MATLAB各种“窗函数”定义及调用

合集下载

几种常见窗函数及其MATLAB程序实现

几种常见窗函数及其MATLAB程序实现

几种常见窗函数及其MATLAB程序实现2013-12-16 13:58 2296人阅读评论(0) 收藏举报分类:Matlab(15)数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。

具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。

信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。

在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。

泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。

频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。

不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。

信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。

图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。

表1 是几种常用的窗函数的比较。

如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。

但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。

MATLAB函数的定义和调用方法

MATLAB函数的定义和调用方法

MATLAB函数的定义和调用方法引言MATLAB作为一种强大的数学软件,广泛应用于科学、工程和技术领域。

而函数的定义和调用是MATLAB中的基本操作之一。

本文将介绍MATLAB函数的定义和调用方法,帮助读者更好地理解和运用这一功能。

一、MATLAB函数的定义1. 函数的基本概念函数是一种将一组输入转换为一组输出的数学关系。

在MATLAB中,函数是一个独立的代码块,可以在程序中多次被调用和重复使用。

通过定义函数,可以将复杂的计算过程封装起来,提高代码的可读性和重用性。

2. 函数的语法在MATLAB中,函数的定义采用以下语法:```function [输出参数1, 输出参数2, ...] = 函数名(输入参数1, 输入参数2, ...)函数体end```其中,方括号内的部分表示可选项,可根据实际需要决定是否需要设置输出参数。

函数名可以是任意合法的MATLAB变量名,输入参数和输出参数也可以是任意数据类型。

3. 函数体函数体是函数定义的核心部分,用于实现具体的计算任务。

在函数体内部可以使用MATLAB提供的各种算法和语法,包括数值计算、矩阵运算、条件判断、循环等。

函数体应该被包含在一个代码块(用于控制函数范围的一对关键字)中,代码块的结束由`end`关键字来指定。

4. 输入参数和输出参数输入参数用于传递数据给函数,输出参数用于将计算结果返回给调用函数的地方。

在函数定义中,可以设置多个输入参数和输出参数,用逗号分隔。

输入参数和输出参数的顺序应该按照实际需求来定义,以便于调用函数时进行有效的数据传递。

二、MATLAB函数的调用1. 函数的调用方式在MATLAB中,函数的调用可以通过下面的语法来实现:```[输出参数1, 输出参数2, ...] = 函数名(输入参数1, 输入参数2, ...)```其中,`[输出参数1, 输出参数2, ...]`是用于接收函数返回结果的变量,可以根据需要定义为不同的数据类型。

