第十二章习题答案new

合集下载

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_第十二章微分方程内容概要§12.1微分方程的基本概念内容概要课后习题全解1.指出下列微分方程的阶数:知识点:微分方程阶的定义★(1)某(y)24yy3某y0;解:出现的未知函数y的最高阶导数的阶数为1,∴方程的阶数为1。

注:通常会有同学误解成未知函数y的幂或y的导数的幂。

例:(错解)方程的阶数为2。

((y))★(2)2某y2y某2y0;解:出现的未知函数y的最高阶导数的阶数为2,∴方程的阶数为2。

★(3)某y5y2某y0;解:出现的未知函数y的最高阶导数的阶数为3,∴方程的阶数为3。

★(4)(7某6y)d某(某y)dy0。

(n)思路:先化成形如F(某,y,y,,y解:化简得)0的形式,可根据题意选某或y作为因变量。

dy6y7某,出现的未知函数y的最高阶导数的阶数为1,∴方程的阶数为1。

d某某y2指出下列各题中的函数是否为所给微分方程的解:知识点:微分方程的解的定义思路:将所给函数及其相应阶导数代入方程验证方程是否成立。

★(1)某y2y,y5某2;2解:将y10某,y5某代入原方程得左边所以某10某25某22y右边,y5某2是所给微分方程的解。

y2y0,yC1co某C2in某;解:yC1in某C2co某,将y2C1co某2C2in某,yC1co某C2in某,代入原方程得:左边所以★(3)y2y2C1co某2C2in某2(C1co某C2in某)右边,yC1co某C2in某是所给微分方程的解。

y22yy20,yC1某C2某2;某某2解:将yC1某C2某,yC12C2某,y2C2,代入原方程得:2C14C2某2(C1某C2某2)22y左边=yy22C20右边2某某某某所以yC1某C2某2是所给微分方程的解。

y(12)y12y0yC1e1某C2e2某;1某解:将yC1eC2e2某,yC11e1某C22e2某,yC112e1某C222e2某,代入原方程得:左边y(12)y12y22C11e1某C22e2某(12)(C11e1某C22e2某)12(C1e1某C2e2某) 0所以右边,yC1e1某C2e2某是所给微分方程的解。

(典型题)人教版八年级上册数学第十二章 全等三角形含答案

(典型题)人教版八年级上册数学第十二章 全等三角形含答案

人教版八年级上册数学第十二章全等三角形含答案一、单选题(共15题,共计45分)1、如图,平分交于点, 于点,若,, ,则的长为()A. B. C. D.2、如图,已知△ABC≌△ADC,∠B=30°,∠DAC=25°,则∠ACB=()A.55°B.60°C.120°D.125°3、如图,在正方形中,E为边上一点,F为延长线上一点,且,连接.给出下列至个结论:① ;② ;③ ;④ ;⑤ .其中正确结论的个数是()A. B. C. D.4、如图,在△AOB中,∠OAB=∠AOB=15°,OB=8,OC平分∠AOB,点P在射线OC上,点Q为边OA上一动点,则PA+PQ的最小值是()A.3B.4C.4D.35、如图所示,某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.①②③都带去6、请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据图形全等的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SSSB.SASC.ASAD.AAS7、如图,AB=AD,添加下面的一个条件后.仍无法判定△ABC≌△ADC的是 ( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°8、如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心 D.∠ACB=90°9、下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;是真命题的有()个A.1B.2C.3D.410、如图,在CD上求一点P,使它到边OA,OB的距离相等,则点P是( )A.线段CD的中点B.CD与∠AOB的平分线的交点C.CD与过点O作的CD的垂线的交点D.以上均不对11、如图,中,于D,于E,AD交BE于点F,若,则等于A. B. C. D.12、如图,已知:∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AEB.AB=AD,BC=DEC.AC=AE,BC=DED.以上都不对13、如图,一块三角形玻璃不小心摔碎成如图三片,只需带上其中的一片,玻璃店的师傅就能重新配一块与原来相同的三角形玻璃,你知道应带碎玻璃.()A.③B.②C.①D.都不行14、规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:① AB=A1B1, AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;② AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③ AB=A1B1, AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④ AB=A1B1, CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个A.1B.2C.3D.415、如图,已知,添加下列条件后,仍无法判定△ ≌△的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图:△ABE≌△ACD,AB=10cm,∠A=60°,∠B=30°,则AD=________cm,∠ADC=________.17、如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=2,P为AB上一动点,则PD的最小值为________.18、已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=________19、如图,已知∠1=∠2,请添加一个条件________使得△AOC≌△BOC.20、如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为________.21、如图,已知△ABC≌△DCB,若∠ABC=50°,∠ACB=40°,则∠D=________.22、如图,四边形ABCD是正方形,边长为4,点G在边BC上运动,DE⊥AG于E,BF∥DE交AG于点F,在运动过程中存在BF+EF的最小值,则这个最小值是________.23、如图,锐角三角形ABC和锐角三角形A'B'C'中,AD、A'D'分别是边BC、B'C'上的高,且AB=A'B',AD=A'D'.要使△ABC≌△A'B'C',则应补充条件:________(填写一个即可)24、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系、已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处,若在y轴上存在点P,且满足FE=FP,则P点坐标为________.25、如图,将边长都为2 cm的正方形按如图所示摆放,点A1、A2、…、An分别是正方形的中心,则2014个这样的正方形重叠部分的面积和为________.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、已知,,,,证明:.28、如图,CD是线段AB的垂直平分线,则∠CAD= ∠CBD.请说明理由:解:∵CD是线段AB的垂直平分线,∴AC=▲ ,▲ =BD..在△ACD和△BCD中,. ▲ =BC,AD= ▲,CD=CD,∴△ACD≌▲ ( ) .∴∠CAD=∠CBD()29、如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E,试说明DE=DC+BE.30、已知:如图,△ABC中,点D、E分别为BC、AC边中点,连接AD,连接DE,过A 点作AF∥BC,交DE的延长线于F.连接CF,(1)求证:四边形ADCF是平行四边形;(2)对△ABC添加一个条件 ,使得四边形ADCF是矩形,并进行证明;(3)在(2)的基础上对△ABC再添加一个条件 ,使得四边形ADCF是正方形,不必证明.参考答案一、单选题(共15题,共计45分)1、A2、D3、C4、C5、C6、A7、C8、A9、C10、B11、A12、C13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

第十二章习题答案new

第十二章习题答案new

1、分析电子衍射与X 衍射有何异同?答:相同点:① 都是以满足布拉格方程作为产生衍射的必要条件。

② 两种衍射技术所得到的衍射花样在几何特征上大致相似。

不同点:① 电子波的波长比x 射线短的多,在同样满足布拉格条件时,它的衍射角很小,约为10-2rad 。

而X 射线产生衍射时,其衍射角最大可接近2。

② 在进行电子衍射操作时采用薄晶样品,增加了倒易阵点和爱瓦尔德球相交截的机会,使衍射条件变宽。

③ 因为电子波的波长短,采用爱瓦尔德球图解时,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。

④ 原子对电子的散射能力远高于它对x 射线的散射能力,故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。

2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系? 答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相对应晶面的衍射结果,可以认为电子衍射斑点就是与晶体相对应的倒易点阵某一截面上阵点排列的像。

关系:① 倒易矢量g hkl 垂直于正点阵中对应的(hkl )晶面,或平行于它的法向N hkl② 倒易点阵中的一个点代表正点阵中的一组晶面③ 倒易矢量的长度等于点阵中的相应晶面间距的倒数,即g hkl =1/d hkl④ 对正交点阵有a *//a ,b *//b ,c *//c ,a *=1/a ,b *=1/b ,c *=1/c 。

⑤ 只有在立方点阵中,晶面法向和同指数的晶向是重合的,即倒易矢量g hkl 是与相应指数的晶向[hkl]平行⑥ 某一倒易基矢量垂直于正交点阵中和自己异名的二基矢所成平面。

3、用爱瓦尔德图解法证明布拉格定律。

证:如图,以入射X 射线的波长λ的倒数为半径作一球(厄瓦尔德球),将试样放在球心O 处,入射线经试样与球相交于O*;以O*为倒易原点,若任一倒易点G 落在厄瓦尔德球面上,则G 对应的晶面满足衍射条件产生衍射。

八年级物理第十二章 简单机械课后习题答案

八年级物理第十二章 简单机械课后习题答案

第十二章 简单机械课后习题新编 《12.1杠杆》1.各式各样的剪刀都是一对对的杠杆。

在图中,哪些是省力杠杆,哪些是费力杠杆?要剪断铁片,应该使用哪种剪刀?剪纸时应该使用哪种剪刀?修剪树枝时应使用哪种剪刀?为什么?AC 是省力杠杆;B 是费力杠杆;要剪铁应使用A ;要剪纸应使用B ;要修剪树枝应使用C 。

2.在图中分别画出钳子、自行车手闸这两个杠杆(图中深色部分)工作时的支点、动力和动力臂、阻力和阻力臂。

3.图为指甲剪刀的示意图,它有几个杠杆?分别是省力杠杆,还是费力杠杆?有三个杠杆。

如图ABC 的动力臂大于阻力臂,是省力杠杆;OBD 、OED 的动力臂小于阻力臂,是费力杠杆;4.搬运砖头的独轮车,车厢和砖头所受的总重力G =1000N ,独轮车的有关尺寸如图所示。

推车时,人手向上的力F 应为多大?FL 1=GL 2F ×1m=1000N×0.3mF =300N《12.2滑轮》1.物体重1000N ,如果用一个定滑轮提起它,需要用多大的力?如果用一个动滑轮提起它,又要用多大的力(不计摩擦及滑轮自重)? F 定=G=1000NF 1 L 1 L 2 F 2 F 2 L 2 F 1 L 1F 动=21G=21×1000N=500N2.仔细观察自行车,看看它上面有几种简单机械,分别说明它们各起到了什么作用。

车把:轮轴——变形杠杆——省力 踏板:轮轴——变形杠杆——省力 前闸、后闸:——杠杆——省力后轮:轮轴——变形杠杆——费力3.解释如图的科学漫画。

一个人要拉起比他体重大的物体,用定滑轮行吗?应该怎么办?不行。

应该使滑轮组。

4.利用如图甲所示的滑轮组提起一个重为2000N 的物体,不计摩擦及滑轮自重,绳子的拉力F 等于多少?如果要用这个滑轮组达到更加省力的效果,绳子应该怎样绕?请在图乙中画出绳子的绕法,并计算此时拉力的大小.F =41G=41×2000N=500NF =51G=51×2000N=400N 《12.3机械效率》 1.有没有机械效率为100%机械?为什么?举例说明,通过什么途径可以提高机械效率。

高等数学第12章课后习题答案(科学出版社).

