二叉树的遍历(非递归)

合集下载

二叉树后序遍历的递归和非递归算法

二叉树后序遍历的递归和非递归算法

安 徽电气工 程 职 业 技术学 院学报
:薹6 M2 a r 0 c h 0

-X树后序遍历的递归和非递归算法
孙泽宇, 赵国增 , 舒云星・
( 洛阳工业高等专科学校计算机系 , 河南 洛阳 4 10 ) 703
[ 要 ] 论述了二又树后序遍历的递归算法和非递归算法, 摘 对递归算法中的工作栈 的执行过程做 了
Srcbt e t t ie { u r
● 收稿 日期 :0 5—1 0 70 . 2— 2
作者筒介: 孙泽字(97 . 吉林长春人. 17 一) 男。 洛阳工业高等专科学校计算机秉麓师。研究方向: 人工智能。 趟 目增 (97 . 河南越壁人 。 阳工业高等专科 学校计算机 秉麓师 。研究方 向: 1 一) 男。 7 洛 人工智能。
s c br 木e , r h;} t t ie lt 木 i t m te f g
后序遍历二叉树的递归算法如下 :
T p d fs u tBT o e y e e r c in d t
法及执行时栈 的变化情况 , 可设计 出较好 的非递归化算法 , 本文讨论了二叉树后序遍历的递归和非递归
算法。 2 后序遍历二叉树的递归算法
1 后序遍历左子树( ) 若左子树不为空 ) 2 后序遍历右子树( ) 若右子树不为空 ) 3 访问根结点 ( ) 若存在根结点)
二叉树数据结构如下 :
二叉树是数据结构 中最常见 的存储形式 , 在算法与数据结构中经常使用。树与森林都可以转换为 二叉树 , 而遍历算法则是二叉树最重要的操作 。所谓遍历二叉树 , 就是遵从某种次序 , 遍访二叉树 中的
所有结点, 使得每个结点被访问一次 , 而且仅一次。在遍历算法中, 递归算法是最普遍 的, 弄清 了递归算

中序遍历二叉树t的非递归算法 -回复

中序遍历二叉树t的非递归算法 -回复

中序遍历二叉树t的非递归算法-回复中序遍历是二叉树遍历的一种方法,它的特点是先访问左子树,然后访问根节点,最后访问右子树。

在非递归算法中,我们需要借助栈来实现中序遍历。

下面我们将逐步分析如何用非递归算法中序遍历二叉树。

首先,我们需要了解栈的基本知识。

栈是一种后进先出(LIFO)的数据结构,它有两个基本操作:入栈(push)和出栈(pop)。

在中序遍历中,我们将节点按照遍历顺序依次入栈,然后出栈并访问节点。

接下来,我们来介绍中序遍历二叉树的非递归算法。

我们可以通过模拟递归来实现中序遍历。

首先,我们定义一个栈用于存储待访问的节点。

初始时,将根节点入栈。

在每一次迭代中,我们需要判断栈是否为空。

若不为空,则将栈顶节点出栈,并访问该节点。

然后,我们将栈顶节点的右子树入栈。

接下来,将栈顶节点的左子树依次入栈,直到左子树为空。

下面,我们以一个简单的例子来说明这个过程。

假设我们有如下二叉树t:1/ \2 3/ \ / \4 5 6 7我们使用中序遍历的非递归算法来遍历这棵树。

首先,将根节点入栈,此时栈中的元素为[1]。

然后,循环执行以下步骤:1. 判断栈是否为空,栈不为空,执行以下步骤;2. 将栈顶节点出栈,访问该节点;3. 将栈顶节点的右子树入栈;4. 将栈顶节点的左子树依次入栈,直到左子树为空。

按照这个步骤,我们首先将1出栈并访问,然后将右子树入栈,栈中的元素为[2, 3]。

然后,我们继续将左子树入栈,栈中的元素变为[4, 2, 3]。

此时,我们将4出栈并访问,然后将栈中的元素变为[2, 3]。

接着,我们将2出栈并访问,将右子树入栈,栈中的元素变为[5, 3]。

继续将左子树入栈,栈中的元素为[5, 6, 3]。

接着,我们将5出栈并访问,将栈中的元素变为[6, 3]。

最后,我们将6出栈并访问,将右子树入栈,栈中的元素变为[7, 3]。

最后,我们将7出栈并访问,此时栈为空,遍历结束。

通过这个例子,我们可以看到中序遍历的非递归算法确实按照中序遍历的顺序访问了二叉树的所有节点。

后序遍历的非递归算法(C详细)

