7-2 动力学之“三大基本模型”

7-2 动力学之“三大基本模型”
7-2 动力学之“三大基本模型”

专题7.2、动力学之三大基本模型

题型一、过程分析之板块模型

由滑块和木板组成的相互作用的系统一般称之为“木板—滑块模型”,简称'板块模型'。

此类问题涉及的相关知识点包括:静摩擦力、滑动摩擦力、运动学规律、牛顿运动定律、动能定理、能量转化与守恒等多方面的知识。此类问题涉及的处理手段包括:受力分析、运动分析、临界条件判断、图像法处理、多过程研究等多种方法。因此对大家的综合分析能力要求极高,也是高考的热点之一。

“滑块——木板”模型

【解题方略】

两种类型如下:

木板

条件是物块恰好滑到木板左端时二者速度相等,则位

移关系为

物块

条件是物块恰好滑到木板右端时二者速度相等,则位

移关系为

例1、如图所示,质量为M=8kg的小车放在光滑的水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到v0=1.5m/s时,在小车前端轻轻放上一个大小不计、质量为m=2kg的小物块,物块与小车间的动摩擦因数μ=0.2。已知运动过程中,小物块没有从小车上掉下来,取g=10m/s2。求:

(1)经过多长时间两者达到相同的速度;

(2)小车至少多长,才能保证小物块不从小车上掉下来;

(3)当小车与物块达到共速后在小车合物块之间是否存在摩擦力?

(4)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少;

(5)二者共速后如果将推力F 增大到28N ,则二者的加速度大小分别为;

【答案】(1)1s.(2)0.75m. (3)有,1.6N .(4)2.1m (5)2m/s2. 8m/s2

【解析】

对木块受力分析得:)1...(1ma mg =μ 对小车受力分析得:)2...(2Ma mg F =-μ 解得:

...

/5.0.../22

221s m a s m a ==

分别对两车进行运动分析:假设经过时间t 两车达到共速,且达到共速时物块恰好到达木板的左端;

对物块:

)

4...(2

1)

3...(2

1111t a x t a v == 对小车:

)

4...(2

1

)

5...(2202202t a t v x t a v v +=+= 根据题意:

)

6...()5...(2121l x x v v v =-==共

联立1、2、3、4、5、6式得:t=1s , l=0.75,v 共=2m/s (3)当物块与小车共速后对整体受力分析:

2

/8.0)7...()(s

m a a m M F =+=

此时小车与物块之间的摩擦力转化为静摩擦力,隔离物块对物块受力分析得:N ma f 6.18.02=?==。 所以当二者共速后在小车物块之间存在静摩擦力大小为:1.6N .

(4)二者共速后将以0.8m/s 2的加速度继续前进,所以在1.5s 内物块经历了两段运动(0-1s 与1-1.5s ),对物块进行运动分析得:

)8...(/11x x x +=

代入参数得:m x 1122

1

21=??=

, m x 1.15.08.02

1

5.022/1=??+?=

m x 1.2=

(5)当外力F 增加到28N 时,需要先判断,物块与小车之间是否发生相对运动是处理该问的关键; 设:当外力F 增大到F0时。小车与物块之间刚好发生相对运动,此时AB 之间的静摩擦力达到最大值;结合叠加体临界问题的求解方法(见专题06)可得:

)

3...()2...()()

1...(0mg f f a M m F ma f m μ==+== 代入相关参数联立:9、10、11关系式可得:)1

2...(200N F = 所以当F 增大到等于28N 时小车与物块之间将发生相对运动;

对物块受力分析得:2

33/2)....12...(s m a ma mg ==μ

对小车受力分析得:244/3)...13...(s m a Ma mg F ==-μ 方法总结:

选用整体法和隔离法的策略

(1)当各物体的运动状态相同时,宜选用整体法;当各物体的运动状态不同时,宜选用隔离法。 (2)对较复杂的问题,通常需要多次选取研究对象,交替应用整体法与隔离法才能求解。 技巧秘诀

应用整体法、隔离法应注意的三个问题

(1)实际问题通常需要交叉应用隔离法与整体法才能求解。

(2)对于两个以上的物体叠加组成的物体系统,在进行受力分析时,一般先从受力最简单的物体入手,采用隔离法进行分析。

(3)将整体作为研究对象时,物体间的内力不能列入牛顿第二定律方程中。

例2、【2015新课标II-25】25.(20分)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害。某地有一倾角为θ=37°的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B 上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图所示。假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间内,A 、B 间的动摩擦因数μ1减小为

8

3

,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第2s 末,B 的上表面突然变为光滑,μ2保持不变。已知A 开始运动时,A 离B 下边缘的距离l=27m ,C 足够长,设最大静摩擦力等于滑动摩擦力。取重力加速度大小g=10m/s2。求:

(1)在0~2s 时间内A 和B 加速度的大小 (2)A 在B 上总的运动时间

【答案】3m/s 2 1m/s 2 4s

【解析】选择0-2s 作为研究过程,对物体进行受力分析; 对A 受力分析:)1...(cos sin 11ma mg mg =-θμθ

对B 受力分析:)2..(cos 2cos sin 221ma mg mg mg =-+θμθμθ 解得:

...

/1..../32221s m a s m a ==

选择0-2s 作为研究过程对物体进行运动分析:

设2s 末A 的速度大小为V1,B 的速度大小为V2,在该段时间里A 走的位移大小为X1,B 走的位移大小为X2;

)

5...()4...(2211t a v t a v ==

)

8 (4)

7...(2

1)6...(212112222

11m x x X t a x t a x =-=?==

联立4、5、6、7得:

.......

2......6/2....../62121m x m x s m v s m v ====

选择2s 以后作为研究过程对物体进行受力分析: 对A 受力分析:)9...(sin 3ma mg =θ

对B 受力分析:)10....(cos 2sin 42ma mg mg =-θμθ

解得:2

423/2....../6s m a s m a -==

设经过时间t ,B 物体停止,此时A 的速度大小为v3,在该时间里A 走的位移大小为x3,B 走的位移大小为x4;

对A :)11...(313t a v v += 对B :)12....(042t a v += 对A :)13...(.2313t v v x +=

对B :)14...(.2

24t v

x = 解得:m x m x 1......943== )15...(8432m x x x =-=?