高等数学第12章课后习题答案(科学出版社).

习题 12.11. 判断下列方程是几阶微分方程:;)1(2y x dxdy +=;042)2(2=+-⎪⎭⎫⎝⎛x dx dy dx dy x;052)3(322=+⎪⎭⎫⎝⎛-xy dx dy dx y d x 2334(4)2()1xy x y x y x '''++=+.解 (1)是一阶线性微分方程; (2)是一阶非线性微分方程; (3)是二阶非线性微分方程; (4)是二阶非线性微分方程.2. 指出下列各题中的函数是否为所给微分方程的解:(1)2xy y '=,25y x =; (2)0y y ''+=,3sin 4cos y x x =-; (3)20y y y '''-+=,2e x y x =; (4)2()0xy x y yy ''''++=,y x =. 解 (1)是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证函数x C x y sin )(2+=(C 为任意常数)是方程0sin 2cot =--x x x y dxdy的通解, 并求满足初始条件0|2==πx y 的特解.解 要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将x C x y sin )(2+=求一阶导数,得dxdy,cos )(sin 22x C x x x ++= 把y 和dxdy代入方程左边得 x x x y dxdysin 2cot --x x x x C x x C x x x sin 2cot sin )(cos )(sin 222-+-++=.0≡ 因方程两边恒等,且y 中含有一个任意常数,故x C x y sin )(2+=是题设方程的通解. 将初始条件02==πx y 代入通解x C x y sin )(2+=中,得C +=402π .42π-=C 从而所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.写出由下列条件确定的曲线所满足的微分方程.(1) 一曲线通过原点,并且它在(,)x y 处的切线斜率等于2x y +; (2) 一曲线通过点(2,3),它在两坐标轴间的任一切线段均被切点所平分.解:由题意,2y x y '=+,00x y==解:设该曲线的方程为()y f x =,(,)x y 为其上任意一点,该点处的切线斜率为y ',过该点的切线方程为()Y y y X x '-=-。

沪教新版七年级上册《第12章_因式分解》2024年同步练习卷+答案解析

沪教新版七年级上册《第12章_因式分解》2024年同步练习卷+答案解析

沪教新版七年级上册《第12章因式分解》2024年同步练习卷一、选择题:本题共5小题,每小题3分,共15分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各式从左到右的变形中,是因式分解的为()A. B.C. D.2.如果一个多项式因式分解的结果是,那么这个多项式是()A. B. C. D.3.下列各式中,是完全平方式的是()A. B. C. D.4.把多项式分解因式的结果是()A. B.C. D.5.已知a,b,c是的三边长,且,则的形状为()A.钝角三角形B.等边三角形C.直角三角形D.等腰直角三角形二、单选题:本题共1小题,每小题5分,共5分。

在每小题给出的选项中,只有一项是符合题目要求的。

6.若能在整数范围内因式分解,则k可取的整数值有()A.2个B.3个C.4个D.6个三、填空题:本题共14小题,每小题3分,共42分。

7.多项式中各项的公因式是______.8.分解因式:______.9.分解因式:______.10.如果多项式,那么m的值为______.11.如果,且,则n的值是______.12.已知,,则______.13.已知,则的值是__________.14.若长方形的面积是,且其中一边长为,则长方形的另一边长是______.15.已知正方形的面积是,利用分解因式写出表示该正方形的边长的代数式______.16.已知,,则的值为______.17.分解因式,甲看错了a值,分解的结果是,乙看错了b值,分解的结果是,那么分解因式正确的结果应该是______.18.已知是一个完全平方式,则______.19.已知,则______.20.如果二次三项式为整数在整数范围内可分解因式,那么a的取值可以是______.四、解答题:本题共10小题,共80分。

解答应写出文字说明,证明过程或演算步骤。

21.本小题8分分解因式:22.本小题8分分解因式:计算:23.本小题8分分解因式:24.本小题8分分解因式:25.本小题8分分解因式:26.本小题8分因式分解:27.本小题8分因式分解:;已知:x、y为正整数,、且,求x、y的值.28.本小题8分阅读下面解题过程:分解因式:解:然后按照上述解题思路,完成下列因式分解:29.本小题8分利用乘法分配律可知:______;______.由整式乘法与因式分解的关系,我们又可以得到因式分解中的另两个公式:______;______.请利用新的公式对下列各题进行因式分解.;30.本小题8分先阅读下面例题的解法,然后解答后面的问题.例:若多项式分解因式的结果中有因式,求实数m的值.解:设为整式,若,则或由得左式为零,所以是方程的解,所以,所以问题:若多项式分解因式的结果中有因式,则实数p是多少?答案和解析1.【答案】C【解析】解:A、是整式的乘法运算,故选项错误;B、右边不是整式乘积的形式,故选项错误;C、,正确;D、右边不是整式乘积的形式,故选项错误.故选:根据因式分解的定义作答.因式分解是把一个多项式化成几个整式的积的形式,熟练地掌握因式分解的定义是解题关键.2.【答案】B【解析】解:故选:根据平方差公式得,进而解决此题.本题主要考查平方差公式以及因式分解的定义,熟练掌握平方差公式以及因式分解的定义是解决本题的关键.3.【答案】A【解析】解:,属于完全平方式;B.不属于完全平方式;C.不属于完全平方式;D.不属于完全平方式;故选:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方;另一种是完全平方差公式,就是两个整式的差括号外的平方.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.【答案】C【解析】解:原式故选:先分两组,前面一组利用完全平方公式分解,然后利用平方差公式因式分解即可.本题考查了因式分解-分组分解:分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.5.【答案】B【解析】解:,,,即,,,,,的形状为等边三角形.故选:欲判断三角形的形状,不妨试着从边的关系出发,求出a、b、c之间的关系;给等式两边同时乘以2,再利用完全平方公式进行配方,可得到;接下来根据非负数的性质可得答案.考查学生综合运用数学知识的能力.此题是一道把等边三角形的判定、因式分解和非负数的性质结合求解的综合题.6.【答案】D【解析】【分析】本题主要考查因式分解的意义和十字相乘法分解因式,对常数项的不同分解是解本题的关键,属于拔高题.根据十字相乘法的分解方法和特点可知:k的值应该是20的两个因数的和,从而得出k的值.【解答】解:,,,,,,则k的值可能为:,,,,,,故整数k可以取的值有6个,故选:7.【答案】【解析】解:,所以多项式中各项的公因式是故答案为:先变形得出,再找出多项式的公因式即可.本题考查了公因式,能熟记找公因式的方法①系数找各项系数的最大公因数,②相同字母找最低次幂是解此题的关键.8.【答案】【解析】解:,故答案为:先提公因式,再利用平方差公式继续分解即可解答.本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.9.【答案】【解析】解:,,故答案为:先提取公因式,再对余下的多项式利用完全平方公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.【答案】【解析】解:,故答案为:把等式右边利用完全平方公式展开,然后根据对应项系数相等解答.本题考查了公式法分解因式,熟记完全平方公式的公式结构是解题的关键.11.【答案】【解析】解:,,,,故答案为:先根据两平方项确定出这两个数,即可确定n的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.12.【答案】【解析】解:,即,且①,②,①+②,得:,解得,故答案为:由,即得出,结合,将两式相加消去b即可得.本题主要考查分式的加减法,解题的关键是掌握平方差公式和等式的性质.13.【答案】7【解析】解:,,故答案为:把已知条件两边分别平方,然后整理即可求解.完全平方公式:本题主要考查了完全平方公式,利用公式把已知条件两边平方是解题的关键.14.【答案】【解析】解:矩形的长为,故答案为:由题意得矩形的长为,然后利用多项式除以单项式的法则即可求出结果.本题考查多项式除以单项式运算.多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.15.【答案】【解析】解:,正方形的边长的代数式是因为正方形的面积是,可以分解为,又有正方形的面积等于边长的平方可得,正方形的边长的代数式是此题考查对完全平方公式再实际中的应用,应熟练识记完全平方公式:16.【答案】4【解析】解:原式,当,时,原式故答案是:首先对所求的式子提公因式,然后利用完全平方公式分解,最后把,代入求值.本题考查了分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17.【答案】【解析】解:分解因式,甲看错了a值,分解的结果是,,,乙看错了b值,分解的结果是,,,故答案为:根据已知分解因式,甲看错了a值,分解的结果是,可得出b的值,再根据乙看错了b值,分解的结果是,可求出a的值,进而因式分解即可.此题主要考查了因式分解的意义,根据已知分别得出a,b的值是解决问题的关键.18.【答案】或2【解析】解:由于,则,或故答案为:或这里首末两项是x和5这两个数的平方,那么中间一项为加上或减去x和5的积的2倍,故,再解k即可.此题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.19.【答案】6【解析】解:已知等式变形得:,,,,,,,,解得:,,,则故答案为:已知等式左边14分为,结合后利用完全平方公式化简,再利用非负数的性质求出x,y与z的值,代入原式计算即可求出值.此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.20.【答案】或【解析】解:8可以分解为和,当8可以分解为时,根据十字相乘因式分解,,则;8可以分解为时,根据十字相乘因式分解,,则;故答案是或根据因式分解十字相乘,将8分解为和,再按照十字相乘进行因式分解即可.本题考查的是因式分解,用十字相乘的方法时,要注意数字的符号不能出现差错.21.【答案】解:【解析】将前两项分组后两项分组,进而提取公因式再利用平方差公式分解因式.此题主要考查了分组分解法因式分解,正确进行分组是解题关键.22.【答案】解:;【解析】先进行变形,再运用提公因式法进行因式分解;先运用平方差公式进行运算,再计算单项式乘以多项式.此题考查了整式乘法和因式分解的能力,关键是能准确运用对应法则和方法进行求解.23.【答案】解:【解析】先分组,分成,再运用完全平方公式分解.本题考查了因式分解.分解因式的一般步骤是:一提公因式,二套用公式,三分组,解本题的关键在于运用分组分解法进行因式分解,注意因式分解要彻底,一定要分解到每个因式都不能再分解为止.24.【答案】解:【解析】先将拆分为,再分组,利用完全平方公式及平方差公式求解即可.本题考查了分组分解法,分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.25.【答案】解:【解析】先利用完全平方公式和多项式乘以多项式展开,重新组合即可得出结论.此题主要考查了因式分解,完全平方公式,多项式乘以多项式,重新分组是解本题的关键.26.【答案】解:原式【解析】根据完全平方公式,可得答案.本题考查了因式分解,利用了完全平方公式分解因式.27.【答案】解:;,,,、y为正整数,,与也是整数,,,或,【解析】根据分组分解法分解因式即可;根据结论整体代入即可得到结论.本题考查了因式分解-分组分解法,熟练掌握分解因式的方法解题的关键.28.【答案】解:【解析】直接利用例题进行补项,进而分解因式得出答案.此题主要考查了分组分解法分解因式,正确补项是解题关键.29.【答案】【解析】解:;;;;;;故答案为:,,;根据多项式乘多项式的法则计算即可,再根据推导的公式进行因式分解.本题考查了因式分解和多项式乘多项式的逆向应用能力30.【答案】解:设为整式,若,则或由得左式为零,所以是方程的解,所以,所以【解析】仿照题例,先设,再求一次方程的值,代入计算得结果.本题考查了解一元一次方程、高次方程,理解题例,掌握题例的步骤是解决本题的关键.。