后序遍历的非递归算法(C详细)

后序遍历的非递归算法(C详细)后序遍历是二叉树遍历的一种方式,它的顺序是先遍历左子树,然后遍历右子树,最后访问根节点。

非递归实现后序遍历的算法可以使用栈来辅助实现。

首先,我们需要定义一个树节点的数据结构,例如:```cstruct TreeNodeint val;struct TreeNode* left;struct TreeNode* right;};```接下来,我们使用一个辅助栈来进行非递归后序遍历。

首先需要创建一个空栈,并将根节点入栈。

然后开始循环,直到栈为空为止。

在循环中,首先取出栈顶节点,如果该节点没有左子树且没有右子树,说明该节点是叶子节点,可以直接输出该节点的值。

如果该节点有左子树或者右子树,需要判断是否已经遍历过该节点的子节点。

为了实现后序遍历的顺序,我们需要一个标记变量来记录上次访问的节点。

如果上次访问的节点是该节点的右子树,说明该节点的左右子节点都已经访问过了,可以直接输出该节点的值。

反之,如果上次访问的节点不是该节点的右子树,将该节点重新入栈,并以右、左、中的顺序将其右子树、左子树入栈。

下面给出完整的代码实现:```c#include <stdio.h>#include <stdlib.h>struct TreeNodeint val;struct TreeNode* left;struct TreeNode* right;};void postOrderTraversal(struct TreeNode* root)if (root == NULL)return;}struct TreeNode* lastVisited = NULL; // 上次访问的节点struct TreeNode* node = root; // 当前遍历的节点struct TreeNode* stack[100]; // 栈int top = -1; // 栈顶指针while (node != NULL , top != -1)if (node != NULL)stack[++top] = node; // 入栈node = node->left; // 访问左子树} elsestruct TreeNode* temp = stack[top]; // 取出栈顶节点if (temp->right == NULL , temp->right == lastVisited) printf("%d ", temp->val);top--; // 出栈lastVisited = temp; // 记录上次访问的节点} elsenode = temp->right; // 访问右子树}}}struct TreeNode* createNode(int val)struct TreeNode* node = (structTreeNode*)malloc(sizeof(struct TreeNode));if (node != NULL)node->val = val;node->left = NULL;node->right = NULL;}return node;int mai//创建一个二叉树struct TreeNode* root = createNode(1); root->left = createNode(2);root->right = createNode(3);root->left->left = createNode(4);root->left->right = createNode(5); root->right->left = createNode(6); root->right->right = createNode(7);//后序遍历二叉树printf("后序遍历结果:"); postOrderTraversal(root);printf("\n");return 0;```以上代码中,我们使用了一个辅助数组作为栈来实现非递归遍历。

遍历二叉树的非递归算法

遍历二叉树的非递归算法

问一次。这里的“ 问”的含义很广 ,比如修 改或输出结点的信息, 访 删除结 我们知道 , 二叉树有三个基本的组成部分, 根, 即: 左子树和右予 树, 只 要依次遍历这三个 部分, 能遍历整个二叉树 。 遍历二叉树的方式通常有 就
算, 所用到的数据仅为整型或实型即能满足要求 , 计算求精课程称作数值方 点等等。
子树, 再访问右子树 , 最后访 问根结 点) 。由于二叉树定义 的递归性, 我们很 容易就会想到用递 归算法来遍历二叉树。 设二叉树与栈 的结构如下 ( c 用 语言描述) :
t p d fs r c i N d y e e tu t B T o e f
c a d t h r a a:
据结构会对应复杂程度不 同的算法 ,丽设计一个合适 的数据 结构 能使算法 三 种, 先序遍历 ( 即: 先访 问根 结点, 再访问左子树 , 最后访问右子树) 中序 、 先访问左 予树 , 再访 问根结点, 后访 问右子树) 后序遍历 ( 最 。 先访问左 的复杂程度大大降低。 编程人员在实践 中体会到 ; 学好~种高级语言仪能解 遍历 ( 决三成所遇到的 问题, 而学好数据结构却 能解 决八成所遇 到的问题, 因此, 在软件 设计中选择一个合适的数据结构越发显得重要 。 在 管理科学领域中, 很多问题都可 以转化 为树 T e r e型结构 , 而多叉树
就会不同。
)A r ys q e c [a ] ra , eu n eM x
t p d f tu t y e e s r c
树, 它有 4 个结点。为了便于理解遍历思想 , 暂时为每个没有 予树 的结点都

