量数量积运算求得正确答案.【详解】()222a b b a b b +×=×+r r r r rr 2cos1502a b b=××°+r rr 2223æ=+×=ççè故选:C4. 已知 π2sin sin 33a a æö+-=ç÷èø,则 πcos 23a æö+=ç÷èø( )A. 59-B. 19-C.19D.59【答案】B 【解析】【分析】利用两角和差公式以及倍角公式化简求值可得答案.【详解】由题干得2π1sin sin sin sin 332a a a a a æö=+-=+-ç÷èø1πsin cos 26a a a æö=-=+ç÷èø所以 22ππ21cos 22cos 1213639a a æöæöæö+=+-=´-=-ç÷ç÷ç÷èøèøèø,故选:B.5. 已知等比数列 {}n a 为递增数列,n nnb a =. 记 ,n n S T 分别为数列 {}{},n n a b 的前n 项和,若 2133312a a a S T =+=,,则 n S =( )【A. 141n --B.()11414n --C.()14112n- D. 24n -【答案】C 【解析】【分析】利用等比数列的通项公式及前n 项和公式求解q 的值,再由数列的单调性进一步判断即可.【详解】2131133141122312a a a a q a S T q q q=Þ=Þ=+=Þ++=,,则 ()()2121294214042q q q q q q -+=--=Þ==,.由于 {a n }为递增数列,则 1144q a ==,,所以 {a n }的通项公式为 24n n a -=所以 ()()11414411412nn n S -==--,故选:C.6. 已知体积为的球O 与正四棱锥的底面和4个侧面均相切,已知正四棱锥的底面边长为则该正四棱锥体积值是( )A.B.C.D.【答案】A 【解析】【分析】设正四棱锥P ABCD -的内切球的半径为R ,H 为底面中心,取CD 的中点F ,设O 点在侧面PCD 上的投影为Q 点,则Q 点在PF 上,利用∽V V POQ PFH 求出球心到四棱锥顶点的距离h ,再由棱锥的体积公式计算可得答案.【详解】设正四棱锥P ABCD -的内切球的半径为R ,H 为底面中心,由体积为34π3R得R =连接PH ,PH ^平面ABCD ,球心O 在PH 上,OH R =,取CD 的中点F ,连接,HF PF ,设O 点在侧面PCD 上的投影为Q 点,则Q 点在PF 上,且OQ PF ^,∽V V POQ PFH ,h,所以=PQ PHOQ FHh=,所以1133==´=ABCDV S PH故选:A.7. 斐波那契数列因数学家斐波那契以兔子繁殖为例而引入,又称“兔子数列”. 这一数列如下定义:设{}n a为斐波那契数列,()*12121,1,3,Nn n na a a a an n--===+³Î,其通项公式为n nnaéùêú=-êúëû,设n是2log1(14(xx xéùë-û-<+的正整数解,则n的最大值为()A. 5B. 6C. 7D. 8【答案】A【解析】【分析】利用给定条件结合对数的性质构造42na<,两侧同时平方求最值即可.【详解】由题知n是2log1(14(xx xéùëû+-<+的正整数解,故2log(1(14n n néùëû+-<+,取指数得((4112nn n+<+-,同除2n得,42n n-<,42n nùú-<úû,即42na<,根据{}n a是递增数列可以得到{}2n a也是递增数列,于是原不等式转化为2812525n a <´<.而565,8a a ==可以得到满足要求的n 的最大值为5,故A 正确.故选:A8. 函数()ln f x x =与函数()212g x mx =+有两个不同的交点,则m 的取值范围是( )A. 21,e æö-¥ç÷èø B. 21,2e æö-¥ç÷èø C. 210,e æöç÷èøD. 210,2e æöç÷èø【答案】D 【解析】【分析】利用参变分离将函数图象有两个交点问题转化为y m =和()21ln 2x h x x -=的图象有两个交点,由导数求得ℎ(x )的单调性并求得最大值即可得出结论.【详解】由()21ln 02mx x x +=>得22ln 1m x x -=,则问题转化为y m =和()21ln 2x h x x -=的图象有两个交点,而()()()2232112ln 21ln 2x x x x x h x x xæö×--ç÷-¢èø==,令ℎ′(x )>0,解得0e x <<,令ℎ′(x )<0,解得e x >,故ℎ(x )在()0,e 上单调递增,在()e,¥+单调递减,则()()2max 1e 2e h x h ==,ℎ(x )大致图象如下所示:结合图象可知,m 的取值范围是210,2e æöç÷èø故选:D二、选择题:本题共3小题,每题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 现有十个点的坐标为 ()()()1210,0,,0,,,0x x x L ,它们分别与 ()()()1210,10,,10,,,10y y y L 关于点(3,5)对称.