高等数学(经济类)课后习题及答案第十二章 微分方程答案

高等数学(经济类)课后习题及答案第十二章 微分方程答案

习题12—1(A )1. 指出下列各微分方程的阶数:(1)y y x 3='; (2)0d 2d )(3=--y x x x y ; (3)y y x y x '='+''+2)2(; (4)22()yy y y ''''''=-;(5)(5)(3)242cos y yy y x ''+-+=; (6)232d d 2d d P P tt t t+=; (7)0222)4(=+'-''+'''-y y y y y;答案:(1)一阶;(2)一阶;(3)二阶;(4)三阶;(5)五阶;(6)二阶;(7)四阶. 2. 验证下列各函数是否为所给微分方程的解. 如果是解,请指出是通解,还是特解?(1)函数3y x =,微分方程y y x 3=';(2)函数sin 3y C x =,微分方程90y y ''+=;(3)由C x y xy =++22确定的函数)(x y y =,微分方程(1)()0y dx x y dy +++=; (4)函数xy λe =(其中λ是给定的实数),微分方程0=+'''y y .解:(1)因为23y x '=,左式233=xy x x y '==⋅=右式,所以函数3y x =是微分方程y y x 3='解.又因为函数3y x =不包含任意常数,所以是特解.(2)因为9sin39y C x y ''=-=-,即90y y ''+=,所以函数sin 3y C x =是微分方程90y y ''+=解,但是由于sin 3y C x =中只有一个任意常数,又因为微分方程是二阶的,所以sin 3y C x =既不是微分方程90y y ''+=的通解,也不是特解,只是解.(3)等式C x y xy =++22两边同时对x 求导,有d d 10d d y y y x y x x+++=,整理得(1)()0y dx x y dy +++=,所以由C x y xy =++22确定的函数)(x y y =是(1)()0y dx x y dy +++=的解,又C x y xy =++22中含有一个任意常数,而(1)()0y dx x y dy +++=是一阶微分方程,所以Cx y xy =++22是(1)()0y dx x y dy +++=通解.(4)因为x y λe =,则有3e xy λλ'''=,所以33ee (1)e xx x y y λλλλλ'''+=+=+.当1λ=-时,3(1)e 0x y y λλ'''+=+=,则x y λe =是微分方程0=+'''y y 的解,并且是特解;当1λ≠-时,3(1)e0xy y λλ'''+=+≠,则x y λe =不是微分方程0=+'''y y 的解.3. 若函数e xy α=是微分方程0y y ''''-=的解,求的α值.解:由e x y α=得,e x y αα'=,3e xy αα'''=,将它们代入微分方程0y y ''''-=,得32e e (1)=0x x x y y e ααααααα''''-=-=-,所以1α=-,0或1.4.验证下列所给的各函数是微分方程的通解,并求满足初始条件的特解.(1)函数21y Cx =+,微分方程22xy y '=-,初始条件(1)2y =; (2)函数22x y C +=,微分方程0yy x '+=,初始条件1)1(=y ;(3)函数12()xy C C x e =+,微分方程20y y y '''-+=,初始条件(0)0y =,(0)1y '=.解:(1)因为2y Cx '=,所以222(1)222xy x Cx Cx y '=⋅=+-=-.又2Cx y =中含有一个任意常数,22xy y '=-是一阶微分方程,所以函数21y Cx =+是微分方程22xy y '=-的通解.由(1)2y =,可得1C =,所以微分方程22xy y '=-满足初始条件(1)2y =的特解是2+1y x =.(2)对隐函数22x y C +=的两边求关于x 的导数,得220x yy '+=,即0yy x '+=.又22x y C +=中含有一个任意常数,0yy x '+=是一阶微分方程,所以隐函数22x y C +=是微分方程0yy x '+=的通解.由1)1(=y ,可得2C =,所以微分方程0yy x '+=满足初始条件1)1(=y 的特解是222x y +=.(3)因为212()e x y C C C x '=++,212(2)e xy C C C x ''=++,所以2y y y '''-+21221212(2222)e 0x C C C x C C C x C C x =++---++=.又因为函数12()x y C C x e =+中含有两个独立的任意常数,而20y y y '''-+=是二阶微分方程,所以12()xy C C x e =+是微分方程20y y y '''-+=的通解.由初始条件(0)0y =,(0)1y '=,有12101C C C =⎧⎨+=⎩,,得01=C ,12=C ,所以微分方程20y y y '''-+=满足初始条件(0)0y =,(0)1y '=的特解是e xy x =.习题12—1(B )1.给定微分方程21y x '=+, (1)求过点(1,3)的积分曲线方程;(2)求出与直线13+=x y 相切的积分曲线方程.解:易验证2y x x C =++是微分方程21y x '=+的通解.(1)由曲线2y x x C =++过点(1,3),有311C =++,得1C =,所求积分曲线为21y x x =++.(2)若曲线2y x x C =++与直线13+=x y 相切,则有213x +=(斜率相等),得1x =. 当1=x 时,4=y ,所以切点为(1,4),将其代入2y x x C =++,有411C =++,得2C =,所求曲线为22y x x =++.2.将积分方程2()()sin cos xf t dt xf x x x x π=--⎰(其中)(x f 是连续函数)转化为微分方程,给出初始条件,并求函数)(x f . 解:将2()()sin cos xf t dt xf x x x x π=--⎰两边同时对x 求导,有()()()sin cos sin f x f x xf x x x x x '=+--+, 即()cos f x x '=,这就是所求的微分方程,容易得到其通解为()cos sin f x xdx x C ==+⎰.将2x π=代入到原方程2()()sin cos x f t dt xf x x x x π=--⎰中,有0()12f π=-,得初始条件为()12f π=,所以有11C =+,得0C =,所求函数为()sin f x x =.习题12—2(A )1. 求下列可分离变量的微分方程的通解:(1)32yy x '=; (2)e yy x -'=;(3)y '=; (4)2(3)0ydx x x dy +-=.解:(1)分离变量32d 4d y y x x =,两边积分32d 4d y y x x =⎰⎰,整理得通解为24y x C =+.(2)分离变量e d d yy x x =,两边积分e d d y y x x =⎰⎰,整理得通解为21e 2y x C =+,或写作2ln()2x y C =+.(3)分离变量d y y =,两边积分d y y =⎰,整理得通解为1ln y C =,进而原方程通解为:y Ce =(4)分离变量有2d d 3y x y x x =--,整理得d 111()d 33y x y x x=---,两边积分d 111()d 33y x y x x ==---⎰⎰,整理得通解为11ln (ln 3ln )d 3y x x x C =---+,进而原方程通解为:3(3)x y Cx -=.2. 求下列齐次方程的通解:(1)2xy x y '=+; (2)(2)x y y y '-=;(3)22()d d 0x y x xy y -+=; (4)d (1ln)d 0yx y y x x-+=. 解:(1)将方程改写为2y y x '=+,令u xy=,则x u x u x y y d d d d +==',于是原方程化为d 2d u u xu x +=+,即2d d x u x =,积分得2ln ln u x C =+,即2ln yCx x=,所以原方程通解为2ln y x Cx =.(2)将方程改写为2d d -=y x y x ,令v yx =则y vy v y x d d d d +=,于是原方程化为2d d -=+v y v yv ,即y y v d 2d -=,积分得C y v ln ln 2+-=,即2ln yCy x =,所以原方程通解为2lny Cy x =.(3)将方程改写为d d y y x x x y =-,令u xy=,则x u x u x y d d d d +=,于是原方程化为d 1d u u x u x u +=-,即d d xu u x=-,积分得2ln 22u C x =-+,即222ln y C x x =-,所以原方程通解为2y 2x =2(ln )C x -.(4)将方程改写为(1ln )dy y y dx x x =+,令y u x =,则xu x u x y y d d d d +==',于是原方程化为(1ln )du u xu u dx +=+,即ln du dxu u x=,积分得1ln ln ln u x C =+,即ln u Cx =(其中1)C C e =±,所以原方程通解为lnyCx x=,或写作e Cx y x =. 3. 求下列一阶线性微分方程的通解:(1)2y xy x '-=; (2)d 2e d x yy x+=; (3)sin cos e x y y x -'+=; (4)2(2cos )d (+1)d 0xy x x x y -+=.解:(1)法一:相应齐次方程为0y xy '-=,即d d y x x y =,积分得211ln 2y x C =+,即22e x y C =(其中1)C C e =±.令22()ex y u x =,代入原方程,有222222ee e2x x x u xu xu x '+-=,即222ex u x -'=,得2222()2ed 2e x x u x x x C --==-+⎰,所以原方程通解为222222(2e )e e 2x x x y C C -=-+=-.法二:()P x x =-、()2Q x x =,方程通解为 ()d ()d [()e d ]e P x xP x x y Q x x C -⎰⎰=+⎰d d (2e d )e x x x xx x C -⎰⎰=+⎰2222(2ed )e x x x x C -=+⎰2222(2e)e x x C -=-+22e 2x C =-.(2)()1P x =、()2e xQ x =,方程通解为 ()d ()d d d [()e d ]e (2e e d )e P x xP x x x xx y Q x x C x C --⎰⎰⎰⎰=+=+⎰⎰22(2e d )e (e )e e e x x x x x x x C C C ---=+=+=+⎰.(3)()cos P x x =、sin ()exQ x -=,方程通解为()d ()d cos d cos d sin [()e d ]e (e e d )e P x xP x x x x x x x y Q x x C x C ---⎰⎰⎰⎰=+=+⎰⎰sin sin (d )e ()e x x x C x C --=+=+⎰.(4)方程化为222cos 11x x y y x x '+=++,则有22()1x P x x =+、2cos ()1xQ x x =+,方程通解为 2222d d ()d ()d 112cos [()e d ]e (e d )e 1xxxx P x xP x xx x x y Q x x C x C x --++⎰⎰⎰⎰=+=++⎰⎰221sin (cos d )+1+1x Cx x C x x +=+=⎰. 4.求下微分方程满足所给初始条件的特解: (1)d 1d 2y x x y -=,(3)1y =; (2)sec y xy x y x '+=,2)1(π=y ; (3)2e xy y x '-=,(0)2y =; (4)ln ln xy x y x '+=,(e)1y =.解:(1)这是可分离变量方程,分离变量为2d (1)d y y x x =-,积分得22(1)2x y C -=-+,即方程通解为22(1)2x y C -+=.由(3)1y =,有3C =,方程特解为22(1)32x y -+=. (2)这是齐次方程secy y y x x '+=,令u xy=,则x u xu x y d d d d +=,于是原方程化为d sec d u u xu u x ++=,即d cos d xu u x=-,积分得1sin ln u x C =-+,即方程的通解为sin eyxx C =(其中1)C C e =±.