Matlab的窗函数,矩形窗,三角窗,汉明窗,汉宁窗,布莱克曼窗

Matlab的窗函数,矩形窗,三角窗,汉明窗,汉宁窗,布莱克曼窗

%N =51%求矩形窗的频率响应图wn = rectwin(51) ; %矩形窗函数%20*log10(abs(WN))[h1,w] = freqz(wn,1);figure(1);plot(w/pi,20*log10(abs(h1/max(h1))));axis([0 1 -100 0]);xlabel('归一化频率/\pi');ylabel('20log_{10}|W(e^{j\omega})| /dB');title('矩形窗的傅里叶变换');set(gca,'YTick',[-100 -80 -60 -40 -20 0])set(gca,'XTick',[0 :0.2: 1])set(gca,'XAxisLocation','top'); %设置X轴在上方set(gca,'Y AxisLocation','left');%设置Y轴在左方text(1,-108,'\pi');%gtext('\pi');%求三角窗的频率响应图wn1 = bartlett(51);[h1,w1] = freqz(wn1,1);figure(2);plot(w/pi,20*log10(abs(h1/max(h1))));axis([0 1 -100 0]);xlabel('归一化频率/\pi');ylabel('20log_{10}|W(e^{j\omega})| /dB');title('三角窗的傅里叶变换');set(gca,'YTick',[-100 -80 -60 -40 -20 0])set(gca,'XTick',[0 :0.2: 1])set(gca,'XAxisLocation','top');%设置X轴在上方set(gca,'Y AxisLocation','left'); %设置Y轴在左方%hanningwn1 = hanning(51) ;[h1,w1] = freqz(wn1,1);figure(3);plot(w/pi,20*log10(abs(h1/max(h1))));axis([0 1 -100 0]);xlabel('归一化频率/\pi');ylabel('20log_{10}|W(e^{j\omega})| /dB');title('Hanning的傅里叶变换');set(gca,'YTick',[-100 -80 -60 -40 -20 0]);set(gca,'XTick',[0 :0.2: 1]);set(gca,'XAxisLocation','top');%设置X轴在上方set(gca,'Y AxisLocation','left'); %设置Y轴在左方%hammingwn1 = hamming(51) ;[h1,w1] = freqz(wn1,1);figure(4);plot(w/pi,20*log10(abs(h1/max(h1))));axis([0 1 -100 0]);xlabel('归一化频率/\pi');ylabel('20log_{10}|W(e^{j\omega})| /dB');title('Hamming的傅里叶变换');set(gca,'YTick',[-100 -80 -60 -40 -20 0])set(gca,'XTick',[0 :0.2: 1])set(gca,'XAxisLocation','top');%设置X轴在上方set(gca,'Y AxisLocation','left'); %设置Y轴在左方%Blackmanwn1 = blackman(51) ;[h1,w1] = freqz(wn1,1);figure(5);plot(w/pi,20*log10(abs(h1/max(h1))));axis([0 1 -100 0]);xlabel('归一化频率/\pi');ylabel('20log_{10}|W(e^{j\omega})| /dB');title('Blackman的傅里叶变换');set(gca,'YTick',[-100 -80 -60 -40 -20 0])set(gca,'XTick',[0 :0.2: 1])set(gca,'XAxisLocation','top');%设置X轴在上方set(gca,'Y AxisLocation','left'); %设置Y轴在左方参考书:数字信号处理教程(第三版) 程佩青清华大学出版社2009年11月第9次印刷P340的图7-11矩形窗三角窗汉宁窗海明窗布拉克曼窗。

几种常见窗函数及其MATLAB程序实现.doc

几种常见窗函数及其MATLAB程序实现.doc

几种常见窗函数及其MATLAB程序实现2013-12-16 13:58 2296人阅渎评论(0)收藏举报:=分类:Matlab (15) ▼数字信号处理屮通常是取其有限的时间片段进行分析,而不足对无限长的信号进行测:W:和运算。

具体做法是从信号屮截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。

信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。

在FFT分析屮为了减少或消除频谱能y:泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。

泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选川总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱屮的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣袞减应尽量大,以提高阻带的袞减,供通常都不能同时满足这两个要求。

频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。

不同的窗函数对信号频谱的影响是不一样的,这主要是因力不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。

信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选川窗函数。

图1是几种常川的窗函数的时域和频域波形,其屮矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅耍求糈确读出主瓣频率,而不考虑幅值精度,则可选川矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高:如果分析窄带信号,且有较强的干扰噪声,则应选川旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。