已知 1210,,,x x x L 的平均数为a ,中位数为 b ,方差为c ,极差为d ,则 1210,,,y y y L 这组数满足( )A. 平均数为 6a - B. 中位数为 6b -C. 方差为c D. 极差为d【答案】ABCD 【解析】【分析】根据对称知识可得()6Z 110i i y x i i =-Σ£,,结合平均数、中位数、方差、极差的性质,即可判断出答案.【详解】由于 ()()()1210,0,,0,,,0x x x L ,它们分别与 ()()()1210,10,,10,,,10y y y L 关于点(3,5)对称,则有()6Z 110i i x y i i +=Σ£,,即有 ()6Z 110i i y x i i =-Σ£,.则由平均数的性质可得1210,,,y y y L 这组数的平均数为 6a -,结合中位数性质可知中位数为 6b -,结合方差性质可得方差为c ,极差非负,所以极差为d .故选:ABCD10. 设 123,,z z z 是非零复数,则下列选项正确的是( )A. 2211z z =B. 1212z z z z +=+C. 若122i 2z --=,则116i z +-最小值为3D. 若22i i 4z z ++-=,则2z的最小值为【答案】CD 【解析】【分析】利用共轭复数的概念和加减运算性质判断A ,举反例判断B ,利用复数模的性质得到轨迹方程,结合圆的性质判断C ,利用复数模的性质得到轨迹方程,结合椭圆的性质判断D 即可.【详解】对于A.,设1i z a b =+,则1i z a b =-,所以22221(i)2i z a b a b ab =+=-+,22221(i)2i z a b a b ab =-=--,的当,a b 有1个为0或全为0时,2211z z =,当,a b 均不为0时,2211,z z 无法比较大小,故A 错误,对于B ,当1i z =,2i z =-时,120z z +=,此时120z z +=,122z z +=,故1212z z z z +=+不成立,故B 错误,对于C ,设1i z a b =+,因为122i 2z --=,所以i 22i 2a b +--=,故有2(2)i 2a b -+-=,可得22(2)(2)4a b -+-=,所以1z 的轨迹是以()2,2为圆心,2为半径的圆,而116i i 16i 1(6)i z a b a b +-=++-=++-=,故116i z +-表示点(),a b 到定点()1,6-的距离,由圆的性质可知,1min16i 23z +-=-=,故C 正确,对于D ,设2z a bi =+,所以2i i i (1)i z a b a b +=++=++=,2i i i (1)i z a b a b -=+-=+-=,而22i i 4z z ++-=4=,所以得到点(),a b 到两定点()0,1-,()0,1的距离之和为4,故2z 的轨迹是以()0,1-,()0,1为焦点的椭圆,故轨迹方程为22143y x +=,而2z 表示(),a b 到原点的距离,由椭圆的几何性质可得当点B 在椭圆的左右顶点时,2z 取得最小值,此时2z =,故2min z =D 正确.故选:CD .11. 已知定义在R 上的函数()f x 的图象连续不间断,当()()0e e e 0x f x f x ³+--=,,且当x >0时,()()e e 0f x f x ¢¢++->,则下列说法正确的是()A. ()e 0f =B. ()f x 在(),e -¥上单调递增,在()e,+¥上单调递减C. 若()()1212,x x f x f x <>,则212ex x +<D. 若12,x x 是()()()2e 2g xf x x =+--在()0,2e 内的两个零点,且12x x <,则()()211ef x f x <<【答案】ACD 【解析】【分析】A 选项,令x =0,可求()e f ;B 选项,对()()e e e 0f x f x +--=两边求导,结合()()e e 0f x f x ¢¢++->得()e 0f x ¢-<,()e 0f x ¢+>,可判断()f x 单调性;C 选项,12e x x ,,的大小关系进行分类讨论,利用函数单调性,证明不等式;D 选项,证明212e x x +<,利用函数单调性,证明()()12f x f x <且()()21e f x f x <,可得结论.【详解】A 选项,令x =0,则有()()()()e e e 1e e 0f f f -=-=,所以()e 0f =,故A 正确.B 选项,对()()e e e 0f x f x +--=两边求导,得()()e e e 0f x f x ¢++-=¢,所以()()e e e f x f x +=-¢-¢,代入()()e e 0f x f x ¢¢++->,得当x >0时,()()1e e 0f x ¢-->,所以()e 0f x ¢-<.