由2)1(π=y ,可得1C e=,所以方程特解为sin 1e yx x -=.(3)这是一阶线性方程,2()1()e xP x Q x x =-=、,因此,方程通解为d d 2(e e d )e (e d )e [(1)e )]e x xx x x x x y x x C x x C x C -⎰⎰=+=+=-+⎰⎰. 由(0)2y =,有21C =-+,得3=C ,方程特解为xx x y 2e )1(2e 3-+=.(4)原方程可化为11ln y y x x x '+=,这是一阶线性方程,1()ln P x x x =、1()Q x x=,方程通解为11d d 2ln ln 1111[e d ]e (ln )ln 2ln 2ln x x x x x xC y x C x C x x x x-⎰⎰=+=+=+⎰.由(e)1y =,有1121C =+,得12C =,所以方程特解为11(ln )2ln y x x =+.习题12—2(B )1.求下列伯努利微分方程的通解: (1)yx xy y =-'; (2)2xy y y =-'. 解:(1)1-=n ,令21y y z n==-(21=-n ),则原方程化为x n xz n x z )1()1(d d -=--,即x xz xz22d d =-,该方程通解为 222222d 2d (2e d )e (2e d )e (e )e e 1x x x xx x x x x z x x C x x C C C ---⎰⎰=+=+=-=-⎰⎰.所以,原方程通解为1e 22-=x C y . (2)2=n ,令yyz n11==-(11-=-n ), 则原方程化为x n z n x z )1()1(d d -=--,即x z xz-=+d d ,该方程通解为 1e e )e e (e )d e (e )d e (d d +-=+-=-=⎰+⎰-=----⎰⎰x C x C x x C C x x z x x x x x x xx .所以,原方程通解为1e 1+-=-x C yx . 2.用适当的变量代换求下列微分方程的通解: (1)22x y x y +=+'; (2)1+-='y x y ;(3))ln (ln y x y y y x +=+'; (4)xy x y y xy 22tan 2+='.解:(1)令u x y =+2,则x u x x y d d 2d d =+,于是u x u=d d ,分离变量有x uu d d =,积分得C x u +=2,原方程通解为C x x y +=+22. (2)令1x y u -+=,则x u x y d d d d 1=-,于是u x u =-d d 1,即u xu-=1d d ,分离变量得x u u u u d )1(d -=-,或x u u d d )111(2-=-+,积分得x C u u -=-+)1ln (2,所以原方程通解为x C y x y x -=+--++-)11ln 1(2.(3)令u xy =,则x u x y xy d d d d =+,于是u x u x u ln d d =,分离变量得xxu u u d ln d =,积分得Cx u ln ln ln =,即Cx u e =,所以原方程通解为Cxxy e 1=.(4)u x y =2,即xu y =2,则x u x u y y d d 2+=',原方程化为u x xu xu x xu tan d d 2+=+,分离变量有xxu u d d cot =,该方程通解为Cx u ln sin ln =,即Cx u =sin ,所以原方程通解为Cx xy =2sin .3.求微分方程(0(0)ydx x dy y -=>的通解.解:将方程改写为222)(1d d yxy x y y x x y x ++=++=这是以)(y x x =为未知函数的齐次方程,为此令yv x =,则y v y v y x d d d d +=,于是方程化为21d d v yvy +=,分离变量有yyv v d 1d 2=+,积分得C y v v ln ln )1ln(2+=++,即Cy v v =++21,进而原方程通解为Cx Cy 211+=. 4.求微分方程2d d yx yx y +=的通解. 解:方程改写为y y x y x +=d d ,即y yxy x =-d d ,这是一阶线性微分方程,通解为 2d d )d ()d e(ey Cy y C y y y C x yy yy+=+=⎰+⎰=⎰⎰-.5.设函数)(x f 连续,且不恒为零,若⎰⎰+=120d )(2d )()(t t tf t t f x f x ,求函数)(x f .解:方程两边同时对x 求导,有)()(x f x f =',分离变量有x ffd d =,得通解为x C x fe )(=.记a t t tf =⎰12d )(,则a t t f x f x2d )()(0+=⎰,令0=x ,得初始条件a f 2)0(=.用0=x 代入到x C x f e )(=之中,有a C 2=,所以x a x f e 2)(=.由)e 21e (2)d e e(2d e 4d )(102221021221022102t t t t a t t a t t at t tf a -=-===⎰⎰⎰)1e ()e 21e (22210222+=-=a a t , 得1e 12+=a ,所以1e e 2)(2+=x x f .6.设连续函数)(x f 满足1)(d )()(12-=+⎰x f t tt f t f x ,求函数)(x f . 解:方程1)(d )()(12-=+⎰x f t t t f t f x 两边同时对x 求导,有)()()(2x f xx f x f '=+,令)(x f y =,则方程可以改写为y x y y x +=2d d ,即y yxy x =-d d ,这是一阶线性微分方程,通解为 )()d ()d e(ed d y C y y C y y y C x yy yy+=+=⎰+⎰=⎰⎰-.用1=x 代入到方程1)(d )()(12-=+⎰x f t tt f t f x 之中,得初始条件1)1(=f ,于是11+=C ,故0=C ,于是2y x =,即所以函数为x x f =)((注:根据初始条件1)1(=f ,所以不能取x x f -=)().习题12—3(A )1. 求下列各微分方程的通解:(1)2+1y x ''=; (2)2cos e x y x '''=+; (3)20y xy '''-=; (4)2e xy y '''-=;(5)201y y y'''+=-. 解:(1)2311(1)3y x dx x x C '=+=++⎰, 342112111()d 3122y x x C x x x C x C =++=+++⎰.(2)2211(cos e )d sin e 22x xy x x x C ''=+=++⎰, 2211211(sin e 2)d cos e 224x x y x C x x C x C '=++=-+++⎰, 2121(cos e 2)d 4x y x C x C x =-+++⎰221231sin e 8x x C x C x C =-++++. (3)方程不显含y ,令)(x p y =',则p y '='',于是d 20d pxp x-=,分离变量为d 2d p x x p =,积分得2ln p x C =+,即213p C x =(其中13)C C e =±,于是原方程降阶为213y C x '=,原方程通解为23121d 3C x C x x C y +==⎰.(4)方程不显含y ,令)(x p y =',则p y '='',于是2e xp p '-=,这是一阶线性微分方程,其通解为d d 2111(e e d )e (e d )e (e )e x x x x x x xp x C x C C -⎰⎰=+=+=+⎰⎰,于是原方程降阶为21e e x x y C '=+,所以原方程的通解为221121(e e )d e e 2x x xx y C x C C =+=++⎰. (5)方程不显含x ,令()y q y '=,则y qq '''=,于是2d 0d 1q q q y y +=-,即d 0d 1q q y y+=-,这是可分离变量的方程,先分离变量d d 1q y q y=--,再两边积分,并整理可得1(1)q C y =-.所以1d (1)d yC y x=-,解得12e 1C x y C =+,这就是原方程的通解. 2. 求下列各微分方程满足初始条件的特解: (1)311y x '''=+,(1)1y =,(1)1y '=,1(1)2y ''=;(2)2y y x '''-=,(0)1y =,(0)0y '=; (3)2eyy ''=,(0)0y =,(0)1y '=.解:(1)13211(1)d 2y x x C x x ''=+=-++⎰,由1(1)2y ''=,得10C =,所以212y x x''=-+; 222111()d 222y x x x C x x '=-+=++⎰,由(1)1y '=,得02=C ,所以21122y x x '=+; 2331111()d ln 2226y x x x x C x =+=++⎰,由1)1(=y ,得356C =,所以方程满足初始条件的特解为3115ln 266y x x =++. (2)方程不显含y ,令)(x p y =',则p y '='',原方程化为2p p x '-=,此方程通解为d d 1111(2e d )e (2e d )e (2e 2e )e e 22x xx x x x x x p x x C x x C C x C x ----⎰⎰=+=+=--=--⎰⎰,即1e 22xy C x '=--,由(0)0y '=,得12C =,从而2(e 1)x y x '=--,此方程通解为222(e 1)d 2e 2x x y x x x x C =--=--+⎰,由(0)1y =,得21C =-,所以方程满足初始条件的特解为22e 21x y x x =---.(3)方程不显含x ,令()y q y '=,则y qq '''=,于是2e y qq '=,分离变量有2d e d yq q y =,积分得221e yp C =+,即y '=由1)0(='y ,可知道0>'y ,所以y '=再由(0)0y =,(0)1y '=,得01=C ,所以e y y '=.分离变量有e d d yy x -=,积分得2e y x C --=+,由0)0(=y ,得21C =-,于是e 1y x --=-,化简为ln (1)y x =--,这就是方程满足初始条件的特解.习题12—3(B )1. 求下列各微分方程的通解: (1)()e n ax b yx =+(a ,b 为常数); (2)0ln=''-''xy y y x ;(3)2)(y y '=''. 解:(1)由于1e d e axax x a =⎰,11d 1t t x x x t +=+⎰,故原方程的通解为 1121211e [()(1)(1)]axb n n n n n n y b n b n b x C x C x C x C a-+---=+++-++++++.(2)方程不显含y ,令)(x p y =',则p y '='',于是x p p p x ln=',即xpx p p ln =',这是齐次方程,令u x p =,则x u x u x p p d d d d +==',原方程化为u u xux u ln d d =+,分离变量有x x u u u d )1(ln d =-,积分得x C u 1ln )1ln(ln =-,即11e +==x C u xp ,原方程降阶为11e +='x C x y ,原方程通解为⎰⎰+++-==x x C x x y x C x C x C )d e e (1d e 11111112111)1(e 11C C x C x C +-=+. (3)方程既不显含y ,也不显含x .(方法1)令)(x p y =',则p y '='',则2p p =',分离变量有x ppd d 2=,积分得11C x p -=-,即xC p -=11,原方程降阶为x C y -='11,所以原方程的通解为)ln(d 121x C C x C xy --=-=⎰.(方法2)令()y q y '=,则y qq '''=,于是2d d q qq y =,分离变量有2d d q q q y=,积分得2ln q y C =-,即原方程降阶为2e d d C y xy-=,分离变量为x y y C d d e 2=-,积分得12e C x y C -=--,化简为)ln(12x C C y --=,这就是原方程的通解.2. 