重庆大学研究生数理统计大作业

合集下载

重庆大学学年(秋)数理统计试题及答案

重庆大学学年(秋)数理统计试题及答案

重庆大学全日制学术型硕士研究生 《数理统计》(A )课程试卷2013-2014学年第一学期(秋)请保留四位小数,部分下侧分位数为:0.95 1.65u =,0.99 2.33u =,20.95(1) 3.841χ=,0.95(3,6)9.78f =一、(18分)设1X ,2X ,…,64X 是来自总体N (0,2σ)的样本,X ,2S 分别是样本均值和样本方差:(1)求参数c 满足{}0.1P X S c >⋅=;(2)求概率22122234{1}X X P X X +>+;(3)求322321(2)i i i D X X X +=⎡⎤+-⎢⎥⎣⎦∑。

(请写出计算过程)解:(1)~(1)t n-{}}0.1P X S c P c ∴>⋅=>=得0.95(63)c t = 故 1.650.20638c ==(2)2~(0,)X N σ22212(/)(/)~(2)X X σσχ∴+ 同理22234(/)(/)~(2)X X σσχ+2222223412122234(/)(/)(/)(/)/~(2,2)22X X X X X X F X X σσσσ+++∴=+ 22122234{1}{(2,2)1}X X P P F X X +>=>+ 且0.50.50.51(2,2)(2,2)1(2,2)F F F =⇒= 得2222121222223434{1}1{1}0.5X X X X P P X X X X ++>=-≤=++ (3)令2~(2,2)i i n i Y X X N μσ+=+,112n i i Y Y X n ===∑ 221()(1)ni Y i T Y Y n S =∴=-=-∑3232223211(2)[()]i i i i i D X X X DT D Y Y +==⎡⎤+-==-⎢⎥⎣⎦∑∑2~(0,2(11/))i Y YN n σ-+~(0,1)YN=3222422421[2(11/)4(11/)((32))256(11/32)i Y D n n D σσχσ=+=+=+∑二、(26分)设1X ,2X ,…,n X 是来自总体2~(2,)(0)X N σσ>的样本,{}0.95P X A <=。