又因为()()e e 0f x f x ¢¢++->,所以,()e 0f x ¢+>.因此,当e x <时,()0f x ¢<,()f x 在(),e -¥上单调递减;当e x >时,()0f x ¢>,()f x 在()e,+¥上单调递增.故B 错误.C 选项,对12e x x ,,的大小关系进行分类讨论:①当12e x x <£时,()f x 在(),e -¥上单调递减,所以()()12f x f x >,显然有212e x x +<;②当12e x x £<时,()f x 在()e,+¥上单调递增,不符合题意;③当12e x x <<时,当0x ³时,()()e e e f x f x +=-.令()()()()()()122e e,e 2e e 2e t x f t f t f x f x f x ¥=+Î+=->=-,,,又因为()()e 0f x f ³=,所以()22e 0f x ->,因此()()()()1222e 2e 2e f x f x f x f x >=->-.因为12e 2e e x x <-<,,由()f x 的单调性得,212e x x +<.故C 正确.D 选项,因为()()()()()()2200e 202e 2e e 20e e 220g f g f g f =+->=+->=-=-<,,,所以120e 2e x x <<<<.先证212e x x +<,即证122e x x ->,即()12e 0g x ->,只需证()2112e (2e e)20f x x -+--->,即证()211e (e )20f x x +-->.事实上,()()()()()2211111e e 2e 20f x x f x x g x +-->+--==,因此212e x x +<得证.此时有1210e 2e 2e x x x <<<<-<.因为()()()()()22211122e 22e e 2e 2f x x x x f x =--+=---+<--+=,又()10f x ¹,所以()()211f x f x <,因为()()()2112e e f x f x f x <-=,又()10f x ¹,所以()()21e f x f x <.综上,()()211e f x f x <<,故D 正确故选:ACD.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.三、填空题:本题共3题,每小题5分,共15分.12. 已知等差数列{}n a 的首项12a =,公差3d =,求第10项10a 的值为__.【答案】29【解析】【分析】根据等差数列的通项公式求得正确答案.【详解】依题意101922729a a d =+=+=..故答案为:2913. 若 ()554325432102x a x a x a x a x a x a +=+++++,则531420a a a a a a ++=++____________.【答案】121122【解析】【分析】利用赋值法令1x =,1x =-,联立方程组求解即可.【详解】令1x =,得 ()554321012243a a a a a a +==+++++,令1x =-,得 ()5543210121a a a a a a -+==-+-+-+,则 ()()543210543210531243112122a a a a a a a a a a a a a a a +++++--+-+-+-++===,且 ()()543210543210420243112222a a a a a a a a a a a a a a a ++++++-+-+-++++===,故531420121122a a a a a a ++=++.故答案为:121122.14. 如图,在矩形ABCD 中,8,6,,,,,AB BC E F G H ==分别是矩形四条边的中点,点Q 在直线HF 上,点N 在直线BC 上,,,R OQ kOH CN kCF k ==Îuuu r uuur uuu r uuu r,直线EQ 与直线GN 相交于点R ,则点R 的轨迹方程为_______________.【答案】()221,3916y x y -=¹-【解析】【分析】以HF 所在直线为x 轴,GE 所在直线为y 轴建立平面直角坐标系,求出直线EQ 的方程与直线GN 的方程,联立求解即可.【详解】以HF 所在直线为x 轴,GE 所在直线为y 轴建立平面直角坐标系.因为8,6AB BC ==,所以 ()()()()()()0,0,4,0,4,0,0,3,0,3,4,3O H F E G C --,所以 ()4,0OH =-uuur ()()0,3,4,3CF OC =-=uuu r uuu r ,又因为 ,OQ kOH CN kCF ==uuu r uuur uuu r uuu r ,所以 ()()4,0,0,3OQ k CN k =-=-uuu r uuu r,所以()()4,0,4,33Q k N k --.