选择3s 以后作为研究过程:设剩余位移的大小为3x ?走完剩余位移所用的时间为t 、;

对A :s

t x x l x t a t v x 1)

17....()

16...(2

1

\2132\3\33=?-?-=?+=?

故A 在B 上运动的总时间为t=2+1+1=4s (18)

例3、(2015·新课标全国Ⅰ,25)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m ,如图(a)所示。t =0时刻开始,小物块与木板一起以共同速度向右运动,直至t =1 s 时木板与墙壁碰撞(碰撞时间极短)。碰撞前、后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。已知碰撞后1 s 时间内小物块的v -t 图线如图(b)所示。木板的质量是小物块质量的15倍,重力加速度大小g 取10 m/s2。求:

(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2; (2)木板的最小长度;

(3)木板右端离墙壁的最终距离。 【答案】

(1)μ2=0.4,μ1=0.1 (2)6m (3)6.5m

【解析】选择0-1s 作为研究过程对整体分析得:)1...(16161ma mg =μ

设0-1s 内整体的位移大小为x0,所以有;

)

3.....(2

1x )

2.....(v 2

00000at t v at v -=-= 联立1、2、3可得:0.11=μ

选择1-2s 作为研究过程分别对AB 进行受力分析和运动分析 对A 进行受力分析:)5....(12ma mg =-μ

对B 进行受力分析:)6...(1516212ma mg mg =--μμ

对AB 进行运动分析;设1-2s 末A 的位移为x 1B 的位移为x 2,2s 末A 、B 的速度大小分别为v 1,v 2;

)7...(11t a v v -=

联立5、6、7式得:

...

/3

4...

/42

221s m a s m a -=-= 将0.11=μ代入可得:0.42=μ (8)

)9...(.2

11

1t v v x +=

)10...(122t a v v -=

)11....(.2

12

2t v v x +=

)12...(21x x x +=?

联立将a1、a2代入联立9、10、11、12式可得:

22/38s m v = ...21m x = ...3102m x =

m x 3

161=? 选择2s 以后作为研究过程;对AB 分别进行受力分析,两物体各自的加速度大小未变。对AB 进行运动分析,设经过时间t2两物体共速,共速的速度大小为v 共,该过程AB 两物体各自产生的位移分别为x3、x4;

)13....(22221t a v t a +=解得:s m v t /2...5.02==共

)

15...(21)14...(2

12

222242

213t a t v x t a x +==

)

17...(6)16...(342m x x x x =?-=?

联立:14、15、16、17得:m x m x m x 3

2

...67...5.0243=?=

= 选择2.5s 以后作为研究过程;AB 以共同大小的加速度a ,以v 共为初速度做匀减速运动,设经过时间t 3停止;

)18...(/121s m g a -=-=μ

)

20...(2)...19...(2541552

x x x x m

x ax v ++===共

X=6.5m....(21) 方法总结:

处理多体多过程问题的基本步骤:

1、确定物体的运动过程并分段处理;将复杂的运动过程分解成若干个小的过程进行研究。

2、在已经选好的研究过程中根据不同的运动状态选择合理的研究对象;

3、根据题中的关键条件,对物体进行受力分析和运动分析,书写各过程的力学关系式,以及运动学关系式,求未知物理量。

4、注意如果是连续分段的思维切记过程的衔接; 技巧秘诀

分析滑块-木板模型时要抓住一个转折和两个关联。

题型二、过程分析之传送带模型 一、水平传送带模型

例4、如图所示,传送带AB 之间的距离为L,传送带以速度v 匀速转动,物块与传送带之间的摩擦因素为u ,将物块从A 点由静止释放,求物体从A 传到B 的时间;

【答案】

g v v l μ2+或g

l

μ2 【解析】物块在传送带上可能经历两种运动形式,如果传送带足够长物块先匀加速到与传送带共速,然后再匀速的走完剩余的全程,如果传送带不是足够长,则物块在传送带上一直匀加速; 方式一:物块先匀加速再匀速; 对物块受力分析:g a ma mg μμ==...

设物块从开始加速到与传送带共速需要的时间为t1,从共速到走完剩余全程需要的时间为t2;

阶段一速度关系式:10at v +=...)(11g v t μ=; 阶段一位移关系式:)2(2)(21212

2221g

v g v g at x μμμ=?

== 阶段二速度关系式:)3(2

2v

x t =

阶段二位移关系式:)4(2212g v l x l x μ-=-= 求得:)5(22g

v

v l t μ-=

所以从AB 传送到B 的总时间为:)6(221g

v v l t t t μ+=

+=

方式二、物块在传送带上一直匀加速到另一端; 对物块受力分析:g a ma mg μμ==...

对物体进行运动分析,如果传送带不是足够长,物块在传送带上一直匀加速;

2

21at l =

得g

l

t μ2=,所以物块从A 传送到B 的时间为g

l

t μ2=或g v v l t μ2+=

方法总结:

如图所示是物块在传送带上的两种运行模式,分析可知,在传送带的长度一定时,把物块从A 运送到B 端的两种方式中,t0

结论是:如果能够保证物体在传送带上一路匀加速,那么物体到达右端所需的时间更短.

例5、如图所示,一平直的传送带以速度v =2m/s 匀速运动,传送带把A 处的工件运送到B 处,A 、B 相距L =10m ,从A 处把工件无初速地放到传送带上,经过时间t =6s ,能传送到B 处,求: (1)工件在传送带上加速运动过程中的加速度大小及加速运动的时间;

(2)欲用最短的时间把工件从A 处传送到B 处,求传送带的运行速度至少多大?

【答案】(1)1m/s2 (2)52

【解析】对工件受力分析:g a ma mg μμ==....