重庆大学研究生数理统计习题答案

重庆大学研究生数理统计习题答案

()(){}{}()22222111221121221164~,~(8),89111,01(1)11~(0,1)1.28 1.280.281(2)0.261 1.8360.2619818ni i n X N S S X S n X X X X E X X n n n n n D X X DX DX DX X X N n n n P X X P U X P X S P μχσμ=-=--=--=---⎛⎫-=+==⇒- ⎪⎝⎭->=>=⎛ -⎧⎫ <-+<=<⎨⎬ ⎩⎭⎝∑解:由题可知(,)且与相互独立(){}22222222241164. 1.836896464 = 2.08814.688=~(9)991188= 2.08814.688=0.90.01=0.89423948i i i S X X P S S P X X χχχμ=⎧⎫⎫⎪⎪⎪⎪⎪⎪+<⎨⎬⎪⎪⎪⎪⎪⎪⎭⎩⎭⎧⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪--⎪⎪⎪ ⎪<+<+⎨⎬ ⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎭<<-⎛⎫- ⎪⎝⎭=⋅∑,其中原式()()()()(){}24882255448822554821584~(0,1)=~4998244~(4)8944 2.132= 2.132=0.1i ii i i i i i i i i ii i N X X X t t X XP X XP t μμχμμμμμμ======⎛⎫ ⎪⎛⎫⎛⎫ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭⎛⎫⎛⎫⎛⎫-- ⎪⎪⎪⎝⎭⎝⎭==--⎧⎫⎛⎫⎪⎪-≤-≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭∑∑∑∑∑∑∑∑∑()则,()()()(){}222222222891(4)=8~1~(1,8)6498911=(1,8)58.82(8,1)10.90.158.8258.82XXX F FSSXP P F P FSμμμχμ-⎛⎫⎪--==⎧⎫-⎪⎪⎧⎫<<=<=-=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭(),则也可以用T分布与F分布的关系.0020001111()()1ln(1)11,,ˆˆˆ1ln(1),,ln(1)ln(1)2(;,...,)(;)ln (;,...,)=01ˆ=()()似然方程:得到参数的极大似然估计,再由i A nnx n n xn i i i n P X A F A e p p A EX DX A EX p EX X A EX p X p L x x f x e e d L x x nnx d Xλλλλλλλλλλλλλλλ---==<==-=-=-===--=∴=--=--====-∏∏ 0000010000ln(1)ˆln(1)ˆln(1)ˆ(3)=ln(1)=ln(1)==ˆln (;,...,)ln(1){[ln(1)][]}ln(1)ˆ()ln(1)ˆˆ极大似然估计的不变性,推出的极大似然估计为是的无偏估计且是的无偏估计是有效n A p A X p p EA E X p p EX A AA d L x x p n n nx X p d p n AA p AA A λλλλλλ-=-=----⎡⎤----⎣⎦∴-=-=-----=--∴ ()202ˆlim ln(1)ˆlim lim 0ˆ估计又是相合估计量n n n EA A p DA n Aλ→∞→∞→∞⎧=⎪⎨-⎪==⎩∴221212121222122222222221222121.422,2~222(1)(1)~01~(2) (1)(1)(1)(1)2=222X YX Y X YX X X X Nn mX X n S m SU N n mn S m S n S m S X X Sn mX Xtωσσμμμμμμχχσσσσ+++++-+--==++----+-+++-+-+==的无偏估计为且(,+)(,)又且与独立,记则()()()()()()()121212212121211221212122222=22=22222=12122t n mP t t n mX XP t n m t n mP X X t n m S X X t n m SX X t n m Sαααααωαμμμμαμμα-----+-⎧⎫≤+-⎨⎬⎩⎭⎧⎫⎪⎪+-+⎪⎪+-≤≤+-⎨⎬⎪⎪⎪⎪⎩⎭⎧⎪+-+-≤+≤+++-⎨⎪⎩-+-+±+-因此构造的置信区间为{}{}121201212120121212121212.222=022,22=02=02=0=的无偏估计为,在:成立的条件下,大于某个常数应该是小概率事件,因此构造拒绝域:以下确定常数由X X H X X c K X X c cP X X c P P t t μμμμμμμμμμα+++++>+>+⎧⎫⎪⎪⎪=>+⎬⎪⎪⎭⎧⎫⎪⎪⎪⎪=>+=⎨⎬⎪⎪⎪⎪⎩⎭()()122n m c t n m S ααω--+-⇒=+-拒绝域为:3133011331122333333111~(1,).~(3)220.220.230.20.20.80.20.104220.4因为所以,类错误(弃真):为真类错误(纳伪):为真i i i i i i i i i i i i i i X B p X B p P X H P X p P X p P X p C C P X H P X p αβ=======I ⎧⎫⎧⎫=≥=≥=⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫===+==⎨⎬⎨⎬⎩⎭⎩⎭=+=II ⎧⎫⎧=<=<=⎨⎬⎨⎩⎭⎩∑∑∑∑∑∑∑313311223333120.4120.430.410.40.60.40.648i i i i i i P X p P X p P X p C C ===⎫⎬⎭⎧⎫=-≥=⎨⎬⎩⎭⎧⎫⎧⎫=-==-==⎨⎬⎨⎬⎩⎭⎩⎭=--=∑∑∑()()221221111211=200ˆnE i i i n n nEi i i i i i i i i ni ii nii S y x dS y x x y x x d x yxββββββ======-=--=⇒-==∑∑∑∑∑∑解:()利用最小二乘估计使残差平方和最小参数的最小二乘估计量为2211222111111221111ˆ2=~(,)ˆˆˆ~(,)111ˆ===11ˆ(),由正态分布的性质推知服从正态分布ni ii i i i ni ii nnni i iiiinnni i i i i ii i i ni i nn i i i i i x YY x N x xN E D E E x Y x EY x x x x xD D x Y x x ββεβσβββββββ============+⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎛⎫⎛ ⎪ ⎪ == ⎪ ⎪⎝⎭⎝∑∑∑∑∑∑∑∑∑∑∑()()()()()222211221222111112211ˆ~(,)ˆˆˆ3=ˆˆˆ2(,)ˆ(,)(,)因此,()nii ni ii n i i nnE i iiiiii i nni i i i i ii i ni ii ii i i i nniii i xDY xN x ES E Y x D Y x E Y x D Y x DY D x Cov Y x x Yx Cov Y x Cov Y x C xxσσβββββββββ==========⎫⎪⎪=⎪ ⎪⎭⎡⎤-=-+-⎣⎦⎡⎤=-=+-⎣⎦==∑∑∑∑∑∑∑∑∑∑()222221112222222222221111(,)(,)221则ni i i i i i i nni iii i nni i Enni i iii i x x ov Y x Y Cov Y Y xxx x ESn n n xxσσσσσσσσ==========+-=+-=-∑∑∑∑∑∑∑因素:车型水平:3种不同的车型A,B,C方差分析前提假设:正态性,方差齐次性,独立性对比分位数:0.95(2,9) 4.26F F >=,拒绝原假设0123:H μμμ==,认为这三种车型耗油量有显著差异。