因为 ()()0,3,4,0E Q k --,所以直线EQ 的方程为 334y x k =--①,因为 ()()0,3,4,33G N k -,所以直线GN 的方程为 334ky x =-+②.由①可得 ()()3043x k x y =-¹+,代入②化简可得 ()2210916y x x -=¹,,结合图象易知点R 可到达 ()0,3G ,但不可到达 ()0,3E -,所以点R 的轨迹方程为 ()221,3916y x y -=¹-,故答案为:()221,3916y x y -=¹-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在△ABC 中,角A B C ,,的对边分别为a b c ,,,已知 2cos2cos22sin 2sin sin B A C B C -=-(1)求 A ;(2)若 23b c P Q ==,,,分别为边 a b ,上的中点,G 为 ABC V 的重心,求 PGQ Ð的余弦值.【答案】(1)π3(2)【解析】【分析】(1)根据二倍角公式将已知条件变形转化,再根据正弦定理边角互化,带入到余弦定理即可求得;(2)根据已知设 AB c AC b ==uuu r uuu r rr ,,表达出AP BQ uuu r uuu r ,,再根据余弦定理可求得结果.【小问1详解】因为2cos2cos22sin 2sin sin B A C B C -=-,所以()()22212sin 12sin 2sin 2sin sin B A C B C ---=-,即222sin sin sin sin sin A B C B C =+-由正弦定理得 222a c b bc =+-,由余弦定理得 1cos 2A =,因为()π0π3A A Î=,,【小问2详解】设 AB c AC b ==uuu r uuu r r r ,,1cos 2332b c b c A ×=×=´´=r r r r 依题意可得()1122AP b c BC b c BQ b c =+=-=-uuu r uuu r uuu r r r r r r r,,所以AP ===uuu rBQ ===uuu r ()221111143917224424424AP BQ b c b c b b c c æö×=+-=-×-=--=-ç÷èøuuu r uuu r r rr r r r r r 所以cos AP BQ PGQ AP BQ×Ð==×uuu r uuu r uuu r uuu r .16. 设A B ,两点的坐标分别为()),. 直线AH BH ,相交于点H ,且它们的斜率之积是13-.设点H 的轨迹方程为C .(1)求C ;(2)不经过点A 的直线l 与曲线C 相交于E 、F 两点,且直线AE 与直线AF 的斜率之积是13-,求证:直线l 恒过定点.【答案】(1)(2213x y x +=¹(2)证明见解析【解析】【分析】(1)设点H 的坐标为(),x y ,然后表示出直线,AH BH 的斜率,再由它们的斜率之积是13-,列方程化简可得点H 的轨迹方程;(2)设()()1122,,,E x y F x y ,当直线l 斜率不存在时,求得直线l 为 x =0,当直线l 斜率存在时,设直线:l y kx b =+,由13AE AFk k ×=-13=-,将直线方程代入椭圆方程化简利用根与系数的关系,代入上式化简可得20b =,从而可求得直线恒过的定点.【小问1详解】设点H 的坐标为(),x y ,因为点A 的坐标是(),所以直线 AH的斜率AH k x =¹,同理,直线 BH的斜率BH k x=¹,(13x =-¹,化简,得点H 的轨迹方程为(2213x y x +=¹,即点H 的轨迹是除去()),两点的椭圆.【小问2详解】证明:设()()1122,,,E x y F x y ①当直线l 斜率不存在时,可知 1221,x x y y ==-,且有22111313AE AF x y k k ì+=ïïíï×==-ïî,解得1101x y ==±,,此时直线l 为 x =0,②当直线l 斜率存在时,设直线 :ly kx b =+,则此时有:13AE AFk k ×====-联立直线方程与椭圆方程 2213y kx b x y =+ìïí+=ïî,消去 y 可得: ()222316330k x kbx b +++-=,根据韦达定理可得: 122631kb x x k -+=+,21223331b x x k -=+,13=-,13=-,1=-所以20b =,则0b =或b =,当b=时,则直线 (:l y k x =恒过A 点与题意不符,舍去,故0b =,直线l 恒过原点()0,0,结合①,②可知,直线l 恒过原点 ()0,0,原命题得证.【点睛】关键点点睛:此题考查椭圆的轨迹方程,考查直线与椭圆的位置关系,考查椭圆中直线过定点问题,解题的关键是设出直线方程代入椭圆方程化简,利用根与系数的关系结合已知条件求解,考查计算能力,属于较难题.17. 如图所示,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,608AB AD BAD ACÐ===o ,,.