对工件进行运动分析:假设工件从静止释放到与传送带共速共需要经历的时间为t

速度关系:)1...(

at v =代入得2=at t=2s 位移关系:

)

2)...(6(2

12

t v at l -+=

,代入相关参数得:a=1m/s 2 如果工件在传送带上一路匀加速刚好到达B 端时的速度为V ,且刚好与传送带共速,此时传送带的速度即

为其临界的最小速度。

s m v v al /5220...............022==-=

例6、如图所示,倾角为θ的斜面,传送带AB 之间的距离为L,传送带以速度v 匀速转动,物块与传送带之间的摩擦因素为u ,将物块从A 点由静止释放,求物体从A 传到B 的时间;

【答案】θ

θμsin cos 2g g l

t -=

或)sin cos (2θθμg g v v l t -+=

【解析】要想将物体传上去有一个要求:θθμsin cos mg mg >

对物块受力分析:ma mg mg =-θθμsin cos θθ

μs i n c o s g g a -= 运动分析:与水平类型完全一致;物体的运动有两种可能,先匀加速后匀速,或一直匀加速; 一直匀加速:a

l

t at l 2...212=

=

代入相关参数得:θθμsin cos 2g g l t -= 先匀加速后匀速:参考上一例题可知:a

v

v l t t t 221+=

+=代入相关参数得:)sin cos (2θθμg g v v l t -+=

例7、如图所示,一皮带输送机的皮带以v =13.6 m/s 的速率做匀速运动,其有效输送距离AB =29.8 m ,与水平方向夹角为θ=37°.将一小物体轻放在A 点,物体与皮带间的动摩擦因数μ=0.1,求物体由A 到B 所需的时间.(g 取10 m/s)

【答案】3s

【解析】本题的关键要注意两点:

1、开始时传送带运动的速度大于物块的速度,所以物块受到传送带沿斜面向下的滑动摩擦力;

2、当物块与传送带共速后物块的运动不一定是匀速的,需要进行相应的判断; 到达共速前阶段一受力分析:1cos sin ma mg mg =+θμθ代入相关参数得a1=6.8m/s2

设经过时间t1物块与传送带共速:s t a v 211==,物体产生的位移为:m a v x 6.1321

2

1== 当物体与传送带达到共速后的阶段二对物体进行受力分析:需要先判断比较θμθcos sin mg mg 与的大小关系,从而确定物体在第二阶段的运动情况;

对物体受力分析得:2cos sin ma mg mg =-θμθ代入相关参数得a2=5.2m/s2 对第二阶段的物体进行运动分析得:2

22122

1t a vt x l x +=-=;代入相关参数得:t2=1s 总时间t=t 1+t 2=3S;

对本题说明:在第二阶段中比较θμθcos sin mg mg 与的关系是非常重要的;当θμθcos sin mg mg ≤时, 物体将匀速走完剩余的全程;当θμθcos sin mg mg >时,物体将以加速度a2继续前行; 处理传送带模型的万能模板

题型三、过程分析之弹簧模型

在处理涉及弹簧类问题时需要注意弹簧最重要的特点就是弹力的大小是不能突变的,所以当外界状态变化时,连接在物体上的弹簧弹力是不变的;把握住弹簧的这一特点,分析问题时就与常规的力学问题是一样的。

例8如图所示,竖直放置在水平面上的轻质弹簧上叠放着两物块A 、B ,两者的质量均为2kg ,它们处于静止状态.若突然将一个大小为10N 、方向竖直向下的力施加在物体A 上,则此瞬间A 对B 的压力大小为:(g=10m/s2)( )

A .10N

B .25N

C .20N

D .30N

14.

【答案】B

【解析】开始时AB 处于静止状态,对AB 整体受力分析得:

)1...()(弹F g m m B A =+代入求得:..40N F =弹

施加一个竖直向下的10N 的外力后AB 整体不再平衡受力分析得:

)2...()(a m m F g m m F B A B A )(弹+=-++

施加力的前后F 弹的大小不变,代入相关参数得:10=4a.. a=2.5m/s 2; 隔离A 物体受力分析得:)3....(a m F g m F A BA A =-+;代入相关参数得: F BA =25N;

例9、如图所示,物体P 放在水平地面上,劲度系数为k =250 N/m 的轻弹簧左端固定在竖直墙壁上、右端固定在质量为m =1 kg 的物体P 上,弹簧水平。开始时弹簧为原长,P 从此刻开始受到与水平面成θ=37°的拉力作用而向右做匀加速运动。某时刻F =10 N ,弹簧弹力大小为T =5 N ,P 向右的加速度大小为a =1 m/s2,此时撤去F ,已知sin 37°=0.6、cos 37°=0.8,重力加速度g =10 m/s2。求:

【答案】

(1)0.2 m/s 方向水平向右

(2)10 m/s2 方向水平向左

【解析】(1)根据胡克定律可知,从开始到撤去F,弹簧伸长量x=T

k=0.02 m

应用速度-位移关系式可知,撤去F时P的速度v=2ax

解得v=0.2 m/s,方向水平向右

(2)撤去F前的瞬间P做加速运动的加速度a=1 m/s2,弹簧被拉长,设P与水平面间的动摩擦因数为μ,对P应用牛顿第二定律得F cos θ-μ(mg-F sin θ)-T=ma