e ely e b s 1 Ⅱ p 赤 a e: t e e t p *t p' lmye o ,

二叉树遍历的通用非递归算法

二叉树遍历的通用非递归算法

右子 树还未访 问)( 序访 问 A的左子树 的根结点 B , 和 l ,先 )B 进 栈 . 于 B的左 子 树 为 空 , 以 B 和 1出 栈 ,中 序 访 问 B)B 由 所 ( , 和 O进栈 ( O表 示 开 始 遍 历 结 点 B 的 右 子 树 ) 由 于 B 的 右 子树 . 为空 。 B和 O出栈 ,后 序访 问 B . 和 1出 栈 。 中序 访 问 A)A ( )A ( , 和 O进栈 .先 序 访 A的 右 子 树 的 根 结 点 C , ( )C和 1进 栈 , 由 于 C的左子树为空 , C和 l出栈 .中序 访问 C 。 ( )C和 O进栈 , 由 于 C 的 右 子 树 为 空 。 和 0出 栈 . 后 序 访 问 C)A 和 O出 栈 , C ( . ( 序 访 问 A)此 时 栈 已 空 , 历 过 程 结 束 。 后 , 遍 从 上 面可 知 , 每个 结 点 进栈 、 出栈 都 是 两 次 。若 进 栈 前 访 问 该结点 , 则得 到先 序 序 列 A C; 在 第 一 次 出栈 时 济 问 该结 点 , B 若 则得 到 中序 序 列 B C: 在 第 二 次 出栈 时访 问 该 结 点 , A 若 则得 到 后 序 序 列 B A。 此 . C 因 只需 对 二 叉树 遍 历 一 次 即 可 得 到 三 种 遍 历序 列 这里的关键是设置了一个标志位 . 用来 说明该结点的右子树 是 否 已访 问 . 以此 表 示 该 结 点 是第 一 次 出栈 还 是 第 二 次 出栈 。
维普资讯
20 0 6年 第 6期

建 电

11 2
二叉树遍历的通用非递归算 法
徐凤生 1 李立群 2 马夕荣 2
( . 州 学 院 计算 机 系 。 东 德 州 2 32 2 山 东省 农 业 管 理 干部 学 院 , 东 济 南 2 0 0 ) 1德 山 503 . 山 5 10

二叉树后序遍历的非递归算法

二叉树后序遍历的非递归算法

二叉树后序遍历的非递归算法
二叉树后序遍历是指按照左子树、右子树、根节点的顺序遍历二叉树的过程。

与前序遍历和中序遍历不同,后序遍历需要考虑根节点的位置,因此需要使用栈来存储节点信息。

非递归算法一般使用栈来实现,因为后序遍历的过程中需要先遍历左子树和右子树,最后才遍历根节点,所以存储节点信息的栈需要进行一些特殊处理。

下面是二叉树后序遍历的非递归算法:
1. 创建一个空栈,并将根节点入栈。

2. 创建一个辅助变量pre表示上一个被遍历的节点。

3. 当栈不为空时,取出栈顶元素top,判断它是否为叶子节点或者它的左右子节点都被遍历过了(被遍历过的节点可以通过辅助变量pre来判断)。

4. 如果top为叶子节点或者它的左右子节点都被遍历过了,则将top出栈,并将它的值输出。

5. 如果不满足条件3,判断top的右子节点是否为pre,如果是,则说明右子树已经遍历完了,此时可以直接输出top的值,并将top出栈;如果不是,则将top的右子节点入栈。