重庆大学数理统计试题3

重庆大学数理统计试题3
一、设 X1 , X 2 ,…,X m , X m1 ,…,X mn 为来自总体 X ~N 0, 2 的一个样本, 试确定下列统计量的分布
n Xi
i 1 m n m
( 1 ) Y1
m
2
i m 1
X
; ( 2 ) Y2
2 i
n X i 2 m Xi
i m 1 i 1 mn 2
n n 2 i 1 2 1 e 2 ) ( 2 2 ) 2 e 2 2 n xi2
xi2
n
L( 2 , X 1 , X 2 ,
Xn) (
i 1
ln( L( 2 , X 1 , X 2 , ln( L( 2 , X 1 , X 2 , d 2
xi2 n X n )) ln( 2 ) ln 2 i 1 2 2 2 X n )) n 1 n 1 n 2 i 1 ( xi 2 ) 2 2 2 4 2 2( ) 2 n i 1
s
2
c1
1 1 2 (n 1), c2 2 (n 1) n 1 2 n 1 1 2 s2
k0 :{
2
c2或
s2
2
c1}
(2) H0 : 2 1, H1 : 2 2
2 拒绝域 k0 : (n 1)s 2 12 (n 1);22s 2 0.95 (22) 33.92; :
m
2 i m1
X

n X i 2 m Xi
i m 1 i 1 mn 2
Y2 ~ F (m, n)
2 i
n
Xi
(3)
i 1
m
m n
m
~ N (0,1),

重庆大学研究生数理统计大作业

重庆大学研究生数理统计大作业

NBA球员科比单场总得分与上场时间的线性回归分析摘要篮球运动中,球员的上场时间与球员的场上得分的数学关系将影响到教练对每位球员上场时间的把握,若能得到某位球员的上场时间与场上得分的数据关系,将能更好的把握该名球员的场上时间分配。

本次作业将针对现役NBA球员中影响力最大的球员科比布莱恩特进行研究,对其2012-2013年赛季常规赛的每场得分与出场时间进行线性回归,得到得分与出场时间的一元线性回归直线,并对显著性进行评估和进行区间预测。

正文一、问题描述随着2002年姚明加入NBA,越来越多的中国人开始关注篮球这一项体育运动,并使得篮球运动大范围的普及开来,尤其是青年学生。

本着学以致用的原则,希望将所学理论知识与现实生活与个人兴趣相结合,若能通过建立相应的数理统计模型来做相应的分析,并且从另外一个角度解析篮球,并用以指导篮球这一项运动的更好发展,这也将是一项不同寻常的探索。

篮球运动中,得分是取胜的决定因素,若要赢得比赛,必须将得分超出对手,而影响一位球员的得分的因素是多样的,例如:情绪,状态,体力,伤病,上场时间,防守队员等诸多因素,而上场时间作为最直接最关键的因素,其对球员总得分的影响方式有着重要的研究意义。

倘若知道了其分布规律,则可从数量上掌握得分与上场时间复杂关系的大趋势,就可以利用这种趋势研究球员效率最优化与上场时间的控制问题。

因此,本文针对湖人当家球星科比布莱恩特在2012-2013年赛季常规赛的每场得分与上场时间进行线性回归分析,并对显著性进行评估,以巩固所学知识,并发现自己的不足。

二、数据描述抽出科比布莱恩特2012-2013年常规赛所有82场的数据记录(原始数据见附录),剔除掉其中没有上场的部分数据,得到有参考实用价值的数据如表2.1所示:以上数据由腾讯篮球中心提供,特此说明。