撤去F瞬间P的加速度大小为a′,应用牛顿第二定律有

μmg+T=ma′

联立解得a′=10 m/s2,方向水平向左

齿轮机械传动动力学研究文献综述完整版

基于齿轮传动的机械动力学研究文献综述 摘要:本文结合相关文献对机械动力学中齿轮传动动力学部分的研究进行了综述。综合文献对齿轮传动动力学研究现状和发展趋势有了整体把握。 关键词:动力学;齿轮传动;综述; The Literature Review of Mechanical Dynamics based on gear transmission Abstract:In this paper, the studies of mechanical dynamics of gear transmission were reviewed. On the whole, we grasp the studies status and development trend of gear transmission. Keywords: Dynamics;Gear transmission;Review 1.前言 随着机械向高效、高速、精密、多功能方向发展,对传动机械的功能和性能的要求也越来越高,机械的工作性能、使用寿命、能源消耗、振动噪声等在很大程度上取决于传动系统的性能。因此必须重视对传动系统的研究。机械系统中的传动主要分为机械传动、流体传动(液压传动、液力传动、气压传动、液体粘性传动和高等优点机械传动的形式也有多种,如各种齿轮传动、带(链)传动、摩擦传动等。 齿轮传动是机械传动中的主要形式之一。在机械传动中占有主导地位。由于它具有速比范围大、功率范围广、结构紧凑可靠等优点,已广泛应用于各种机械设备和仪器仪表中。成为现有机械产品中所占比重最大的一种传动。齿轮从发明到现在经历了无数次更新换代,主要向高速、重载、平稳性、体积小、低噪等方向发展。 2. 齿轮动力学的发展概述 齿轮的发展要追溯到公元前,迄今已有3000年的历史。虽然自古代人们就使用了齿轮传动,但由于动力限制了机器的速度。因此齿轮传动的研究迟迟未发展到动力学研究的阶段。 第一次工业革命推动了机器速度的提高,Euler提出的渐开线齿廓被广泛运用,这属于从齿轮机构的几何设计角度来适应速度的提高。

第三章水动力学基础

第三章水动力学基础 1、渐变流与急变流均属非均匀流。( ) 2、急变流不可能是恒定流。( ) 3、总水头线沿流向可以上升,也可以下降。( ) 4、水力坡度就是单位长度流程上的水头损失。( ) 5、扩散管道中的水流一定是非恒定流。( ) 6、恒定流一定是均匀流,非恒定流一定是非均匀流。( ) 7、均匀流流场内的压强分布规律与静水压强分布规律相同。( ) 8、测管水头线沿程可以上升、可以下降也可不变。( ) 9、总流连续方程v1A1 = v2A2对恒定流和非恒定流均适用。( ) 10、渐变流过水断面上动水压强随水深的变化呈线性关系。( ) 11、水流总是从单位机械能大的断面流向单位机械能小的断面。( ) 12、恒定流中总水头线总是沿流程下降的,测压管水头线沿流程则可以上升、下降或水平。( ) 13、液流流线和迹线总是重合的。( ) 14、用毕托管测得的点流速是时均流速。( ) 15、测压管水头线可高于总水头线。( ) 16、管轴高程沿流向增大的等直径管道中的有压管流,其管轴压强沿流向增大。( ) 17、理想液体动中,任意点处各个方向的动水压强相等。( ) 18、恒定总流的能量方程z1 + p1/g + v12 /2g = z2 +p2/g + v22/2g +h w1- 2 ,式中各项代表( ) (1) 单位体积液体所具有的能量;(2) 单位质量液体所具有的能量; (3) 单位重量液体所具有的能量;(4) 以上答案都不对。 19、图示抽水机吸水管断面A─A动水压强随抽水机安装高度h的增大而( ) (3) 不变(4) 不定 h1与h2的关系为( ) (1) h>h(2) h<h(3) h1 = h2(4) 无法确定 ( ) (1) 测压管水头线可以上升也可以下降(2) 测压管水头线总是与总水头线相平行 (3) 测压管水头线沿程永远不会上升(4) 测压管水头线不可能低于管轴线 22、图示水流通过渐缩管流出,若容器水位保持不变,则管内水流属( ) (3) 恒定非均匀流(4) 非恒定非均匀流 ( ) (1) 逐渐升高(2) 逐渐降低(3) 与管轴线平行(4) 无法确定 24、均匀流的总水头线与测压管水头线的关系是( ) (1) 互相平行的直线;(2) 互相平行的曲线;(3) 互不平行的直线;(4) 互不平行的曲线。

第三章 流体动力学基础

第三章 流体动力学基础 习 题 一、单选题 1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是 ( ) A .加速运动 B .减速运动 C .匀速运动 D .不能确定 2、血管中血液流动的流量受血管内径影响很大。如果血管内径减少一半,其血液的流量将变为原来的( )倍。 A .21 B .41 C .81 D .161 3、人在静息状态时,整个心动周期内主动脉血流平均速度为0.2 m/s ,其内径d =2×10-2 m ,已知血液的粘度η =×10-3 Pa·S,密度ρ=×103 kg/m 3 ,则此时主动脉中血液的流动形态处于( )状态。 A .层流 B .湍流 C .层流或湍流 D .无法确定 4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为( )m/s 。 A .30 B .40 C .45 D .60 5、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2 ,B 处的横截面积为 S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为( )。 A .1m/s B .2m/s C .3 m/s D .4 m/s 6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2 ,B 处的横截面积为S B =5cm 2 ,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为( )。 A .1×10-3 m 3 /s B .2×10-3 m 3 /s C .1×10-4 m 3 /s D .2×10-4 m 3 /s 7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为( )mm 。 A .4 B .3 C .2 D .1 8、正常情况下,人的血液密度为×103 kg/m 3 ,血液在内径为6mm 的小动脉中流动的平均速度为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,此处内径为4mm ,则小动脉宽处与窄处压强之差( )Pa 。 二、判断题

齿轮动力学

(一) 直齿圆柱齿轮传动的扭转振动模型 若忽略传动轴的扭转变形,只考虑齿轮副处的变形,则得到最简单的扭转振动模型,如图1所示。其中r b1、r b2为主从动齿轮的基圆直径,k v 为齿轮副的综合啮合刚度,并且考虑齿轮副的啮合阻尼系数c v 以及齿廓误差e 的作用,主动轮上作用与转动方向相同的驱动力矩T 1,从动轮上作用与转动方向相反的阻力矩T 2 图1 齿轮副的扭转振动模型 啮合线上的综合变形δi 可写为: 1122i b b i r r e δθθ=-- (1) 设重合度小于2,啮合齿对为i ,法向啮合力可以表示为: ()()() 11221122i vi i vi i vi b b i vi b b i i i i F F k c k r r e c r r e δδθθθθ??==+=--+--??∑∑∑&&&& (2) 式中:i 为参与啮合的齿对序号,i =1,2;k vi 、c vi 为齿对i 在啮合点位置的综合啮合刚度和阻尼系数。 主、从动齿轮的力矩平衡方程为: 12111222 b b J T r F J T r F θθ=-=-&&&& (3) 将(2)带入(1)中得到: ()() ()() 111112211221222112211222 b vi b b i vi b b i i b vi b b i vi b b i i J r k r r e c r r e T J r k r r e c r r e T θθθθθθθθθθ??+--+--=????---+--=-??∑∑&&&&&&&&&& (4)