求下列各微分方程满足初始条件的特解: (1)2)(1y y '+='',(0)1y =,(0)0y '=;(2)3()y y y ''''=+,(0)0y =,(0)1y '=;(3))(22y y y y '-'='',(0)1y =,(0)2y '=.解:(1)按不显含y 的方程求解,(注:本题按不显含x 方程求解困难).令)(x p y =',则p y '='',于是21p p +=',分离变量有x ppd 1d 2=+,积分得1arctan C x p +=,即1arctan C x y +=',由(0)0y '=,得01=C ,于是x y tan =',积分得2tan d ln cos y x x C x ==-⎰,由(0)1y =,得12=C ,所以方程满足初始条件的特解为1ln cos y x =-.(2)令()y q y '=,则y qq '''=,得3d d qqq q y=+,因为0q =不满足初始条件(0)1y '=,所以0q ≠,分离变量有2d d 1qy q =+,积分得1arctan q y C =-,即1tan ()y q y C '==-. 由初始条件(0)0y =,(0)1y '=,有11tan (0C =+),得14C π=,故tan ()4y y π'=-. 分离变量d d tan ()4y x y π=-,积分并整理得2sin ()e 4xy C π-=.再由初始条件(0)0y =,得22C =-arcsin 24x y =+π. (3)这是不含x 的二阶可降阶微分方程,令()y q y '=,则y qq '''=,则方程化为22()yqq q q '=-.因为0q =不满足初始条件2)0(='y ,所以0q ≠,分离变量有d d 21q yq y=-,积分得21ln(1)ln q C y -=,解得211y q C y '==+.由初始条件(0)1y =,(0)2y '=,有121+=C ,得11=C ,故12+='y y ,分离变量有x y y d 1d 2=+,积分得1arctan C x y +=,再由初始条件1)0(=y ,得42π=C ,所以原方程满足初始条件的特解为4arctan π+=x y ,即xxx y tan 1tan 1)4tan(-+=+=π.习题12—4(A )1.指出下列各对函数在其定义区间内的线性相关性:(1)3x 与2x ; (2)e x 与e xx ; (3)e x-与2ex-; (4)x e 与5e x;(5)sin x 与x 2sin ; (6)x x cos sin 与x 2sin ; (7)e sec x x 与e tan xx ; (8)x ln 与ln x μ(0μ>).解:(1)因为233x xx =不恒为常数,所以3x 与2x 在区间)(∞+-∞,内线性无关. (2)因为e ex x x x =不恒为常数,所以e x与e x x 在区间)(∞+-∞,内线性无关. (3)因为2e e e x xx ---=不恒为常数,所以e x -与2e x -在区间)(∞+-∞,内线性无关. (4)因为5e 5ex x =恒为常数,所以xe 与5e x 在区间)(∞+-∞,内线性相关. (5)因为sin 22cos sin xx x=不恒为常数,所以sin x 与x 2sin 在区间)(∞+-∞,内线性无关. (6)因为sin 22sin cos xx x=恒为常数,所以x x cos sin 与x 2sin 在区间)(∞+-∞,内线性相关.(7)因为e tan sin e sec x x xx x=不恒为常数,所以e sec x x 与e tan x x 在区间)(∞+-∞,内线性无关.(8)因为ln 0ln x xμμ=>恒为常数,所以x ln 与ln x μ在区间)0(∞+,内线性相关. 2.验证函数21e x y =,22e xy x =是微分方程440y y y '''-+=的两个线性无关的解,并写出该方程的通解.解:因为21e xy =,所以22112e =4e x xy y '''=,,因此 222111444e 8e 4e 0xx x y y y '''-+=-+=,所以21e xy =是440y y y '''-+=的解;同理,22e xy x =是440y y y '''-+=的解.又因为2221e exx y x x y ==不恒为常数,所以函数21e x y =,22e x y x =是微分方程440y y y '''-+=的两个线性无关的解.因此二阶线性齐次微分方程440y y y '''-+=通解为2112212()e x y C y C y C C x =+=+.3.通过观察给出微分方程0y y ''+=的两个线性无关的特解,并写出该方程的通解. 解:0y y ''+=是二阶线性齐次微分方程,改写为y y ''=-,二阶导数与自身呈相反数的函数有1sin y x =,2cos y x =,它们是0y y ''+=的两个解,又21cos cot sin y x x y x==不恒为常数,于是1sin y x =,2cos y x =线性无关,所以方程0y y ''+=的通解为12sin cos y C x C x =+.4.写出下列各二阶常系数线性齐次微分方程的通解:(1)320y y y '''-+=; (2)10250y y y '''-+=;(3)2100y y y '''-+=; (4)02d d 22=-x tx.解:(1)特征方程为2320r r -+=,即(1)(2)0r r --=,特征根为11=r 、22r =(不相等实根),所以方程320y y y '''-+=的通解是212e e x x y C C =+.(2)特征方程为210250r r -+=,即2(5)0r -=,特征根为125r r ==(两个相等实根),所以方程10250y y y '''-+=的通解是512()e xy C C x =+.(3)特征方程为22100r r -+=,由二次代数方程求根公式,得特征根为21322b y i a -===±(一对共轭复根),所以方程2100y y y '''-+=的通解是12(cos3sin 3)e xy C x C x =+. (4)特征方程为022=-r ,特征根为21=r 、22-=r (不同实根),所以方程02d d 22=-x tx的通解是ttC C x 2221e e -+=(注意t 是自变量,x 是因变量).5.求下列各微分方程满足初始条件的特解:(1)22d d 340d d y yy t t+-=,(0)2y =,(0)3y '=-; (2)20y y y '''-+=,(0)1y =,(0)2y '=; (3)450y y y '''-+=,(0)1y =,(0)0y '=.解:(1)特征方程为2340r r +-=,即(1)(4)0r r -+=,特征根为11=r 、24r =-,所以方程22d d 340d d y yy t t +-=的通解是412e e t t y C C -=+,且412e 4e t t dy C C dt-=-. 由初始条件(0)2y =,(0)3y '=-,有1212243C C C C +=⎧⎨-=-⎩,,得1211C C =⎧⎨=⎩,,所以方程满足初始条件(0)2y =,(0)3y '=-的特解是4e e t ty -=+.(2)特征方程为2210r r -+=,即2(1)0r -=,特征根为121r r ==,所以方程20y y y '''-+=的通解是12()e x y C C x =+,且212()e x y C C C x '=++.由初始条件(0)1y =,(0)2y '=,有12112C C C =⎧⎨+=⎩,,得1211C C =⎧⎨=⎩,,所以方程满足初始条件(0)1y =,(0)1y '=-的特解是(1)e x y x =+.(3)特征方程为2450r r -+=,由二次代数方程求根公式,得特征根为2r i ==±,所以方程450y y y '''-+=的通解是212(cos sin )e x y C x C x =+,且21221[(2)cos (2)sin ]e xy C C x C C x '=++-.由初始条件(0)1y =,(0)0y '=,有112120C C C =⎧⎨+=⎩,,得1212C C =⎧⎨=-⎩,,所以方程满足初始条件(0)1y =,(0)0y '=的特解是2(cos 2sin )e xy x x =-. 6.求下列各二阶常系数线性非齐次微分方程的通解:(1)x y y +=+''1; (2)xy y y -=+'+''e 22; (3)223y y y x x '''+-=+-; (4)xx y y e 4=-''.解:(1)相应齐次方程为0=+''y y ,特征方程012=+r ,特征根为i r i r -==21、,相应齐次方程通解为x C x C Y sin cos 21+=.这里x x f +=1)(,01==λ、n 不是特征根,因此设b ax y +=*,将其代入到原方程之中,有x b ax +=+1,比较系数得11==b a 、,于是原方程的一个特解为x y +=1*.原方程的通解为x x C x C y Y y +++=+=1sin cos 21*.(2)相应齐次方程为02=+'+''y y y ,特征方程0122=++r r ,即0)1(2=+r ,特征根为121-==r r ,相应齐次方程通解为xx C C Y -+=e )(21.这里xx f -=e 2)(,10-==λ、n 是二重特征根,因此设x x ax a x y --=⋅=e e 22*,将其代入到原方程之中,化简有22=a ,得1=a ,于是原方程的一个特解为xx y -=e 2*,原方程的通解为212()exx y C C x x e --=++.(3)相应齐次方程为02=-'+''y y y ,特征方程0122=-+r r ,即0)1)(12(=+-r r ,特征根为2/1121=-=r r 、,相应齐次方程通解为2/21e e x x C C Y +=-.这里2()3f x x x =+-,02==λ、n 不是特征根,因此设c bx ax y ++=2*,代入到原方程之中,有224(2)()3a ax b ax bx c x x ++-++=+-,比较系数有12143a a b a b c -=-⎧⎪-=⎨⎪+-=⎩,,,得112a b c ===、、,于是原方程的一个特解为*22y x x =++.所以,原方程的通解为*/2212e e 2x x y Y y C C x x -=+=++++.(4)相应齐次方程为0=-''y y ,特征方程012=-r ,特征根为1121-==r r 、,相应齐次方程通解为xx C C Y -+=e e 21.这里xx x f e 4)(=,x x P n 4)(=,11==λ、n 是单重特征根,因此设x x bx ax b ax x y e )(e )(2*+=+=,将其代入到原方程之中,化简有x b ax a 4)2(22=++,比较系数得11-==b a 、,于是原方程的一个特解为x x x y e )(2*-=,所以原方程的通解为*y Y y +=x x x x x C C e )(e e 221-++=-.7.求下列各二阶常系数线性非齐次微分方程满足初始条件的特解: (1)261y y x '''-=-,(0)1y =,(0)3y '=;(2)xy y e 54=+'',(0)0y =,(0)1y '=;解:(1)相应齐次方程为20y y '''-=,特征方程220r r -=,特征根为10r =、22r =,相应齐次方程通解为212e xY C C =+.这里()61f x x =-,1n =、0λ=是单重特征根,因此设*2()y x ax b ax bx =+=+,代入到原方程之中,有42261ax a b x -+-=-,得32a =-,1b =-,于是原方程的一个特解为*232y x x =--. 所以,原方程的通解为*22123e 2x y Y y C C x x =+=+--. 222e 31x y C x '=--,由初始条件(0)1y =,(0)3y '=,有1221213C C C +=⎧⎨-=⎩,,得11C =-、22C =,所以方程261y y x '''-=-满足初始条件(0)1y =,(0)3y '=的特解为2232e 12x y x x =---.(2)相应齐次方程为04=+''y y ,特征方程042=+r ,特征根为i r i r 2221-==、,相应齐次方程通解为x C x C Y 2sin 2cos 21+=.这里x x f e 5)(=,10==λ、n 不是特征根,因此设xa y e *=,代入到原方程之中,有x x x a a e 5e 4e =+,得1=a 于是原方程的一个特解为xy e *=.