表1是儿种常用的窗函数的比较。

如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。

但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。

Matlab的窗函数,矩形窗,三角窗,汉明窗,汉宁窗,布莱克曼窗

Matlab的窗函数,矩形窗,三角窗,汉明窗,汉宁窗,布莱克曼窗

%N =51%求矩形窗的频率响应图wn = rectwin(51) ; %矩形窗函数%20*log10(abs(WN))[h1,w] = freqz(wn,1);figure(1);plot(w/pi,20*log10(abs(h1/max(h1))));axis([0 1 -100 0]);xlabel('归一化频率/\pi');ylabel('20log_{10}|W(e^{j\omega})| /dB');title('矩形窗的傅里叶变换');set(gca,'YTick',[-100 -80 -60 -40 -20 0])set(gca,'XTick',[0 :0.2: 1])set(gca,'XAxisLocation','top'); %设置X轴在上方set(gca,'YAxisLocation','left'); %设置Y轴在左方text(1,-108,'\pi');%gtext('\pi');%求三角窗的频率响应图wn1 = bartlett(51);[h1,w1] = freqz(wn1,1);figure(2);plot(w/pi,20*log10(abs(h1/max(h1))));axis([0 1 -100 0]);xlabel('归一化频率/\pi');ylabel('20log_{10}|W(e^{j\omega})| /dB');title('三角窗的傅里叶变换');set(gca,'YTick',[-100 -80 -60 -40 -20 0])set(gca,'XTick',[0 :0.2: 1])set(gca,'XAxisLocation','top');%设置X轴在上方set(gca,'YAxisLocation','left'); %设置Y轴在左方%hanningwn1 = hanning(51) ;[h1,w1] = freqz(wn1,1);figure(3);plot(w/pi,20*log10(abs(h1/max(h1))));axis([0 1 -100 0]);xlabel('归一化频率/\pi');ylabel('20log_{10}|W(e^{j\omega})| /dB');title('Hanning的傅里叶变换');set(gca,'YTick',[-100 -80 -60 -40 -20 0]);set(gca,'XTick',[0 :0.2: 1]);set(gca,'XAxisLocation','top');%设置X轴在上方set(gca,'YAxisLocation','left'); %设置Y轴在左方%hammingwn1 = hamming(51) ;[h1,w1] = freqz(wn1,1);figure(4);plot(w/pi,20*log10(abs(h1/max(h1))));axis([0 1 -100 0]);xlabel('归一化频率/\pi');ylabel('20log_{10}|W(e^{j\omega})| /dB');title('Hamming的傅里叶变换');set(gca,'YTick',[-100 -80 -60 -40 -20 0])set(gca,'XTick',[0 :0.2: 1])set(gca,'XAxisLocation','top');%设置X轴在上方set(gca,'YAxisLocation','left'); %设置Y轴在左方%Blackmanwn1 = blackman(51) ;[h1,w1] = freqz(wn1,1);figure(5);plot(w/pi,20*log10(abs(h1/max(h1))));axis([0 1 -100 0]);xlabel('归一化频率/\pi');ylabel('20log_{10}|W(e^{j\omega})| /dB');title('Blackman的傅里叶变换');set(gca,'YTick',[-100 -80 -60 -40 -20 0])set(gca,'XTick',[0 :0.2: 1])set(gca,'XAxisLocation','top');%设置X轴在上方set(gca,'YAxisLocation','left'); %设置Y轴在左方参考书:数字信号处理教程(第三版) 程佩青清华大学出版社2009年11月第9次印刷P340的图7-11矩形窗三角窗汉宁窗海明窗布拉克曼窗。

几种常见窗函数及其MATLAB程序实现

几种常见窗函数及其MATLAB程序实现

几种常见窗函数及其MATLAB程序实现2013-12-16 13:58 2296人阅读评论(0) 收藏举报分类:Matlab(15)数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。

具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。

信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。

在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。

泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。

频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。

不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。

信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。

图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。

表1 是几种常用的窗函数的比较。

如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。

但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。

matlab中的自定义函数与调用

matlab中的自定义函数与调用

Matla‎b自定义函数‎1、函数文件+调用命令文‎件:需单独定义‎一个自定义‎函数的M文‎件;2、函数文件+子函数:定义一个具‎有多个自定‎义函数的M‎文件;3、Inlin‎e:无需M文件‎,直接定义;4、Syms+subs: 无需M文件‎,直接定义;5、字符串+subs:无需M文件‎,直接定义.6、匿名函数7、直接通过@符号定义.1、函数文件+调用函数文‎件:定义多个M‎文件:% 调用函数文‎件:myfil‎e.mclear‎clcfor t=1:10y=mylfg‎(t);%调用函数时‎要注意实参‎与形参的匹‎配!fprin‎t f(‘%4d^(1/3)=%6.4f\n’,t,y);end%自定义函数‎文件: mylfg‎.mfunct‎i on y=mylfg‎(x) %注意:函数名(mylfg‎)必须与文件‎名(mylfg‎.m)一致Y=x^(1/3);注:这种方法要‎求自定义函‎数必须单独‎写一个M文‎件,不能与调用‎的命令文件‎写在同一个‎M文件中。

2、函数文件+子函数:定义一个具‎有多个子函‎数的M文件‎%函数文件:funtr‎y2.mfunct‎i on []=funtr‎y2()%可以无自变‎量()或无因变量‎[]for t=1:10y=lfg2(t);fprin‎t f('%4d^(1/3) = %6.4f\n',t,y);endfunct‎i on y=lfg2(x) %%子函数y=x^(1/3);%注:自定义函数‎文件fun‎t ry2.m中可以定‎义多个子函‎数func‎t ion。

子函数lf‎g2只能被‎主函数和主‎函数中的其‎他子函数调‎用。

3、Inlin‎e:无需M文件‎,直接定义;%inlin‎e命令用来‎定义一个内‎联函数:f=inlin‎e(‘函数表达式‎’, ‘变量1’,’变量2’,……)。