由此式可看出,即使主动齿轮转速以及传动载荷恒定,由于时变综合刚度k v 的变化,也会使从动轮的转动出现波动,即造成齿轮的圆周振动。为了方便讨论时变综合刚度k v 对振动方程(4)的影响,定义啮合线上两齿轮的相对位移x 为: 1122b b x r r θθ=- (5) 不考虑齿轮传动的效率,齿轮的静态啮合力为: 12 01 2 b b T T F r r = = (6) 将式(5)、(6)带入方程(4)中,则可将其简化为一元微分方程: e v v d m x c x k x F ++=&&& (7) 式中,m e 称为系统的当量质量: 12 22 2112 e b b J J m J r J r = + (8) 激振力为: 0d vi i vi i i i F F c e k e =++∑∑& (9) 根据方程(9)可以将一对齿轮的振动视为单自由度系统的振动,如图2所示。可以看出时变综合刚度k v 和齿廓误差e i 都是随时间变化的量,也即是齿轮系统的刚度激励和误差激励。 图2 齿轮传动的单自由度模型 与方程(7)对应的系统的固有频率可以表示为: n f = = (10) (二) 直齿圆柱齿轮副啮合耦合型振动分析 在不考虑齿面摩擦的情况下,典型的直齿圆柱齿轮副的啮合耦合型动力学模型如图4所示。

第二章 质点动力学 南京大学出版社 习题解答

第二章 习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为: j t b i t a r ?sin ?cos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F 2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可 伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律: ②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ ①+②可求得:g m m g m F a μμ-+-= 2 112 将a 代入①中,可求得:2 111) 2(m m g m F m T +-= μ 2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2 的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。 解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律: f 1 N 1 m 1 g T a F N 2 m 2g T a N 1 f 1 f 2 T' T'

齿轮动力学国内外研究现状

1.2.1 齿轮系统动力学研究 从齿轮动力学的研究发展来看,先后进行了基于解析方法的非线性齿轮动力学研究、基于数值方法的齿轮非线性动力学研究、基于实验方法的齿轮系统的非线性动力学研究和考虑齿面摩擦及齿轮故障的齿轮系统的非线性动力学研究。其中,解析方法包括谐波平衡法、分段技术法和增量谐波平衡法等;数值方法则不胜枚举,包括Ritz法、Parametric Continuation Technique方法等。[1]齿轮系统间隙非线性动力学的研究起始于1967年K.Nakamura的研究。[2]在1987年,H. Nevzat ?zgüven等人对齿轮系统动力学的数学建模方法进行了详细的总结。他分别从简化的动力学因子模型、轮齿柔性模型、齿轮动力学模型、扭转振动模型等几个方面分类,详细总述了齿轮动力学的发展进程。[3]1990年,A. Kaharman等人分析了一对含间隙直齿轮副的非线性动态特性,考虑了啮合刚度、齿侧间隙和静态传递误差等内部激励的影响,考察了啮合刚度与齿侧间隙对动力学的共同影响。[4] 1997年,Kaharaman和Blankenship对具有时变啮合刚度、齿侧间隙和外部激励的齿轮系统进行了实验研究,利用时域图、频域图、相位图和彭家莱曲线等揭示了齿轮系统的各种非线性现象。[5]同年,M. Amabili和A. Rivola研究了低重合度单自由度的直齿轮系统的稳态响应及其系统的稳定性。 [6]2004年,A. Al-shyyab等人用集中质量参数法建立了含齿侧间隙的直齿齿轮副的非线性动力学模型,利用谐波平衡阀求解了方程组的稳态响应,并研究了啮合刚度、啮合阻尼、静态力矩和啮合频率对齿轮系统振动的影响。[7]2008年,Lassaad Walha等人建立了两级齿轮系统的非线性动力学模型,考虑了时变刚度、齿侧间隙和轴承刚度对动力学的影响。对非线性系统分段线性化并用Newmark迭代法进行求解,研究了齿轮脱啮造成的齿轮运动的不连续性。[8]2010年,T. Osman 和Ph. Velex在齿轮轻微磨损的情况下,建立了动力学模型,通过数值模拟揭示了齿轮磨损的非对称性。[9]2011年,Marcello Faggioni等人通过分析直齿轮的非线性动力学特性及其响应,建立了以齿轮振动幅值的目标函数,利用Random–Simplex优化算法优化了齿廓形状。[10]2013年,Omar D. Mohammed等人对时变啮合刚度的齿轮系统动力学进行了研究,对于裂纹过长所带来的有限元误差问题,提出了一种新的时变啮合刚度模型。通过时域方面的故障诊断数据和FEM结果对比,证明了新模型能够更好地解长裂纹问题。[11] 国内研究齿轮系统动力学也进行了大量的研究。2001年,李润芳等人建立了具有误差激励和时变刚度激励的齿轮系统非线性微分方程,利用有限元法求得齿轮的时变啮合刚度和啮合冲击力,研究了齿轮系统在激励作用下的动态响应。 [12]2006年,杨绍普等人研究了考虑时变刚度、齿轮侧隙、啮合阻尼和静态传递误差影响下的直齿轮副的非线性动力学特性,利用增量谐波平衡法对系统方程进行了求解,研究了系统的分岔特性以及阻尼比和外激励大小对系统幅频曲线的影响。[13]2010年,刘国华等人建立了考虑齿轮轴的弹性、齿侧间隙、油膜挤压刚度和时变啮合刚度等因素的多体弹性非线性动力学模型,研究了齿廓修形和轴的扭转刚度对动力学特性的影响。[14] 2013年,王晓笋,巫世晶等人建立了含有非线性齿侧间隙、内部误差激励和含磨损故障的时变啮合刚度的三自由度齿轮传动系统平移—扭转耦合动力学方程。采用变步长Gill积分、GRAM—SCHMIDT方法,得到了系统对应的分岔图和李雅普诺夫指数谱,研究发现了系统内部丰富的非线性现象,而系统进入混沌运动的途径也是多样的。[15]

理论力学习题-质点动力学基本方程.