三、模型建立(1)假设条件假定球员每场的发挥均为独立同分布事件, (2)模型构建以上场时间为自变量Xi ,单场得分为应变量Yi ,建立正态线性模型式:()012,1,2,,;0,,,,,i i i ii i i Y x i n N ββεεσεεε=++=⎧⎪⎨⎪⎩且相互独立 其中β0、β1为模型参数。

最新重庆大学数理统计大作业

最新重庆大学数理统计大作业

研究生课程考核试卷(适用于课程论文、提交报告)科目:数理统计教师:刘琼荪姓名: xxx 学号: 20150702xxx 专业:机械工程类别:学术上课时间: 2016 年 3 月至 2016 年 4 月考生成绩:卷面成绩平时成绩课程综合成绩阅卷评语:阅卷教师 (签名)我国上世纪70-90年代民航客运量回归分析摘要:中国民航从上实际50年代发展至今已有60多年的历史,这期间中国民航经历了曲折的发展。

随着改革开发以来,中国人民的生活水平日渐提高,出行坐乘飞机逐渐人们可选的交通方式。

我国民航客运量逐年提高,为了研究其历史变化趋势及其成因,现以民航客运量作为因变量y,假设以国民收入x1、消费额x2、铁路客运量x3、民航航线里程x4、来华旅游入境人数x5为影响民航客运量的主要因素。

利用SPSS和excel软件通过建立回归模型分析我国民航客运量主要受到其中哪些因素的影响,并就回归模型分析具体可能的成因。

关键词:民航客运量影响因素回归模型一、问题提出及问题分析2004年,民航行业完成运输总周转量230亿吨公里、旅客运输量1.2亿人、货邮运输量273万吨、通用航空作业7.7万小时。

截止2004年底,我国定期航班航线达到1200条,其中国内航线(包括香港、澳门航线)975条,国际航线225条,境内民航定期航班通航机场133个(不含香港、澳门),形成了以北京、上海、广州机场为中心,以省会、旅游城市机场为枢纽,其它城市机场为支干,联结国内127个城市,联结38个国家80个城市的航空运输网络。

民航机队规模不断扩大,截止至2004年底,中国民航拥有运输飞机754架,其中大中型飞机680架,均为世界上最先进的飞机。

2004年中国民航运输总周转量达到230亿吨公里(不包括香港、澳门特别行政区以及台湾省),在国际民航组织188个缔约国中名列第3位。

从上述事实可以看出我国民航的发展所取得的成果显著。

当前我国民航客运量相当巨大,而影响我国航运客运量的因素有很多,例如第三产业增加值(亿元),城市居民消费水平(绝对元),定期航班航线里程(万千里)等[1]。

重庆大学硕士研究生《数理统计》课程大作业(论文)

重庆大学硕士研究生《数理统计》课程大作业(论文)

一、问题提出和问题分析今天的重庆,肩负着中央赋予的历史重任——着力打造西部地区的重要增长极、长江上游地区的经济中心、成为统筹城乡发展的试验者、在西部地区率先实现全面建设小康社会的目标。