调用方式:y=f(数值列表) %注意:代入的数值‎列表顺序应‎与inli‎n e()定义的变量‎名顺序一致‎。

matlab自定义函数及调用

matlab自定义函数及调用

matlab自定义函数及调用Matlab是一种用于科学计算和工程设计的高级编程语言和环境。

它具有强大的数值计算能力和丰富的函数库,使得用户可以方便地进行各种数学运算、数据分析和图形绘制等操作。

在Matlab中,用户可以自定义函数来实现特定的功能,然后通过调用这些函数来完成相应的任务。

自定义函数是Matlab中的一种重要功能,它可以帮助用户将一系列操作封装成一个函数,使得代码更加模块化和可重用。

自定义函数的定义格式如下:```matlabfunction [output_args] = function_name(input_args)% 函数体end```其中,`function_name`是函数的名称,`input_args`是输入参数,`output_args`是输出参数。

在函数体内部,用户可以编写任意的Matlab代码来实现特定的功能。

当定义完成后,用户就可以通过调用这个函数来使用它。

调用自定义函数的方式非常简单,只需要在Matlab命令行中输入函数名和相应的参数即可。

例如,假设我们定义了一个计算两个数之和的函数`add_numbers`,那么我们可以通过以下方式调用它:```matlabresult = add_numbers(2, 3);disp(result);```上述代码中,`add_numbers`是函数名,`2`和`3`是输入参数,`result`是输出参数。

通过调用`add_numbers`函数,我们可以得到两个数的和,并将结果打印出来。

除了在命令行中直接调用函数外,我们还可以在Matlab脚本或其他函数中调用自定义函数。

这样,我们就可以将一些常用的操作封装成函数,并在需要的时候进行调用,提高代码的可读性和可维护性。

自定义函数的好处不仅在于提高代码的模块化和可重用性,还可以使代码更加简洁和易于理解。

通过将一系列操作封装成函数,我们可以将复杂的问题分解为多个小的子问题,并分别进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB窗函数大全
1.矩形窗(Rectangle Window)调用格式:w=boxcar(n),根据长度n 产生一个矩形窗w。

2.三角窗(Triangular Window)调用格式:w=triang(n),根据长度n 产生一个三角窗w。

3.汉宁窗(Hanning Window)调用格式:w=hanning(n),根据长度n 产生一个汉宁窗w。

4.海明窗(Hamming Window)调用格式:w=hamming(n),根据长度n 产生一个海明窗w。

5.布拉克曼窗(Blackman Window)调用格式:w=blackman(n),根据长度n 产生一个布拉克曼窗w。

6.恺撒窗(Kaiser Window)调用格式:w=kaiser(n,beta),根据长度n 和影响窗函数旁瓣的β参数产生一个恺撒窗w。

窗函数:
1.矩形窗:利用w=boxcar(n)的形式得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,它的元素由窗函数的值组成。

‘w=boxcar(n)’等价于‘w=ones(1,n)’.
2.三角窗:利用w=triang(n)的形式得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,它的元素由窗函数的值组成。

w=triang(N-2)等价于bartlett(N)。

3.汉宁窗:利用w=hanning(n)得到窗函数,其中n为窗函数的长度,而返回值w 为一个n 阶的向量,包含了窗函数的n个系数。

4.海明窗:利用w=hamming(n)得到窗函数,其中n为窗函数的长度,而返回值w 为一个n 阶的向量,包含了窗函数的n个系数。

它和汉宁窗的主瓣宽度相同,但是它的旁瓣进一步被压低。

5.布拉克曼窗:利用w=blackman(n)得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,包含了窗函数的n个系数。

它的主瓣宽度是矩形窗主瓣宽度的3倍,为12*pi/N,但是它的最大旁瓣值比主瓣值低57dB。

6.切比雪夫窗:它是等波纹的,利用函数w=chebwin(N,R)方式设计出N阶的切比雪夫2窗函数,函数的主瓣值比旁瓣值高RdB,且旁瓣是等波纹的。

7.巴特里特窗:利用w=bartlett(n)的形式得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,包含了窗函数的n个系数。

8.凯塞窗:利用w=kaiser(n,beta)的形式得到窗函数。

相关文档
最新文档