第9章 质点动力学基本方程 一、是非题(正确的在括号内打“√”、错误的打“×”) 1. 凡是适合于牛顿三定律的坐标系称为惯性参考系。 ( √ ) 2. 一质点仅受重力作用在空间运动时,一定是直线运动。 ( × ) 3. 两个质量相同的物体,若所受的力完全相同,则其运动规律也相同。 ( × ) 4. 质点的运动不仅与其所受的力有关,而且还和运动的初始条件有关。 ( √ ) 5. 凡运动的质点一定受力的作用。 ( × ) 6. 质点的运动方向与作用于质点上的合力方向相同。 ( × ) 二、填空题 1.质点是指大小可以忽略不计,但具有一定质量的物体。 — 2.质点动力学的基本方程是∑= i m F a ,写成自然坐标投影形式为∑=τF dt s d m 2 2 ∑= n F v m ρ 2 ∑ =b F 0。 3.质点保持其原有运动状态不变的属性称为惯性。 4.质量为m 的质点沿直线运动,其运动规律为0ln(1)v t x b b =+,其中0v 为初速度,b 为常数。则作用于质点上的力=F 20 2 0() mbv b v t - +。 5.飞机以匀速v 在铅直平面内沿半径为r 的大圆弧飞行。飞行员体重为P ,则飞行员对座椅的最大压力为2 (1)v P gr +。 三、选择题 1.如图所示,质量为m 的物块A 放在升降机上, 当升降机以加速度a 向上运动时,物块对地板的压力等于( B )。 (A) mg (B) )(a g m + (C) )(a g m - (D) 0 2.如图所示一质量弹簧系统,已知物块的质量为m ,弹簧的刚度系数为c ,静伸长量为s δ,原长为0l ,若以弹簧未伸长的下端为坐标原点,则物块的运动微分方程可写成( B )。 , (A) 0=+x m c x (B) 0)(=-+s x m c x δ 、 、

齿轮动力学国内外研究现状资料

1.2.1齿轮系统动力学研究 从齿轮动力学的研究发展来看,先后进行了基于解析方法的非线性齿轮动力学研究、基于数值方法的齿轮非线性动力学研究、基于实验方法的齿轮系统的非线性动力学研究和考虑齿面摩擦及齿轮故障的齿轮系统的非线性动力学研究。其中,解析方法包括谐波平衡法、分段技术法和增量谐波平衡法等;数值方法则不胜枚举,包括Ritz 法、Parametric Continuation Technique方法等。⑴ 齿轮系统间隙非线性动力学的研究起始于1967年K.Nakamura的研究。⑵ 在1987年,H. Nevzat ?zg u ven等人对齿轮系统动力学的数学建模方法进行了详细的总结。他分别从简化的动力学因子模型、轮齿柔性模型、齿轮动力学模型、扭转振动模型等几个方面分类,详细总述了齿轮动力学的发展进程。[3] 1990年,A. Kaharman等人分析了一对含间隙直齿轮副的非线性动态特性,考虑了啮合刚度、齿侧间隙和静态传递误差等内部激励的影响,考察了啮合刚度与齿侧间隙对 动力学的共同影响。⑷1997年,Kaharaman和Biankenship对具有时变啮合刚度、 齿侧间隙和外部激励的齿轮系统进行了实验研究,利用时域图、频域图、相位图 和彭家莱曲线等揭示了齿轮系统的各种非线性现象。[5]同年,M. Amabili和A. Rivola研究了低重合度单自由度的直齿轮系统的稳态响应及其系统的稳定性。⑹2004年,A. Al-shyyab等人用集中质量参数法建立了含齿侧间隙的直齿齿轮副的非线性动力学模型,利用谐波平衡阀求解了方程组的稳态响应,并研究了啮合 刚度、啮合阻尼、静态力矩和啮合频率对齿轮系统振动的影响。⑺2008年, Lassaad Walha等人建立了两级齿轮系统的非线性动力学模型,考虑了时变刚度、齿侧间隙和轴承刚度对动力学的影响。对非线性系统分段线性化并用Newmark迭代法 进行求解,研究了齿轮脱啮造成的齿轮运动的不连续性。⑹2010年,T. Osman 和Ph. Velex在齿轮轻微磨损的情况下,建立了动力学模型,通过数值模拟揭示了齿轮磨损的非对称性。[9]2011年,Marcello Faggioni等人通过分析直齿轮的非线性动力学特性及其响应,建立了以齿轮振动幅值的目标函数,利用Random-Simplex 优化算法优化了齿廓形状。[10]2013 年,Omar D. Mohammed等人对时变啮合刚度的齿轮系统动力学进行了研究,对于裂纹过长所带来的有限元 误差问题,提出了一种新的时变啮合刚度模型。通过时域方面的故障诊断数据和FEM 结果对比,证明了新模型能够更好地解长裂纹问题。[11] 国内研究齿轮系统动力学也进行了大量的研究。2001年,李润芳等人建立 了具有误差激励和时变刚度激励的齿轮系统非线性微分方程,利用有限元法求得 齿轮的时变啮合刚度和啮合冲击力,研究了齿轮系统在激励作用下的动态响应。[12]2006年,杨绍普等人研究了考虑时变刚度、齿轮侧隙、啮合阻尼和静态传递误差影响下的直齿轮副的非线性动力学特性,利用增量谐波平衡法对系统方程进行了求解,研究了系统的分岔特性以及阻尼比和外激励大小对系统幅频曲线的影响。[13]2010年,刘国华等人建立了考虑齿轮轴的弹性、齿侧间隙、油膜挤压刚度和时变啮合刚度等因素的多体弹性非线性动力学模型,研究了齿廓修形和轴的扭转刚度对动力学特性的影响。[14] 2013年,王晓笋,巫世晶等人建立了含有非线性齿侧间隙、内部误差激励和含磨损故障的时变啮合刚度的三自由度齿轮传动 系统平移一扭转耦合动力学方程。采用变步长Gill积分、GRAM —SCHMIDT方 法,得到了系统对应的分岔图和李雅普诺夫指数谱,研究发现了系统内部丰富的 非线性现象,而系统进入混沌运动的途径也是多样的。[15]