2010年初,又一重要规划将重庆发展提升到国家战略——重庆被确定为国家五大中心城市之一,是中西部地区唯一入选的城市。

这说明,重庆未来的发展不可限量。

自1997年直辖以来,重庆市的经济社会发展极为迅猛。

全市的GDP由1997年的1360.24亿元增长至2010年的7894.2亿元,而整个社会的发展进步也有目共睹。

在重庆过去、现在和未来的发展进程中,在重庆的各种发展规划的要求下,建设必将成为山城的另一个符号。

过去十多年中的大规模、大范围的建设成就了现在的重庆,而重庆未来的发展将需要更多的建设。

作为重庆建设中最重要的一环,建筑业在重庆显然有着重要的地位。

建筑业这种专门从事土木工程、房屋建设和设备安装以及工程勘察设计工作的生产部门,为重庆的发展建设提供着众多的基础设施,满足着居住、工业、商业、办公等各种城市需求。

数据显示,在过去的数年中,重庆市建筑业的总产值占全市GDP的7%-8%,是名副其实的支柱产业。

因此建筑业的发展情况,可以从侧面反映出整个重庆社会经济的发展情况,对重庆建筑业的研究就有了很大的现实意义。

建筑企业是建筑业的主体。

众多的建筑企业的良好发展构成了建筑业的良好发展。

对于建筑企业来说,要实现企业的良好经营和发展,必须要有良好的收入来支撑。

在建筑企业收入的众多影响因素中,企业的劳动生产率无疑是值得关注的一个。

企业都在致力于提高自身的劳动生产效率,而不断提高的劳动生产率,可使得企业的生产经营行为更具效率,因而获得更多的收入,实现更好的发展。

所以,研究重庆市建筑企业劳动生产率与企业收入的关系,可从一个角度来了解重庆市建筑企业的发展情况,从而了解到了重庆建筑业的发展以至于重庆市的经济发展情况。

为了找出二者之间的关系或者规律性,本文采用2001-2010这十年中重庆建筑企业劳动生产率和企业平均收入的数据,通过数学分析,找出二者关系。

2015重庆大学数理统计大作业

2015重庆大学数理统计大作业

研究生课程考核试卷(适用于课程论文、提交报告)科目:数理统计教师:刘琼荪姓名:xxx 学号:20150702xxx 专业:机械工程类别:学术上课时间:2016 年 3 月至2016 年 4 月考生成绩:卷面成绩平时成绩课程综合成绩阅卷评语:阅卷教师(签名)我国上世纪70-90年代民航客运量回归分析摘要:中国民航从上实际50年代发展至今已有60多年的历史,这期间中国民航经历了曲折的发展。

随着改革开发以来,中国人民的生活水平日渐提高,出行坐乘飞机逐渐人们可选的交通方式。

我国民航客运量逐年提高,为了研究其历史变化趋势及其成因,现以民航客运量作为因变量y,假设以国民收入x1、消费额x2、铁路客运量x3、民航航线里程x4、来华旅游入境人数x5为影响民航客运量的主要因素。

利用SPSS和excel软件通过建立回归模型分析我国民航客运量主要受到其中哪些因素的影响,并就回归模型分析具体可能的成因。

关键词:民航客运量影响因素回归模型一、问题提出及问题分析2004年,民航行业完成运输总周转量230亿吨公里、旅客运输量1.2亿人、货邮运输量273万吨、通用航空作业7.7万小时。

截止2004年底,我国定期航班航线达到1200条,其中国内航线(包括香港、澳门航线)975条,国际航线225条,境内民航定期航班通航机场133个(不含香港、澳门),形成了以北京、上海、广州机场为中心,以省会、旅游城市机场为枢纽,其它城市机场为支干,联结国内127个城市,联结38个国家80个城市的航空运输网络。

民航机队规模不断扩大,截止至2004年底,中国民航拥有运输飞机754架,其中大中型飞机680架,均为世界上最先进的飞机。

2004年中国民航运输总周转量达到230亿吨公里(不包括香港、澳门特别行政区以及台湾省),在国际民航组织188个缔约国中名列第3位。

从上述事实可以看出我国民航的发展所取得的成果显著。

当前我国民航客运量相当巨大,而影响我国航运客运量的因素有很多,例如第三产业增加值(亿元),城市居民消费水平(绝对元),定期航班航线里程(万千里)等[1]。

(专硕)数理统计201305-试卷-

(专硕)数理统计201305-试卷-

校训:耐劳苦、尚俭朴、勤学业、爱国家
重庆大学研究生试卷(2011 版)
第 3 页 共 3 页
五(14 分)近年来,国内灾害频发。每次大的自然灾害来临,都牵动着亿万 人民的心,人们通过各种方式送出援助,给受灾者带去温暖、带去希望。社 会的富裕程度与人们的慈善是否直接相关呢?2008 年“5.12”汶川地震后, 中国联通公司开通了短信捐赠平台,从 5 月 15 日 20 点开始,短短 4 个小时 内接受捐赠达二百多万元。 如果用随机变量 X 表示 2008 年全国 31 个省市的 GDP(单位:亿元) ,Y 表示全国 31 个省市在该时间段内的捐赠金额(单位: 元) ,根据联通公司网上公布的该时间段内 31 个省市的捐款数据和 2009 年 《中国统计年鉴》 , 计算得到: lxx 2380973569 , x 10551.57 ,y 86281.16 ,
一 ( 10 分 ) 设 某 地 区 初 三 年 级 学 生 的 体 重 为 X ( 单 位 : kg ) , 已 知 。现从中随机抽取学生 21 名学生,构成样本 X1 , X 2 , X ~ N ( 4 2, 3 6 )