所以,原方程的通解为xx C x C y Y y e 2sin 2cos 21*++=+=.122sin 22cos 2e x y C x C x '=-++,由初始条件(0)0y =,(0)1y '=,有1210211C C +=⎧⎨+=⎩,,得11C =-、20C =,所以方程xy y e 54=+''满足初始条件(0)0y =,(0)1y '=的特解为e cos x y x =-.8. 求常系数线性非齐次微分方程2e xy +y =x+'''的通解.解:相应齐次方程为0='+''y y ,特征方程02=+r r ,特征根为1021-==r r 、,相应齐次方程通解为x12Y C C e -=+.这里x x x f e 2)(+=,将其分为)()()(21x f x f x f +=,x x f 2)(1=、xx f e )(2=.对x y y 2='+'',这里01==λ、n 是单重特征根,因此设bx ax b ax x y +=+=2*1)(, 代入到x y y 2='+''之中,有x b ax a 2)2(2=++,比较系数得21-==b a 、,于是方程x y y 2='+''的一个特解为x x y 22*1-=;对xy y e ='+'',不难观察得一个特解2/e *2xy =.于是,原方程的一个特解为2/e 22*2*1*xx x y y y +-=+=.所以,原方程的通解为*y Y y +=2/e 2e221x xx x C C +-++=-..习题12—4(B )1.若)(1x y ϕ=,)(2x y ϕ=是二阶线性非齐次微分方程)()()(x f y x Q y x P y =+'+''的两个解,证明)()(12x x y ϕϕ-=是相应线性齐次微分方程0)()(=+'+''y x Q y x P y 的解. 证:因为)()(12x x y ϕϕ-=,所以212121()()[()()]()[()()]()[()()]y P x y Q x y x x P x x x Q x x x φφφφφφ'''++''''''=-+-+-)]()()()()([)]()()()()([111222x x Q x x P x x x Q x x P x ϕϕϕϕϕϕ+'+''-+'+''= ()()0f x f x =-=.所以)()(12x x y ϕϕ-=是相应线性齐次微分方程0)()(=+'+''y x Q y x P y 的解.2.已知函数x x x x y 21e e )(+=,x x x x y -+=e e )(2,xx x x x y -++=e e e )(23都是微分方程)()()(x f y x Q y x P y =+'+''的解,写出该方程的通解.解:)()()(x f y x Q y x P y =+'+''是二阶非齐次线性微分方程,由函数xx x x y 21e e )(+=,x x x x y -+=e e )(2,x x x x x y -++=e e e )(23都是它的解,根据上题,则x x y y y y 22313e e =-=--、是相应齐次线性微分方程0)()(=+'+''y x Q y x P y 的两个解,而它们之比不恒等于常数,于是它们是线性无关的解,所以0)()(=+'+''y x Q y x P y 的通解为212x xY C e C e -=+,根据二阶非齐次线性微分方程解的结构,得方程)()()(x f y x Q y x P y =+'+''的通解是 22112C e e x x x x y Y y C e e x -=+=+++.3.若二阶常系数线性齐次微分方程的两个特解是2/21e ,e x x y y ==,写出该微分微分方程及其通解.解:由二阶常系数线性齐次微分方程的两个特解是2/21e ,e x x y y ==,则该二阶常系数线性齐次微分方程的特征根是21121==r r 、,于是特征方程是0)21)(1(=--r r ,即01322=+-r r ,所以微分方程为032=+'-''y y y ,通解为2/21e C e x x C y +=.4.若二阶常系数线性齐次微分方程有一个特解xx y 21e -=,写出该微分微分方程及其通解.解:由二阶常系数线性齐次微分方程有一个特解xx y 21e -=,则该二阶常系数线性齐次微分方程有一个特征根2-=r ,并且是二重根,于是特征方程是0)2(2=+r ,即0442=++r r , 所以微分方程为044=+'+''y y y ,通解为xx C y 221)e C (-+=.5.求下列各常系数线性非齐次微分方程的通解:(1)x x y y cos 4=+''; (2)xy y -=''+''e .解: (1)相应齐次方程为0=+''y y ,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为x C x C Y sin cos 21+=.这里x x x f cos 4)(=,最高多项式次数1=n ,i i =+βα是单重特征根,为此设*22[()cos +()sin ]=()cos +()sin y x ax b x cx d x ax bx x cx dx x =++++,代入到原方程之中,有x x x c b ax x d a cx cos 4sin )224(cos )224(=+--+++,比较系数有⎪⎪⎩⎪⎪⎨⎧=-=-=+=,,,,022*******b c a d a c 得,⎪⎪⎩⎪⎪⎨⎧====,,,,0110d c b a 于是原方程的一个特解为x x x x y sin cos 2*+=. 所以,原方程的通解是x x x x x C x C y sin cos sin cos 221+++=.(2) 相应齐次方程为0=''+'''y y ,特征方程为023=+r r ,特征根为、021==r r ,13-=r 应齐次方程通解为x C x C C Y -++=e 321.对原方程xy y -=''+''e ,这里10-==λ,n 是单重特征根,为此设xax y -=e *,代入到原方程之中,有x x x x a x a ---=-+-e e )2(e)3(,即x x a --=e e ,得1=a ,于是原方程x y y -=''+''e 的一个特解为x x y -=e *.所以,原方程的通解是*y Y y +=xx x C x C C --+++=e e 321.6.求下列各二阶常系数线性非齐次微分方程满足初始条件的特解: (1)x y y sin =+'',(0)1y =,(0)0y '=;(2)x y y xcos e 5='-'',(0)0y =,(0)2y '=.解:(1)相应齐次方程为0=+''y y ,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为x C x C Y sin cos 21+=.对原方程x y y sin =+'',这里多项式最高次数i i n =+=βα,0是单重特征根,为此设x bx x ax y sin cos *+=,代入到原方程之中,有x x b x a sin cos 2sin 2=+-,比较系数有0212==-b a 、,得021=-=b a 、,于是原方程的一个特解为x x y cos 2*-=.所以,原方程的通解是x xx C x C y Y y cos 2sin cos 21*-+=+=. x xx C x C y sin 2cos )21(sin 21+-+-=',由初始条件(0)1y =,(0)0y '=,得21121==C C 、,所以方程满足初始条件的特解为x x x y sin 21cos )21(+-=. (2)相应齐次方程为0='-''y y ,特征方程为02=-r r ,特征根为1021==r r 、,应齐次方程通解为xC C Y e 21+=.对原方程x y y xcos e 5='-'',这里多项式最高次数i i n +=+=10βα,不是特征根,为此设*(cos sin )x y e a x b x =+,代入到原方程之中,有]sin )2(cos )2[(e x b a x a b x--+-x x cos e 5=,比较系数有⎩⎨⎧=--=-,,0252b a a b 得⎩⎨⎧=-=,,21b a 于是原方程的一个特解为)cos sin 2(e *x x y x -=,原方程的通解是)cos sin 2(e e 21*x x C C y Y y x x -++=+=.)cos sin 3(e e 2x x C y xx++=',由初始条件(0)0y =,(0)2y '=,有⎩⎨⎧=+=-+,,2101221C C C 得1021==C C 、,所以原方程满足初始条件的特解是x x x y e )cos sin 21(-+=.7.若连续函数()y f x =满足0()e ()()d xxf x t x f t t =+-⎰,求()y f x =的表达式.解:0()e ()d ()d xx xf x tf t t x f t t =+-⎰⎰,0()e ()d xxf x f t t '=-⎰,()e ()x f x f x ''=-,于是函数()y f x =满足微分方程e x f f ''+=,初始条件是(0)(0)1f f '==.e xf f ''+=是二阶常系数线性非齐次微分方程,相应齐次方程是0f f ''+=,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为12cos sin Y C x C x =+.对原方程e xf f ''+=,这里10==λ,n 不是特征根,为此设*e xf a =,代入到原方程之中,得21=a ,于是原方程的一个特解为*1e 2x f =. 所以,原方程的通解是*121()cos sin e 2xf x Y f C x C x =+=++. 因为121()sin cos e 2xf x C x C x '=-++,由初始条件(0)(0)1f f '==,有12112112C C ⎧+=⎪⎪⎨⎪+=⎪⎩,,得2121==C C ,所以所求函数是1()(cos sin e )2xf x x x =++.8. 证明:若()f x 满足方程()(1)f x f x '=-,则必满足方程()()0f x f x ''+=,并求方程()(1)f x f x '=-的解.解:先证()f x 必满足方程()()0f x f x ''+=.由于()(1)f x f x '=-,则求导可得()(1)(1)[1(1)]()f x f x f x f x '''=--=---=-, 故证明了()f x 必满足方程()()0f x f x ''+=. 下面求解方程()(1)f x f x '=-.由于方程()()0f x f x ''+=的通解为12()cos sin f x C x C x =+,且()(1)f x f x '=-, 所以1212sin cos cos(1)sin (1)C x C x C x C x -+=-+-,令0x =可得212cos1sin1C C C =+,则112cos1(1sin1)1sin1cos1C C C +==-,从而方程()(1)f x f x '=-的解为11sin1()(cos sin )cos1f x C x x +=+.习题12—5(A )1. 设在冷库中存储的某种新鲜水果500吨,放置一段时间之后开始腐烂,腐烂率是未腐烂数量的0.001倍,设腐烂的数量为y 吨,则显然它是时间t 的函数,求此函数的表达式. 解:由题意知0.001(500)dyy dt=⨯-, 分离变量得,0.001500dydt y=-,两边积分,并整理得0.001500e t y C -=-(C 为任意常数),再结合(0)0y =,容易求出500C =,所以水果腐烂数量与时间的函数关系式为0.001500(1e )t y -=-.2. 已知某商品的需求量Q (单位:kg )对价格P (单位:元)的弹性为ln 2EQP EP=-,且当0P =时,需求量600Q =Kg. (1)求该商品对价格的需求函数()Q P ;(2)求当价格1P =元时,市场对该商品的需求量; (3)当+P →∞时,需求量是否趋于稳定? 解:(1)由已知条件知,ln 2EQ P dQP EP Q dP=⋅=-, 分离变量得ln 2dQdP Q=-, 所以有()2P Q P C -=(C 为任意常数).再由(0)600Q =得,600C =,所以()6002P Q P -=⨯.(2)由(1)可知,当1P =元时,1(1)6002300Q -=⨯=(kg ).(3)由()6002PQ P -=⨯可知,当+P →∞时,0Q →,即随着商品价格的无限增大,。