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为 2V ,求12V V ;(2)设点F 在线段AP 上,且存在一个正整数k ,使得PA kPF PC kCE ==,,若已知平面FCD 与平面PCDk 的值.【答案】(1(2)4k =【解析】【分析】(1)利用圆柱以及棱锥的体积公式,即可求得答案.(2)建立空间直角坐标系,求出相关点坐标,利用空间角的向量求法,结合平面FCD 与平面PCD 的夹角的正弦值,即可求得答案.【小问1详解】在底面ABCD 中,因为 AC 是底面直径,所以 90ABC ADC Ð=Ð=,又 AB AD =,故 ACB △≌ACD V ,所以13042BAC DAC BAD BC CD AB AD ÐÐÐ=======o ,,.因为PC 是圆柱的母线,所以PC ^面ABCD ,所以 211π()16π2V AC PC PC ==´,211112243232V AB BC PC PC PC =´´´××=´´´´=,因此12V V =;【小问2详解】以C 为坐标原点,以,CA CP uuu r uuu r为,x z 轴正方向,在底面ABCD 内过点C 作平面PAC 的垂直线为y 轴,建立如图所示的空间直角坐标系.因为30BAC DAC AB AD ÐÐ===o ,,所以 ABE V ≌ADE V ,故 90AEB AED ÐÐ==o ,所以1622BE DE AB AE CE AC AE =====-=,,2PC kCE k ==,因此()()()()()()0,0,0,8,0,0,2,,0,0,2,2,,0,0,2C A D P k CD CP k ==uuu r uuu r,()8,0,2PA k =-uuu r,因为 PA kPF =,所以 18,0,2PF PA k k æö==-ç÷èøuuu r uuu r ,则88,0,22,,0,22F k CF k k k æöæö-=-ç÷ç÷èøèøuuu r 设平面FCD 和平面PCD 的法向量分别为()()111222,,,,,n x y z m x y z ==r r,则有:)111182020n CF x z k n CD x ì×=+-=ïíï×=+=îuuu r r uuu rr ,222220m CP kz m CD x ì×==ïí×=+=ïîuuu r r uuu r r ,取())()221,,1,4n k k k k m æö=---=-ç÷ç÷èør r ,设平面FCD 与平面PCD 的夹角为 q,则sin q =所以有:cos cos q ===,整理得2120k k --=,2120k k -+=(无解,舍),由于k 为正整数,解得4k =.18. 已知函数()()1ln f x x x =-,(1)已知函数()()1ln f x x x =-的图象与函数()g x 的图象关于直线 x =―1对称,试求()g x ;(2)证明()0f x ³;(3)设0x 是()1f x x =+的根,则证明:曲线ln y x =在点()00,ln A x x 处的切线也是曲线e x y =的切线.【答案】(1)()()()3ln 2,(2)g x x x x =----<-. (2)证明见解析 (3)证明见解析【解析】【分析】(1)由()()11f x g x --=-+,得()()()12ln 1g x x x -+=----,再利用换元法求()g x ;(2)分区间讨论各因式的符号或利用导数证明;(3)取曲线 e x y =上的一点 ()11e,x B x ,设()ln g x x =在A 处的切线即是 ()exh x =在B 处的切线,证明直线AB 的斜率等于()ln g x x =在A 处的切线斜率和()e xh x =在B 处的切线斜率即可.【小问1详解】因为()f x 的图象与()g x 的图象关于直线 x =―1对称,所以 ()()11f x g x --=-+.又因 ()()()()()111ln 12ln 1f x x x x x éù--=-----=----ëû,所以()()()12ln 1g x x x -+=----,令1t x =-+,则 1x t =+,所以()()][()()()21ln 113ln 2g t t t t t éù=--+--+=----ëû,因此()()()3ln 2,(2)g x x x x =----<-.【小问2详解】证明:解法1:当 1x ³时,10x -³且 ln 0x ³,此时 ()()1ln 0f x x x =-³;当01x <<时,10x -<且ln 0x <,此时 ()()1ln 0f x x x =->,故综上()0f x ³.解法2:()1ln 1f x x x +¢=-,令()1ln 1x x xj =+-,()2110x x x j ¢=+>在()0,¥+上恒成立,为故()x j 在()0,¥+上单调递增,即()f x ¢在()0,¥+上单调递增,因此当01x <<时,()()10f x f ¢¢<=; 当()()110x f x f ¢¢³³=,;因此()f x 在()0,1上单调递减,在 [)1,+¥上单调递增,故()()10f x f ³=.