6. 将top的左子节点入栈。

7. 将上一个被遍历的节点pre更新为top。

根据这个算法,我们可以分别对左子树和右子树进行遍历,并保证根节点最后被遍历到,从而实现二叉树的后序遍历。

这个算法的时间复杂度为O(n),空间复杂度为O(n)。

总的来说,二叉树的后序遍历是一种比较复杂的遍历方式,需要使用栈保存节点信息,并且需要特殊处理根节点的位置。

使用非递归算法实现后序遍历可以优化空间复杂度和避免栈溢出的问题。

实现二叉链表存储结构下二叉树的先序遍历的非递归算法

实现二叉链表存储结构下二叉树的先序遍历的非递归算法

实现二叉链表存储结构下二叉树的先序遍历的非递归算法要实现二叉链表存储结构下二叉树的先序遍历的非递归算法,可以使用栈来辅助存储节点。

首先,创建一个空栈,并将树的根节点压入栈中。

然后,循环执行以下步骤,直到栈为空:1. 弹出栈顶的节点,并访问该节点。

2. 若该节点存在右子节点,则将右子节点压入栈中。

3. 若该节点存在左子节点,则将左子节点压入栈中。

注:先将右子节点压入栈中,再将左子节点压入栈中的原因是,出栈操作时会先访问左子节点。

下面是使用Python语言实现的例子:```pythonclass TreeNode:def __init__(self, value):self.val = valueself.left = Noneself.right = Nonedef preorderTraversal(root):if root is None:return []stack = []result = []node = rootwhile stack or node:while node:result.append(node.val)stack.append(node)node = node.leftnode = stack.pop()node = node.rightreturn result```这里的树节点类为`TreeNode`,其中包含节点的值属性`val`,以及左子节点和右子节点属性`left`和`right`。

`preorderTraversal`函数为非递归的先序遍历实现,输入参数为二叉树的根节点。

函数中使用了一个栈`stack`来存储节点,以及一个列表`result`来存储遍历结果。

在函数中,先判断根节点是否为None。

如果是,则直接返回空列表。

然后,创建一个空栈和结果列表。

接下来,用一个`while`循环来执行上述的遍历过程。

循环的条件是栈`stack`不为空或者当前节点`node`不为None。

非递归中序遍历二叉树课件

非递归中序遍历二叉树课件
由于在非递归实现中,我们使用栈来 模拟递归的过程,因此遍历后的结果 与递归实现相同。
04 非递归中序遍历 二叉树的复杂度 分析
时间复杂度
最好情况:O(n) 最坏情况:O(n)
平均情况:O(n)
空间复杂度
最好情况:O(1) 最坏情况:O(n)
平均情况:O(n)
05 非递归中序遍历 二叉树的优缺点
优点
01
02
03
空间效率高
非递归算法通常只需要常 数级别的额外空间,相比 之下,递归算法可能需要 更多的堆栈空间。
代码简洁
非递归算法的代码通常更 简洁,更易于理解和维护。
适合处理大型数据
由于非递归算法不需要大 量的堆栈空间,因此更适 合处理大型数据集。
缺点
编程技巧要求高
非递归算法需要更多的编程技巧, 特别是对于那些不熟悉这种技术 的人来说,理解和实现可能会比 较困难。
遍历过程
01
02
03
04
弹出栈顶元素,访问该 节点。
如果该节点右子节点存 在,将右子节点入栈。
如果该节点左子节点存 在,将左子节点入栈。
重复上述步骤,直到栈 为空。
遍历后的结果
01
中序遍历的顺序为:左子树 -> 根节点 -> 右子树。
02
非递归方法利用了栈的性质,实 现了从上到下、从左到右的遍历 顺序。
THANKS
感谢观看
栈为空。
实例二:复杂的二叉树
总结词:进阶应用
详细描述:对于复杂的二叉树,非递归中序遍历需要 更加细致的处理。由于树的形状可能不规则,我们需 要更加灵活地使用栈来处理节点之间的关系。在遍历 过程中,我们需要注意处理各种特殊情况,例如循环 引用、节点值相等的情况,以避免陷入无限循环或访 问错误的节点。此外,我们还需要注意优化算法的时 间复杂度和空间复杂度,以提高遍历的效率和准确性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三:二叉树的遍历问题
题目:编制一个遍历二叉树的程序
班级:姓名:学号:完成日期:
一.需求分析
1.问题描述:很多涉及二叉树的操作的算法都是以二叉树的遍历操作为基础的。