[VIP专享]大学物理第12章课后习题

[VIP专享]大学物理第12章课后习题

Qq 4πε0r 2
E2 r
r>R2 时,
q 4πε0r 2
int level(BinTreeNodlesevt}r*Beutsl,icnBt(rtrTuiontrcaoTetgtert,_eyapNnpetg)oy;oeN_pddinoeeodtd;fde*esreafc*ttrphsB*au{l)ti;cilrn/duh/tT;ciB/lr/tdo1eiTt;u1ea//NcnrNgoto_loiu(fdn(dtnbe*oetpivdlt{(roe(e}TbidpEititrcfrl(ero!-pbmu>tintrTvritgaey-l(>hlpbulteeie,rtrf=xdt)e,=apr{xkextta,)rt;ru{;k,kr)sd+n;tra+;u1t;ac}0txyBpieTNxv},ooidi{ndet&m*lkac)hi}nil(de)}l;s/e/ js+tr}+uj;cBf+BtoB.+Bid.r.L(;+adikTe+taanN=;t[agojB]e[tdkh=l.se+L+eA1e*+]nr.i;dfc=g(d.-[d;{aiB]1a/it;f/a.;t(dkaA[}ia[]>.kBtdB<}=a];aii.T[BLjt+;aNke.+d[Loni;-]aed-g>t)netahg,B[jt*]+h.)wBd+]{avhi;T=otilareiAedi[n(Be.i{dtm;.<Laive=etAoarngi.0[dLgie],e;jt2Ch=n(o{Sg-0ut9q1h,n/kAL])/t)/iL/[;2s1/e1AtA…aABBmf"…,.S(h+Bq"mniLT6m+irsnet8]e&mhBTen),amidn+dtn&a2Ot*acx(7o10u)n+t)0x{11*ixf=0( nT+o1)d*{ex2i_1f c(+(o!uT2/xn/-*10>tx+l2+cxh=1il;+dnx)o&2/d/h&e=tt_(pn!c:To0o//-duw>1enrw*_c2t/wchx-oi0.1ldu;xon)/)1c*t;cinx6o42.1ucleonfmtt+d/+5ap;t-a5//r7iLg9Cihs4ot8lNuet5nmof9ttdreLp4iegme.=h*ap3tMfAmBol(a[aTrTlit]ex(-;(><i2)nAlccetl[ha0i]}ise=l=ds1,0}A…Tc;[yoine2pu<-nT6ein=-yH>12tp)(]Te;v;enn[Co1-A-ti1o3m1d[u]nA)pHin-[/;in(tv-kL21]ene;]1reyais=A+)nef=[+(t-nm(k1Ta])eAT-p){y>nyA;r-p%c2eh…1iAld3e[2,1]3c,2e1oi20Vn0(u3e=bt×n4i{)n3t1a5)B0);,5b20A}{7,B(2ce[2a150,(l0)ds0cn(a20e,a)]×ie[13j1)1cnr2,a17Af2e0A4,i58g2jtB]b1u(B03}(a5r4,21[En)]06a1B;=07A51([}{0]b937S<A/3)56/HaL([06C0c,sT1b3)]uo[A.>81A0c5u,493]cBn<B0.]=taC5H[L8(0,A1De(4g]k/,Aa5>2EBef0,[)Fy,<]*4C[G)G]b[=2B1,,DHk)g+[]e>,I1AEJy,/[<(,81%C1c]-[8,a5bD1)]C>3C]B,D1<[D1]2Bd62,GFc3E>=41A,V5</1I5EdH475,Gf1231>01+0*J5,91<420G4+0e*30G241,7W1d+*787>13P031,4*9<1L74=41f=0+,515a24953>**/546,17<5+15=0g37413,2*0c5572>/4+517,5<6451*g524,0d+3>956,*5<0315f9+2,3e5W12>14P,12*<3L157g+=56,52f13053>105*693}64*1,{73+80217+9596510*77046873+1*71249264+*9503182+79012*176208590=*2092+8123169831731237*793}W2+531P352L5*0313173+s3T3125158*,21T2052=5,2…915W063…303P5,LTS Tini k1i(2i={a1b,2c,d…e…fg}S0)1,1k10in1i011k11k10n+1kk1Pn21>r+0ikm…00…11+1k0s1=0n11+n21K…ru…snkas1l ns,s=nk,nk a11a121a02K1)aru2s2kaa=2l203*:9(a1i+03/1jA2-03aB(3a131+Aa12=3B+42[…0+]3A…+a3aij1+n3inn149-+iH10-41au+jnfi84+fnm4+16a5B8n+58F1544):52=5706305306.986,2T76:0150,D811:00148110683171,F10ST6:06D413S024H515,1H12:007412101402H*1291u60+22f{f7m4*63a2+n58307*71836+21102*72306+722774*0674128+493}*()4+86*312=513219 5:13/5671(130+7822+6261+p03a1+341352+401143,41)p0=83,21a.8425,913,,p66331:121,0A1a24B13G,,CP4pJ9AD3KG21EHD12AFDaJ3GBH,EPaDHKBApGIBM3J2HEKIF1AJMCKCAEFCMFIIM
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、分析电子衍射与X 衍射有何异同?答:相同点:① 都是以满足布拉格方程作为产生衍射的必要条件。

② 两种衍射技术所得到的衍射花样在几何特征上大致相似。

不同点:① 电子波的波长比x 射线短的多,在同样满足布拉格条件时,它的衍射角很小,约为10-2rad 。

而X 射线产生衍射时,其衍射角最大可接近2。

② 在进行电子衍射操作时采用薄晶样品,增加了倒易阵点和爱瓦尔德球相交截的机会,使衍射条件变宽。

③ 因为电子波的波长短,采用爱瓦尔德球图解时,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。

④ 原子对电子的散射能力远高于它对x 射线的散射能力,故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。

2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系? 答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相对应晶面的衍射结果,可以认为电子衍射斑点就是与晶体相对应的倒易点阵某一截面上阵点排列的像。

关系:① 倒易矢量g hkl 垂直于正点阵中对应的(hkl )晶面,或平行于它的法向N hkl② 倒易点阵中的一个点代表正点阵中的一组晶面③ 倒易矢量的长度等于点阵中的相应晶面间距的倒数,即g hkl =1/d hkl④ 对正交点阵有a *//a ,b *//b ,c *//c ,a *=1/a ,b *=1/b ,c *=1/c 。

⑤ 只有在立方点阵中,晶面法向和同指数的晶向是重合的,即倒易矢量g hkl 是与相应指数的晶向[hkl]平行⑥ 某一倒易基矢量垂直于正交点阵中和自己异名的二基矢所成平面。