【小问3详解】证明:不妨取曲线 e x y =上的一点 ()11e ,x B x ,设()ln g x x =在A 处的切线即是 ()exh x =在B 处的切线,则 ()()10101e x g x h x x ¢¢===,得 101ln x x =,则 B 的坐标 0011ln x x æöç÷èø,,由于()0001ln 1x x x -=+,所以0001ln 1x x x +=-,则有()()2000000000002000000000011111ln ln 111111ln ln 11ABx x x x x x x x x x k g x x x x x x x x x x x ++-----======++--¢++-,综上可知,直线AB 的斜率等于()ln g x x =在A 处的切线斜率和()e xh x =在B 处的切线斜率,所以直线AB 既是曲线ln y x =在点()00n ,l A x x 处的切线也是曲线e x y =的切线.19. 如果函数 F (x )的导数为()()F x f x ¢=,可记为()()d f x x F x ò= ,若 ()0f x ³,则()()()baf x dx F b F a =-ò表示曲线 y =f (x ),直线 x a x b ==,以及x 轴围成的“曲边梯形”的面积. 如:22d x x x C ò=+,其中 C 为常数; ()()222204xdx C C =+-+=ò,则表 0,2,2x x y x ===及x 轴围成图形面积为4.(1)若 ()()()e 1d 02xf x x f =ò+=,,求 ()f x 的表达式;(2)求曲线 2y x =与直线 6y x =-+所围成图形的面积;(3)若 ()[)e 120,xf x mx x ¥=--Î+,,其中 R m Î,对 [)0,a b ¥"Î+,,若a b >,都满足()()0d d a bf x x f x x >òò,求 m 的取值范围.【答案】(1)()e 1xf x x =++(2)1256(3)12m £【解析】【分析】(1)根据新定义及()02f =计算得解;(2)根据新定义,构造函数()26g x x x =-+-即可得出面积;(3)根据所给条件可得()()d F x f x x =ò在 [)0,¥+上单调递增,转化为()0f x ³在 [)0,¥+恒成立,就导数的符号分类讨论后可求参数的取值范围.【小问1详解】()()e 1d e x xf x x x C =ò+=++,其中 C 为常数.而 ()02f =,即 102C ++=,所以 1=C ,所以()e 1xf x x =++.【小问2详解】联立 26y x y x ì=í=-+î,解得 123,2x x =-=,当32x -<<时,26x x -+>,令 ()26,g x x x =-+-()()2311d 623F x g x x x x x C =ò=-+-+,则围成的面积()()()2389125d 23212189326S g x x F F -æöæö==--=-+----+=ç÷ç÷èøèøò【小问3详解】令 ()()d F x f x x =ò,由题意可知,[)0,a b a b ¥"Î+>,,,满足()()()()00F a F F b F ->-,即()()F a F b >,即()()d F x f x x =ò在 [)0,¥+上单调递增,进而()0f x ³在 [)0,¥+恒成立,e 120x mx --³在 ()0,¥+恒成立.()e 2,0x f x m x =->¢,若12m £,则()0f x ¢>在()0,¥+上恒成立,故()f x 在[)0,¥+上为增函数,故()()00f x f ³=;若12m >,则0ln 2x m <<时,()0f x ¢<,故()f x 在[]0,ln 2m 上为减函数,故[]0,ln 2x m "Î时,()()00f x f £=,与题设矛盾;故12m £.【点睛】关键点点睛:本题第三步关键在于利用a b >,都满足()()0d d abf x x f x x >òò,得出函数()()d F x f x x =ò在 [)0,¥+上单调递增,再结合导数的符号分类讨论后可得参数的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三调研考试高三调研考试语文试卷一、语言文字运用(15分,每小题3分)1.下列句子中加点字的读音不正确的一项是A坐在公园里看孩子们嬉戏,我不由得动了未泯的童心,摘下一片绿叶,卷(jun)制了一支小小的哨笛,吹出单调而淳朴的哨音。
B近年来,社会上悄(qio)然兴起了越俎代庖之风,家长为孩子代做作业,上级机关对基层的工作横加干涉……C寻梦?撑一支长篙,向青草更青处漫溯(s);满载一船星辉,在星辉斑斓里放歌。