编写程序,对一棵给定的二叉树进行先、中、后三种次序的遍历。

2.基本要求:以二叉链表为存储结构,实现二叉树的先、中、后三种次序的递归和非递归遍历。

3.测试数据:以教科书图6.9的二叉树为例。

4.实现提示:
(1).设二叉树的结点不超过30个,且每个结点的数据均为字符,这样可利用先序遍历序列作为输入顺序创建二叉树链表存储结构。

(2.)也可利用完全二叉树在顺序存储中的特性,创建二叉树的存储结构,此时,二叉树中结点数据的类型不受限制。

二.概要设计
1.为实现上述功能,应先建立二叉树。

为此,需要有一个二叉树的抽象数据类型。

该抽象数据类型的定义为:
ADT BinaryTree
{
数据对象D:D是具有相同特性的数据元素的集合
termset中每个元素包含编号,密码,和一个指向下一节点的指针数据关系R:
若D=∅,则R=∅,称BinaryTree为空二叉树;
若D≠∅,则R={H},H是如下二元关系:
(1).在R中存在唯一的称为根的数据元素root,它在关系H下无前驱;
(2).若D-(root) ≠∅, 则存在D-(root)={D1,D2},且D1∩D2=∅;
(3). D1≠∅,则D1中存在唯一的元素x1,<root,x>∈H,且存在D1上的关系
H1⊂H;若Dr≠∅,则Dr中存在唯一的元素Xr, <root,Xr>∈H,且存在Dr上的关
系Hr⊂H;H={<root,x>,<root,Xr>,H1,Hr};
(4).(D1,{H1})是一棵符合本定义的二叉树,称为根的左子树,(Dr,{Hr})是一棵
符合本定义的二叉树,称为根的右子树。

基本操作P:
createbt(BiTree& T)
操作结果:构造一棵空二叉树
PreOrder(BiTree T)
初始条件:二叉树T存在
操作结果:先序遍历T(先根,后左子树,再右子树)_ InOrder(BiTree T)
初始条件:二叉树T存在
操作结果:中序遍历T(先左子树,后根,再右子树)_ PostOrder(BiTree T)
初始条件:二叉树T存在
操作结果:后序遍历T(先左子树,后右子树,再根)_ }ADT BinaryTree
2.单向循环链表中节点的定义如下所示:
typedef struct BiTNode
{
char data; //结点数据变量
struct BiTNode *Lchild; //左孩子指针
struct BiTNode *Rchild; //右孩子指针
} BiTNode ,*BiTree;
3.本程序包含三个模块
1).主程序模块
int main( )
{
构造二叉树;
接受命令;
函数实现;
}
2).二叉树构造模块——实现二叉树的抽象数据类型
3).二叉树操作实现模块——实现二叉树的遍历
各模块之间的调用关系如下:
主程序模块
二叉树构造模块
二叉树操作的实现
三.详细设计(递归调用)
//测试序列:-+a##*b##-c##d##/e##f##
#include "stdafx.h"
#include<iostream>
using namespace std;
typedef struct BiTNode
{
char data; //结点数据变量
struct BiTNode *Lchild; //左孩子指针
struct BiTNode *Rchild; //右孩子指针
} BiTNode ,*BiTree;
//构造二叉树
void createbt(BiTree& T)
{
char ch;
cin>>ch;
if(ch=='#') T=NULL;
else
{
T=(BiTree)malloc(sizeof(BiTNode));
T->data=ch;
createbt(T->Lchild);
createbt(T->Rchild);
}
}
//先序遍历
void PreOrder(BiTree T)
{ //先序遍历以T为根指针的二叉树if(T)
{
cout<<T->data; // 通过函数指针*visit访问根结点
PreOrder(T->Lchild); //先序遍历左子树
PreOrder(T->Rchild); //先序遍历右子树}
}
//中序遍历
void InOrder(BiTree T)
{ //中序遍历以T为根指针的二叉树if(T)
{
InOrder(T->Lchild); //中序遍历左子树
cout<<T->data; //通过函数指针*visit访问根结点
InOrder(T->Rchild); //中序遍历右子树}
}
//后序遍历
void PostOrder(BiTree T)
{ //后序遍历以T为根指针的二叉树
if(T)
{
PostOrder(T->Lchild); //后序遍历左子树
PostOrder(T->Rchild); //后序遍历右子树
cout<<T->data; //通过函数指针*visit访问根结点}
}
int main()
{
BiTree T;
cout<<"输入欲建立二叉树的序列(以'#'表示结点的子树为空!): ";
createbt(T); //构造二叉树
//遍历的实现
cout<<"先序遍历: ";
PreOrder (T);
cout<<endl;
cout<<"中序遍历: ";
InOrder (T);
cout<<endl;
cout<<"后序遍历: ";
PostOrder (T);
cout<<endl;
system("PAUSE");
return 0;
}
四.调试分析
1先建立一棵二叉树,以#表示子树是否为空,最后实现数的构造
2.先序遍历该二叉树,才用先根,后左子树,再右子树的顺序实现遍历
3.中序遍历该二叉树,才用先左子树,后根,再右子树的顺序实现遍历
4.后序遍历该二叉树,才用先左子树,后右子树,再根的顺序实现遍历
五.用户手册
1.本程序的运行环境为Win7 操作系统,执行文件为:Debug/二叉树的遍历.exe 2.进入演示程序后,即现实文本方式的用户界面:
六.测试结果
依次输入上述测试序列
:-+a##*b##-c##d##/e##f##。

相关文档
最新文档