3、用爱瓦尔德图解法证明布拉格定律。

证:如图,以入射X 射线的波长λ的倒数为半径作一球(厄瓦尔德球),将试样放在球心O 处,入射线经试样与球相交于O*;以O*为倒易原点,若任一倒易点G 落在厄瓦尔德球面上,则G 对应的晶面满足衍射条件产生衍射。

令入射方向矢量为k (k = 1/λ),衍射方向矢量为k ,,衍射矢量为g 。

则有g = 2ksin θ。

∵g=1/d ;k=1/λ,∴2dsin θ=λ。

即厄瓦尔德球图解与布拉格方程等价。

4、画出fcc、bcc晶体的倒易点阵,并标出基本适量a*,b*,c*。

5、何为零层倒易面和晶带定理?说明同一晶带中各晶面及其倒易矢量与晶带轴之间的关系。

答:在倒易点阵中,通过倒易原点O*且与某一晶带轴[uvw]垂直的二维平面称为零层倒易面。

因为零层倒易面上的倒易面上的各倒易矢量都和晶带轴r=[uvw]垂直,故有g.r=0即hu+kv+lw=0这就是晶带定理。

6、为何对称入射时,即只有倒易点阵原点在爱瓦尔德球面上,也能得到除中心斑点以外的一系列衍射斑点?答:如果倒易点是几何点,那么对称入射时就没有倒易点落在厄瓦尔德球上。

但是,由于电镜样品是薄样品,倒易点拉长成倒易杆。

倒易杆与厄瓦尔德球相交可以产生衍射。

8、举例说明如何用选区衍射的方法来确定新相的惯习面及母相与新相的位向关系。

答:例如分析钢淬火时,马氏体在奥氏体的一定结晶面上形成的,此面为惯习面,它在相变过程中应该保持不变形与不转动。

由于马氏体相变时原子规则地发生位移,使新相(马氏体)和母相之间始终保持一定的位向关系。

在铁基合金中由面心立方母相γ变为体心立方(正方)马氏体M时具有著名的K-S关系:{111}γ∥{011}M,<01ī>γ∥<ī11>M和西山关系:{111}γ∥{110}M,<211>γ∥<110>M。

惯性面的取向分析:利用透射电镜测定惯性面的指数,其根据是选区衍射花样与选区内组织形貌的微区对应性。

这里特介绍一种最基本、较简便的方法。

该方法的基本要点为:使用双倾台或旋转台倾转样品,使惯性面平行于入射束方向,在此位向下获得的衍射花样中将出现该惯性面的衍射斑点。

把这个位向下拍照的形貌像和相应的选区衍射花样对照,经磁转角校正后,即可确定惯性面的指数。

其具体操作步骤如下:1) 利用双倾台倾转样品,使惯性面处于与入射束平行的方向。

2) 拍照包含有惯性面的形貌像,以及该视场的选区电子衍射花样。

3) 标定选区电子衍射花样,经磁转角校正后(即确保TEM方式下和SAED方式下,没有磁转角差异),将惯性面在形貌像中的迹线(TEM图像的得边界线)画在衍射花样中。

4) 由透射斑点作迹线的垂线,该垂线所通过的衍射斑点的指数即为惯性面的指数。

例如:镍基合金中的片状—Ni3Nb相常沿着基体(面心立方结构)的某些特定平面生长。

当片状相表面相对入射束倾斜一定角度时,在形貌像中片状相的投影宽度较大(见图实4—1a);如果倾斜样品使片状相表面逐渐趋近平行于入射束,其在形貌像中的投影宽度将不断减小;当入射束方向与片状相表面平行时,片状相在形貌像中显示最小的宽度(图实4—1b)。

图实4—1c是入射电子束与片状相表面平行时拍照的基体衍射花样。

由图实4—1c所示的衍射花样的标定结果,可以确定片状相的生长惯习面为基体的(111)面。

通常习惯用基体的晶面表示第二相的惯习面。

母相与新相的位向分析:利用两相合成的电子衍射花样的标定结果,可以直接确定两相间的取向关系。

具体的分析方法是,在衍射花样中找出两相平行的倒易矢量,即两相的这两个衍射斑点的连线通过透射斑点,其所对应的晶面互相平行,由此可获得两相间一对晶面的平行关系;另外,由两相衍射花样的晶带轴方向互相平行,可以得到两相间一对晶向的平行关系。

由图实4—3a给出的两相合成电子衍射花样的标定结果可确定两相的取向关系:(200)M∥(002),[011]M∥。

例如根据书上P176的衍射斑点的结果,可知马氏体的晶带轴是[001],奥氏体的晶带轴是[011]。

马氏体和奥氏体的位向关系: 9、说明多晶、单晶及非晶衍射花样的特征及形成原理。

答:多晶体的电子衍射花样是一系列不同半径的同心圆环单晶衍射花样是由排列得十分整齐的许多斑点所组成的非晶态物质的衍射花样只有一个漫散中心斑点单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网络的格点上。

因此表达花样对称性的基本单元为平行四边形。

单晶电子衍射花样就是(uvw)*0零层倒易截面的放大像。

多晶试样可以看成是由许多取向任意的小单晶组成的。

故可设想让一个小单晶的倒易点阵绕原点旋转,同一反射面hkl 的各等价倒易点(即(hkl )平面族中各平面)将分布在以1/d hkl 为半径的球面上,而不同的反射面,其等价倒易点将分布在半径不同的同心球面上,这些球面与反射球面相截,得到一系列同心园环,从反射球心向各园环连线,投影到屏上,就是多晶电子衍射图。

非晶的原子表现为近程有序,长程无序;原子的分布在非常小的范围内有一定的序。

由于单个原子团或多面体中原子具有近邻关系反映到倒空间也具有对应原子近邻距离的一个或两个倒易球面,反射球面与它们相交得到的轨迹都是一个或两个半径恒定并且以倒易点阵原点为中心同心圆环。

一、填空题1、电子衍射和X 射线衍射的不同之处在于入射波长不同、试样尺寸形状不同,以及样品对电子和X 射线的散射能力不同。

2、电子衍射产生的复杂衍射花样是高阶劳厄斑、超结构斑点、二次衍射、孪晶斑点和菊池花样。

3、偏离矢量S 的最大值对应倒易杆的长度,它反映的是θ角偏离布拉格方程的程度。

4、单晶体衍射花样标定中最重要的一步是确定晶体结构。

5、二次衍射可以使密排六方、金刚石结构的花样中在本该消光的位置产生衍射花样,但体心立方和面心立方结构的花样中不会产生多余衍射。

6、倒易矢量的方向是对应正空间晶面的 法线 ;倒易矢量的长度等于对应 晶面间距的倒数 。

7、只要倒易阵点落在厄瓦尔德球面上,就表示该 晶面 满足 布拉格 条件,能产生 衍射 。

()()[][]⎭⎬⎫M M A 001//011011//111A二、名词解释1、偏离矢量s :倒易杆中心至与爱瓦尔德球面交截点的距离可用矢量s 表示,s 就是偏离矢量。

2、晶带定律:凡是属于[uvw]晶带的晶面,它的晶面指数(hkl)都必须符合hu+kv+lw=0,通常把这种关系式称为晶带定律。

3、相机常数:定义 K=Lλ,称相机常数,其中L 为镜筒长度,λ为电子波长。

三、选择题1、单晶体电子衍射花样是( A )。

A. 规则的平行四边形斑点;B. 同心圆环;C. 晕环;D.不规则斑点。

2、 薄片状晶体的倒易点形状是( C )。

A. 尺寸很小的倒易点;B. 尺寸很大的球;C. 有一定长度的倒易杆;D. 倒易圆盘。

3、 当偏离矢量S<0时,倒易点是在厄瓦尔德球的( A )。

A. 球面外;B. 球面上;C. 球面内;D. B+C 。

4、 能帮助消除180º不唯一性的复杂衍射花样是( A )。

A. 高阶劳厄斑;B. 超结构斑点;C. 二次衍射斑;D. 孪晶斑点。

5、 菊池线可以帮助( D )。

A. 估计样品的厚度;B. 确定180º不唯一性;C. 鉴别有序固溶体;D. 精确测定晶体取向。

6、 如果单晶体衍射花样是正六边形,那么晶体结构是( D )。

A. 六方结构;B. 立方结构;C. 四方结构;D. A 或B 。

7、有一倒易矢量为*+*+*=*c b a g 22,与它对应的正空间晶面是( C )。

A. (210);B. (220);C. (221);D. (110);。

四、 是非题1、多晶衍射环和粉末德拜衍射花样一样,随着环直径增大,衍射晶面指数也由低到高。

(√)2、单晶衍射花样中的所有斑点同属于一个晶带。

(×)3、偏离矢量S=0时,衍射斑点最亮。

这是因为S=0时是精确满足布拉格方程,所以衍射强度最大。

( √ )4、对于未知晶体结构,仅凭一张衍射花样是不能确定其晶体结构的。

还要从不同位向拍摄多幅衍射花样,并根据材料成分、加工历史等或结合其它方法综合判断晶体结构。

(√)5、电子衍射和X 射线衍射一样必须严格符合布拉格方程。

(×)6、倒易矢量能唯一地代表对应的正空间晶面。

(√ )五、问答题1、试推导电子衍射的基本公式,并指出L λ的物理意义。

解:图为电子衍射花样形成原理图。

其中样品放在爱瓦尔德球的球心O 处。

当入射电子束和样品内某一组晶面(h k l )相遇,并满足布拉格方程时,在K ˊ方向产生衍射束,其中图中O ˊ、G ˊ点分别为入射束与衍射束在底片上产生的透射斑点(中心斑点)和衍射斑点。

hkl g (矢量)是衍射晶面的倒易矢量,其端点O *,G 位于爱瓦尔德球面上,投影G ˊ通过转换进入正空间。

∵电子束发散角很小,约2º-3º,∴可认为△OO *G ∽△OO ˊG ˊ,那么矢量hkl g 与矢量k 垂直∴有R/L=hkl g /k又∵有hkl g =1/hkl d k=1/λ∴R=L λ/hkl d = L λhkl g …………………⑴又∵近似有矢量R ∥矢量hkl g∴上式亦可以写成R = L λg ……………⑵式⑴⑵就是电子衍射的基本公式式中L λ称为电子衍射的相机常数(L 为相机长度)。

相关文档
最新文档