D美国国家地理频道和纽约首屈—指的电视台合作,共同打造了以非洲生态系统为主要框架的系列节目,报道非洲大陆鲜(xin)为人知的历史故事,具有开创意义。
2.下列句子中没有错别字的一项是A猜想应当与真正的晦涩加以区别,猜想不是因费解而起,而是由于诗本身有太多的郁积。
B余下的,像哈姆雷特临死所说,余下的只是静默——深执于涕泪和叹息的静默。
C阿Q便全疤通红的发起怒来,估量了对手,口呐的他便骂,气力小的他便打。
D当代社会强调文凭,但文凭并不一定等于能力。
有的大学生片面理解物尽其用,人尽其材的用人原则,忽略自身弱点,而怨天忧人。
3.依次填入下列各句横线处的词语,最恰当的一组是不同的人,对人是什么这个问题的回答是不同的。
现代的人可以用现代字音来读古代的书,这就了语音变化的真相。
这粒纽扣在草丛中被侦察人员发现,为侦破这个案件提供了重要的线索。
他自己管不住自己,自己被自己纠缠而无计脱身,自己对自己,无可奈何。
A截然掩饰偶尔无所适从B迥然掩盖偶然无所适从C截然掩盖偶尔不知所以D迥然掩饰偶然不知所以4.下列各句中没有语病的一句是A我认为在语文教学中,应尽可能使用传统语言,不要滥用网络语言,这样会给汉字规范化和青少年学习增加困难。
B据介绍,国宾导游将肩负翻译、导游等多项角色于一身,专门负责接待政府部门的外宾和内宾、会展团队和重点团队等。
C中国传统的艺术很早就突破了自然主义和形式主义的片面性,创造了民族的独特的现实主义的表现形式,使真和美、内容和形式高度地统一起来。
D11月的澳大利亚气候温暖,在墨尔本最大的国家自然保护区,成的鹦鹉不但不怕生人,喜欢纵情于游客手上蹦跳嬉戏,而且五颜六色,极尽缤纷。
5.填入下面横线的句子,与上下文衔接最恰当的一项是已是夜深人静,月亮也爬上了中天,,。
,风来了,树木和山影在湖水中摇曳着,显得神秘而又朦胧。
(1)在深蓝色的夜空上高高悬挂着(2)深蓝色的夜空上高高悬挂着一轮秋月(3)向大地散射银色的光华(4)银色的光华散射在大地上(5)湖水里倒映着两岸的树木和山影(6)两岸的树木和山影倒映在湖水里A(245)B(136)C(236)D(145)二、文言文阅读(22分。
其中,选择题12分,每小题3分;翻译题10分)阅读下面的文言文,完成6—10题张益州画像记苏洵至和元年秋,蜀人传言,有寇至边,边军夜呼,野无居人。
妖言流闻,京师震惊。
方命择帅,天子曰:毋养乱,毋助变,众言朋兴,朕志自定。
外乱不作,变且中起,既不可以文令,又不可以武竞。
惟朕一二大吏,孰为能处兹文武之间,其命往抚朕师。
乃推曰:张公方平其人。
天子曰:然。
公以亲辞。
不可,遂行。
冬十一月至蜀。
至之日,归屯军,撤守备,使谓郡县:寇来在吾,无尔劳苦。
明年正月朔旦,蜀人相庆如他日,遂以无事。
又明年正月,相告留公像于净众寺,公不能禁。
眉阳苏洵言于众曰:未乱,易治也,既乱,易治也。
有乱之萌,无乱之形,是谓将乱。
将乱难治,不可以有乱急,亦不可以无乱弛。
惟是元年之秋,如器之敧,未坠于地。
惟尔张公,安坐于其旁,颜色不变,徐起而正之。
既正,油然而退,无矜容。
为天子牧小民不倦,惟尔张公。
尔繄以生,惟尔父母。
且公尝为我言:‘民无常性,惟上所待。
人皆曰:蜀人多变,于是待之以待盗贼之意,而绳之以绳盗贼之法。
重足屏息之民,而以砧斧令,于是民始忍以其父母妻子之所仰赖之身,而弃之于盗贼,故每每大乱。
夫约之以礼,驱之以法,惟蜀人为易。
至于急之而生变,虽齐鲁亦然。
吾以齐鲁待蜀人,而蜀人亦自以齐鲁之人待其身。
若夫肆意于法律之外,以威劫齐民,吾不忍为也’。
呜呼!爱蜀人之深,待蜀人之厚,自公而前,吾未始见也。
皆再拜稽首,曰:然。
苏洵又曰:公之恩在尔心尔死在尔子孙其功业在史官无以像为也且公意不欲如何皆曰:公则何事于斯,虽然,于我心有不释焉。
今夫平居闻一善,必问其人之姓名,与其邻里之所在,以至于其长短大小美恶之状。
甚者,或诘其平生所嗜好,以想见其为人,而史官亦书之于其传。
意使天下之人,思之于心,则存之于目。
存之于目,故其思之于心也固。
由此观之,像亦不为无助。
苏洵无以诘,遂为之记。
(选自《古文观止》,有删节)[注]张益州:张方平为益州太守,故称张益州。
朔:农历每月初一日。
繄:yi,犹实。
砧斧:是古代的刑具,这里代指严刑峻法。
齐民:齐等的民众,指无辜的善良百姓。
6.对下列句子中加点的词的解释,不正确的一项是A以威劫齐民劫:抢劫,掠夺B故其思之于心也固固:长久,久远C重足屏息之民息:气息,出气D而绳之以绳盗贼之法绳:管束,处置7.下列各组句子中,加点的词的意义和用法相同的一组是A 待之以待盗贼之意,而绳之以绳盗贼之法弃甲曳兵而走B 而蜀人亦自以齐鲁之人待其身而余亦悔其随之而不得极夫游之乐也C 以威劫齐民,吾不忍为也窃为大王不取也D 又不可以武竞皆白衣冠以送之8.下列用/给文中画波浪线部分的断句,正确的一项是A公之恩/在尔心/尔死/在尔子孙/其功业在/史官无以像为也/且公意不欲/如何B公之恩在尔/心尔死在尔/子孙其功业在/史官无以像为也/且公意不欲/如何C公之恩/在尔心/尔死/在尔子孙/其功业在史官/无以像为也/且公意不欲/如何D公之恩/在尔心/尔死/在尔/子孙其功业在史官/无以像为也/且公意不欲/如何9.下列各句对文章的阐述,不正确的一项是A张益州治蜀,反对施行严刑峻法。