值;3)讨论估计量 T2 ( X1 , X 2 ,
, X n ) 的有效性和相合性。
为了对该问题进行方差分析: 1) 指出该问题中的指标、因素、水平,进行方差分析应满足的前提条件; 2) 给出方差分析中的统计假设; 3) 完 成 方 差 分 析 表 , 检 验 不 同 化 肥 下 农 产 品 产 量 有 无 显 著 性 差 异 ( 0.05 )?
方差来源 DF (自由度) S2(平方和) S 2 (均方差) 因素 A 随机误差 总和 337.167 84.678 F值
lxy 15691922961, l yy 142047135134.19 。分析:1)假设 X 与 Y 有线性相
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NBA球员科比单场总得分与上场时间的线性回归分析
摘要
篮球运动中,球员的上场时间与球员的场上得分的数学关系将影响到教练对每位球员上场时间的把握,若能得到某位球员的上场时间与场上得分的数据关系,将能更好的把握该名球员的场上时间分配。

本次作业将针对现役NBA球员中影响力最大的球员科比布莱恩特进行研究,对其2012-2013年赛季常规赛的每场得分与出场时间进行线性回归,得到得分与出场时间的一元线性回归直线,并对显著性进行评估和进行区间预测。

正文
一、问题描述
随着2002年姚明加入NBA,越来越多的中国人开始关注篮球这一项体育运动,并使得篮球运动大范围的普及开来,尤其是青年学生。

本着学以致用的原则,希望将所学理论知识与现实生活与个人兴趣相结合,若能通过建立相应的数理统计模型来做相应的分析,并且从另外一个角度解析篮球,并用以指导篮球这一项运动的更好发展,这也将是一项不同寻常的探索。

篮球运动中,得分是取胜的决定因素,若要赢得比赛,必须将得分超出对手,而影响一位球员的得分的因素是多样的,例如:情绪,状态,体力,伤病,上场时间,防守队员等诸多因素,而上场时间作为最直接最关键的因素,其对球员总得分的影响方式有着重要的研究意义。

倘若知道了其分布规律,则可从数量上掌握得分与上场时间复杂关系的大趋势,就可以利用这种趋势研究球员效率最优化与上场时间的控制问题。

因此,本文针对湖人当家球星科比布莱恩特在2012-2013年赛季常规赛的每场得分与上场时间进行线性回归分析,并对显著性进行评估,以巩固所学知识,并发现自己的不足。

二、数据描述
抽出科比布莱恩特2012-2013年常规赛所有82场的数据记录(原始数据见附录),剔除掉其中没有上场的部分数据,得到有参考实用价值的数据如表2.1所示:
以上数据由腾讯篮球中心提供,特此说明。

三、模型建立
(1)假设条件
假定球员每场的发挥均为独立同分布事件, (2)模型构建
以上场时间为自变量Xi ,单场得分为应变量Yi ,建立正态线性模型式:
()012
,1,2,
,;0,,,,,i i i i
i i i Y x i n N ββεεσεεε=++=⎧⎪⎨⎪⎩且相互独立 其中β0、β1为模型参数。

(3)模型求解 由数据记录资料:
()()()112
2,,,,
,
,n
n x y x y x y 用最小二乘法求得
回归方程:01y x ββ∧
∧∧
=+,其中()()
01
112
1
,()
n
i
i
i n
i
i x x y y y x x x βββ∧
∧∧
==--=
=--∑∑
若x0 表示x 某个固定的值,则相应的()2
001~,Y N x ββσ+
由于01,ββ 与22
21
1,(),2n
i i i Y Y n σσ∧∧==--∑是由历史数据得出, 因此2
001,,,Y ββσ∧ 相互独立。