第9章 质点动力学基本方程

·104· 第9章 质点动力学基本方程 一、是非题(正确的在括号内打“√”、错误的打“×”) 1. 凡是适合于牛顿三定律的坐标系称为惯性参考系。 ( √ ) 2. 一质点仅受重力作用在空间运动时,一定是直线运动。 ( × ) 3. 两个质量相同的物体,若所受的力完全相同,则其运动规律也相同。 ( × ) 4. 质点的运动不仅与其所受的力有关,而且还和运动的初始条件有关。 ( √ ) 5. 凡运动的质点一定受力的作用。 ( × ) 6. 质点的运动方向与作用于质点上的合力方向相同。 ( × ) 二、填空题 1.质点是指大小可以忽略不计,但具有一定质量的物体。 2.质点动力学的基本方程是∑= i m F a ,写成自然坐标投影形式为∑=τF dt s d m 2 2 ∑= n F v m ρ 2 ∑ =b F 0。 3.质点保持其原有运动状态不变的属性称为惯性。 4.质量为m 的质点沿直线运动,其运动规律为0ln(1)v t x b b =+,其中0v 为初速度,b 为常数。则作用于质点上的力=F 20 2 0() mbv b v t - +。 5.飞机以匀速v 在铅直平面内沿半径为r 的大圆弧飞行。飞行员体重为P ,则飞行员对座椅的最大压力为2 (1)v P gr +。 三、选择题 1.如图9.6所示,质量为m 的物块A 放在升降机上, 当升降机以加速度a 向上运动时,物块对地板的压力等于( B )。 (A) mg (B) )(a g m + (C) )(a g m - (D) 0 2.如图9.7所示一质量弹簧系统,已知物块的质量为m ,弹簧的刚度系数为c ,静伸长量为s δ,原长为0l ,若以弹簧未伸长的下端为坐标原点,则物块的运动微分方程可写成( B )。 (A) 0=+x m c x (B) 0)(=-+s x m c x δ (C) g x m c x s =-+)(δ (D) 0)(=++s x m c x δ 3.在介质中上抛一质量为m 的小球,已知小球所受阻力R kv =-, A a 图9.6 、 、

动力学方程拟合模型(DOC)

动力学方程拟合模型 动力学方程拟合模型主要分为幂函数型模型和双曲线型模型。 在幂函数型动力学方程中,温度和浓度被认为是独立地影响反应速率的,可以表示为: 在双曲线型动力方程中强调模型方程中的吸附常数不能靠单独测定吸附性质来确定,而必须和反应速率常数一起由反应动力学实验确定。这说明模型方程中的吸附平衡常数并不是真正的吸附平衡常数,模型假设的反应机理和实际反应机理也会有相当的距离。双曲线型动力学方程的一般表达形式为 上述两类动力学模型都具有很强的拟合实验数据的能力,都既可用于均相反应体系,也可用于非均相反应体系。对气固相催化反应过程,幂函数型动力学方程可由捷姆金的非均匀表面吸附理论导出,但更常见的是将它作为一种纯经验的关联方式去拟合反应动力学的实验数据。虽然,在这种情况中幂函数型动力学方程不能提供关于反应机理的任何信息,但因为这种方程形式简单、参数数目少,通常也能足够精确地拟合实验数据,所以在非均相反应过程开发和工业反应器设计中还是得到了广泛的应用。 1.幂函数拟合 刘晓青[1]等人研究了HNO3介质中TiAP萃取Th(Ⅳ)的动力学模式和萃取动力学反应速率方程。 对于本萃取体系,由反应速率方程的一般形式可知: 可用孤立变量法求得各反应物的分反应级数a、b与c,从而确立萃取动力学方程。

第一步:分级数的求算 1.求a 固定反应物中TiAP和HNO3的浓度, 当TiAP的浓度远远大于体系中Th的初始浓 度时,可以认为体系中TiAP浓度在整个萃 取过程中没有变化而为一定値,则速率方程 可以简化为 两边取对数后得: ln{-d[Th-]/dt}=aln[Th]+ln1,用ln{-d[Th-]/dt} 对ln[Th]作图得到一条直线(r=0.9973),其斜率即为a。结果如图1所示,从图中可知斜率为1.05,即此动力学速率方程中Th(Ⅳ)的分反应级数a=1.05。 2.求b和c 同求Th(Ⅳ)分反应级数类似,固定反应物中Th(Ⅳ)和HNO3的浓度,则速率方程可以简化为 固定反应物中Th(Ⅳ)和TiAP的浓度,则速率方程可以简化为 画图可得:

理论力学动力学知识点汇总

理论力学动力学知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

质点动力学的基本方程 知识总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 动量定理 知识点总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。

求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 常见问题 问题一在动力学中质心意义重大。质点系动量,它只取决于质点系质量及质心速度。 问题二质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。 动量矩定理 知识点总结 1.动量矩。 质点对点O 的动量矩是矢量。 质点系对点O 的动量矩是矢量。 若z 轴通过点O ,则质点系对于z 轴的动量矩为 。 若 C 为质点系的质心,对任一点O 有。 2.动量矩定理。 对于定点O 和定轴z 有 若 C 为质心,C z 轴通过质心,有