他认为,施行严刑峻法只会使百姓沦为与盗贼为伍,酿成大乱;反之,用礼义法律来教化差使百姓,那么蜀人是很容易管理的。
B认为,爱惜蜀人如此深切,对待蜀人如此厚道,在张公之前,自己还未曾见过;即使不用画像,张公的恩情也会世世代代记在蜀人的心中。
C张益州是为天子牧小民不倦的封建官吏的形象,他有文治武功之才,采取安抚办法宽政爱民,使民安居乐业,博得人心。
D张益州在蜀地发生祸乱,京师震惊之际,临危受命,赶赴蜀地。
由于措施得当,祸乱很快被平息,蜀人相庆如他日,从此,蜀地相安无事。
10.把上面文言文阅读材料中画横线的句子翻译成现代汉语。
(10分)(1)将乱难治;不可以有乱急,亦不可以无乱弛。
(3分)(2)既正,油然而退,无矜容。
为天子牧小民不倦,惟尔张公。
(4分)(3) 公则何事于斯,虽然,于我心有不释焉。
(3分)三、古代诗歌鉴赏和古诗文默写(13分)11.阅读下面这首唐诗,按照要求完成赏析(7分)与东吴生相遇韦庄十年身事各如萍,白首相逢泪满缨。
老去不知花有态,乱来唯觉酒多情。
贫疑陋巷春偏少,贵想豪家月最明。
且对一尊开口笑,未衰应见泰阶平。
(1)请简要分析诗作中间两联从哪些方面写出了诗人与东吴生在离乱中相遇的辛酸(4分)(2)全诗以泪始,以笑结,试作简析(3分)12.古诗文默写(6分,每空1分)(1),凡在故老,,况臣孤苦,特为尤甚。
(李密《陈情表》)(2)丛菊两开他日泪,。
寒衣处处催刀尺,。
(杜甫《秋兴八首(其一)》)(3)莫听穿林打叶声,何妨吟啸且徐行。
,谁怕?(苏轼《定风波》)四.现代文(论述类、实用类)阅读(12分,其中,选择题6分,每小题3分;简答题6分)阅读下面的文字,完成13—15题人类体能的极限(1)人类体能的极限在哪里?近百年来,人们总是希望通过田径运动来不断挖掘它,因为这项运动属于体能主导类快速力量性运动。
(2)从生物学角度来看,人体运动能力受身体形态、生理机能和运动素质制约,必然是有极限的。
但是,很多记录仍不断被打破,特别是飞人大战男子100米跑的世界记录在近7年就5次被刷新,去年北京奥运会,博尔特在鸟巢更是跑出了令人惊叹的9.69秒。
(3)那么,100米的世界记录就可以无限刷新了?德国运动极限领域的专家约翰安马尔则不以为然。
他将1056名男子选手和1024名女子选手的最好成绩输入计算机后预测出男子100米世界纪录可能永远无法达到9.20秒。
而上世纪70年代,美国生物机械学博士吉迪恩阿里尔就从人体工程学角度预言,超过某个临界就可能导致运动员骨头断裂和关节组织脱离,这个临界点是9.64秒。
他根据人体对抗空气阻力和体重对地面作用后的反作用力等因素计算,人以这个速度跑步尚不会引起肌肉损坏,而一旦超过这一极限,肌肉就有断裂的危险。
然而,法国的佩龙内特和蒂博博士通过计算机得出的结论却是到2040年人类100米能达到9.49秒。
英国的安德鲁也做了一个统计学分析,他预测2156年男子100米能达到8.098秒,而女子100米将超过男子达到8.079秒。
当然,这些都只是预测。
每个世界纪录诞生之初都有人觉得极限近在咫尺,但1936年杰西欧文斯百米的10.2秒和2006年7月12日刘翔110米栏的12.88秒都已经先后作古。
那么,人类体能的极限究竟在哪里?(4)不可否认,在田径运动竞赛规则不变的情况下,每个项目都应该有一个极限成绩,而成绩取决于两方面:运动员自身的竞技能力以及场地、器材、气候和人文环境等。
无庸置疑,现代科技的发展对提高运动员成绩起了重要的作用,例如撑杆跳高。
布勃卡使用先进的玻璃纤维竿创下的6.14米的世界记录比金属竿时期的记录提高了1.32米。
但是科技因素在提高成绩方面所起的作用是锦上添花,运动员的竞技能力才是核心动力。
例如男子100米世界纪录最近几年多次被牙买加选手刷新,就反映出牙买加黑人运动员在短跑方面所具有的独特天赋。
这种生物学因素往往是科技力量难以左右的,因为科技更多地体现在改变运动员的训练手段、训练后的医疗恢复和比赛的装备等。
极好的身体素质、卓越的运动才能,加上科学的训练方法和不断更新的器材设备,很难预测未来的记录能达到多少,事实上,极限在哪里并不重要,重要的是人类追求极限的过程。
13.下列表述,符合原文意思的一项是(3分)A人们寄希望田径运动来挖掘人类体能极限,是因为田径乃一切运动之母。
B每个世界记录诞生之初都有人觉得人类体能极限近在咫尺,很容易刷新记录。
C田径运动中的极限成绩涉及两个因素:运动员自身的竞技能力和场地、器材、气候、环境等条件,前者是核心。
D布勃卡撑竿跳的世界记录,主要为证明在该项目上他具有独特天赋。
14.根据原文提供的信息,下列分析或推断不正确的一项是(3分)A临界点就是人类体能的极限,超过这个临界点,人类又向前进了一步。
B对人类体能极限的预测,涉及生物学、物理学等原理,角度不同,说法各异。
C运动员借助场地、器材、气候等方面的因素,有可能创造出更新的世界记录。