容易证得:
()
012
02011~,xx
x x x N x n l ββββσ∧

⎡⎤
⎡⎤-⎢⎥⎢⎥+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣

, 同时可推出0100Y x ββ∧∧
⎛⎫
-+ ⎪⎝⎭
服从正态分布,并能求得:
01000E Y x ββ∧

⎡⎤⎛⎫-+= ⎪⎢⎥⎝⎭⎣
⎦,()
012
020011xx x x D Y x n l ββσ∧



-⎡⎤⎛⎫⎢⎥-+=++ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎢⎥⎣

即:()
012
02001~0,1xx x x Y x N n l ββσ∧∧⎡⎤
⎡⎤-⎛⎫⎢
⎥⎢⎥-+++
⎪⎢⎥⎢⎥⎝⎭
⎢⎥⎢⎥⎣⎦⎣

, 由于i ε与01ββ∧∧
+均相互独立,故2
σ∧ 与0100Y x ββ∧∧
⎛⎫
-+ ⎪⎝⎭
相互独立, 又()()2
222~2n n σχσ∧--
故有:
()
0100~2ββ∧∧
⎛⎫-+ ⎪
=
-Y x T t n 。

因此,给定一个X0,再给出一个置信水平1-α,就可以求出相对应Y0的预测区间:
(
)(
)0011012012[22ββσββσ∧


∧∧∧
-∂-∂+--++-x t n x t n 当样本n 比较大时, 由于(
)12122,
1t
n u -∂-∂-≈≈,
于是Y 的置信水平为1-α的预测区间近似为:
001212,σσ∧∧∧∧
-∂-∂⎡⎤-+⎢⎥⎣⎦
y u y u 四、计算机设计方法与实现
(1)回归方程求解
数据如表2.1所示,事先去掉因伤病导致的缺席的数据点,经过观察分析,数据近似服从线性分布,求解的详细过程见附表1, 由数据计算得:
2
2
211()2998.286===-=-=∑∑n
n
xx i i i i l x x x nx
2
2
21
1
()6316.952===-=-=∑∑n
n
yy i i i i l y y y n y
1
()()2444.286==--=∑n
xy i i i l x x y y
根据最小二乘法原理得:
1
0.8152
3.6717
ββ∧

=+=-
回归方程为: 3.67170.8512∧
=-+y x 样本点与回归直线的关系如图4.1所示:
图4.1
(2)显著性检验 提出统计假设:
H0:01=β,H1:01≠β
采用r 检验法:
0.5616=
=
=r
取显著水平05.0=α,0.05(2)(82)0.217r n r α-==
则有0.05r r >(82),因此拒绝原假设,接收科比布莱恩特2012-2013赛季单场总
得分与上场时间存在显著的线性关系。

(3)区间预测
以Yo 的区间预测为例: 由以上计算同时可求出:
7.2619σ∧
== 由于:
()
0100~2Y x T t n ββ∧∧
⎛⎫
-+ ⎪
=
-
Yo 的置信度为1-α的置信区间为:
(
)(
)0011012012[22ββσββσ∧


∧∧∧
-∂-∂+--++-x t n x t n 由t 分布表,我们可以预测球员科比布莱恩特在相应的上场时间Xi 里其单场得分Yi 的置信度为1-α的置信区间。

例:
当Xi=40,置信水平1-α=1-0.05=0.95时: 查表:由线性内插法得到()0.97582 1.993t =
计算得:
1.0228
==
-+⨯±⨯⨯=±
3.67170.851240 1.9937.2619 1.022830.37631
4.8029
因此当Xi=40时,参数Yi置信度为0.95的置信区间为:
[]
15.5739,45.1792
即当球员科比布莱恩特上场时间为40分钟时,其单场总得分落在区间[]
15.5739,45.1792的概率为95%。

五、模型结果分析
基于以上的结果可知,对于湖人队球员科比布莱恩特,其单场总得分与其上场时间有显著的线性关系,可以认为能通过改变其上场时间从而以线性的关系改变其单场总得分。

六、结语
以上方法得出的结果与真实值相比有一定偏差,但由于样本数量较大,因此数据结果也有较大的可信度,当样本数量增加时,用来预测的数据也更多,这样预测的可靠性会增强。

通过以上将所学知识应用于实践的过程,更好的让我理解了学以致用的学习过程,只要我们留心观察,数学模型则无处不在。

理论联系实际,学以致用,才是我们学习这门课程的最终目的。

参考资料:
[1] 杨虎,刘琼荪,钟波.应用数理统计.北京:高等教育出版社.2004
附录
原始数据(来自腾讯篮球数据中心):
数理统计
11。

相关文档
最新文档