质点动力学的基本方程

第十章 质点动力学基本方程 10-3 半径为R 的偏心轮绕O 轴以匀角速度ω转动,推动导板沿铅直轨道运动,如图所示。导板顶部放有一质量为m 的物块A ,设偏心距e OC =,开始时OC 沿水平线。求:(1)物块对导板的最大压力;(2)使物块不离开导板的ω最大值。 解:建立如图所示直角坐标系Oxy ,导板与物块均沿y 轴线作直 线运动,导板作平动,其运动规律为 t e R y ωsin += 对时间求二阶导数得 t e a y ωωsin 2-= 物块A 受重力m g 和导板的约束反力N F 作用如图)a (。 物块对导板的压力与N F 等值、反向、共线。由图(a)得物块A 的运动微分方程在y 轴的投影式为 ) sin (2N N t e g m F ma mg F y ωω-==- 1)物块对导板的最大压力 )(2N ωe g m F += 2)要使物块不离开导板,则应有 0)(2min N ≥-=ωe g m F 即 2ωe g ≥ 故 e g =max ω 10-7 销钉M 的质量为0.2 kg ,水平槽杆带动,使其在半径为mm 200=r 的固定半圆槽内运动。设水平槽杆以匀速mm/s 400=v 向上运动,不计摩擦。求在图示位置时圆槽对销钉M 的作用力。 解:以水平槽为动系,速度分析如图)a (,v v =e 3 24.02 330cos e a ?==?=v v v 受力与加速度分析如图(b), 2222a n m/s 07.132.044.04 3=??=?==r v r v a M r t n a a a =+M M 向铅直方向投影,得 2t n 2 n t t n m/s 23.13079.09238.030sin 30cos m/s 616.03 30cos 30sin =+=?+?====?-?M M Mx M M M M a a a a a a a 设水平槽对M 的反力为F N ,圆槽对M 的反力为F ,则

MTG反应动力学模型5页word文档

MTG反应动力学模型 1.模型建立 MTG反应属于复杂反应体系,其体系中具有50个反应,山西煤化所经过研究认为,甲醇制备汽油在ZSM-5分子筛催化剂作用下,是一个包含多个反应步骤、涉及多种组分、得到多种烃类产物的复杂反应过程,其机理反应如下[15]: (1)甲醇反应 (2)由:CH2与轻质烯烃反应,使其增加一个C原子而变成高级烯烃 (3)由:CH2与含氧化合物反应生成轻质烯烃 (4)水蒸气变换反应生成CO (5)由:CH2与H2反应生成CH4。 (6)烯烃生成碳正离子 (7)碳正离子与轻质烯烃反应,使轻质烯烃碳原子数增加,生成高级烯烃 (8)碳正离子与高级烯烃反应,生成烷烃和二烯烃 (9)碳正离子与二烯烃反应生成烷烃和环二烯烃 (10)碳正离子与环二烯烃反应生成烷烃和芳烃 (11)芳烃缩聚反应 (12)芳烃和甲醇进行烷基化反应 (13)烷烃发生脱甲基反应生成烯烃和甲烷 采用等温积分反应器,来得到这50个反应的数值表达式。对于等温

流动积分反应器有: Q:反应器中单位时间内组分的总体积流量(L/s); Ci:组分i的摩尔浓度(mol/L); Wcat:ZSM-5分子筛催化剂的重量(g); Vi:组分i的生成速度(mol/s)。 对上反应而言,则有 Vj′:第i个反应的反应速率(mol/s) Kj :第j个反应的速率常数 aij :第j个反应中组分i的化学计量系数 ms:生成或消耗组分i的反应个数 P:体系压力(Pa) R:常数,R=8.314 T:温度(K); n:物质的量(mol) ni:组分i的物质的量(mol) 山西煤化所对以上50个反应方程的动力学作了研究,得出其平衡常数和活化能如下表[31],认为自由基反应活化能为0。 2.集总模型建立 对复杂反应体系的处理方法一般有两种,一种是通过对组分空间进行线性变换来解除组分间的偶联,另一种是通过对组分进行集总,然后开发此种简化反应网络的动力学模型。(集总就是把反应体系中所有的化合物按某种原则,例如沸点、烃族、碳原子数等,归并成若干种成为集总组分

流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础 本章是流体动力学的基础。主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。 第一节流体流动的基本概念 1.流线 (1)流线的定义 流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。图3-1为流线谱中显示的流线形状。 (2)流线的作法: 在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。 流线是欧拉法分析流动的重要概念。 图3-1 图3-2 (3)流线的性质(图3-3) a.同一时刻的不同流线,不能相交。图3-3 因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。 b.流线不能是折线,而是一条光滑的曲线。 因为流体是连续介质,各运动要素是空间的连续函数。 c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。 因为对不可压缩流体,元流的流速与其过水断面面积成反比。 (4)流线的方程(图3-4) 根据流线的定义,可以求得流线的微分方程:图3-4

设d s为流线上A处的一微元弧长: u为流体质点在A点的流速: 因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。 所以即 展开后得到:——流线方程(3-1) (或用它们余弦相等推得) 2.迹线 (1)迹线的定义 迹线(path line)某一质点在某一时段内的运动轨迹线。 图3-5中烟火的轨迹为迹线。 (2)迹线的微分方程 (3-2) 式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。图3-5 注意:流线和迹线微分方程的异同点。 ——流线方程 3.色线(colouring line) 又称脉线,是源于一点的很多流体质点在同一瞬时的连线。 例如:为显示流动在同一点投放示踪染色体的线,以及香烟线都是色线。图3-6 考考你:在恒定流中,流线、迹线与色线重合。 流线、迹线、色线的比较: 概念名 流线是表示流体流动趋势的一条曲线,在同一瞬时线上各质点的速度向量都与其相切,它描述了流场中不同质点在同一时刻的运动情况。

流体力学龙天渝课后答案第三章一元流体动力学基础

第三章元流体动力学基础 1.直径为150mm勺给水管道,输水量为980.7kN/h,试求断面平均流速。 解:由流量公式Q vA 注意:kN / h kg /s Q vA Q v 得:v 1.57m/s A 3 2.断面为300mm< 400mm的矩形风道,风量为2700m/h,求平均流速.如风道出口处断面收缩为150mn< 400m m求该断面的平均流速 Q 解:由流量公式Q vA 得:v — A 由连续性方程知v^! v2A2得:v212.5m/s 3.水从水箱流经直径d i=10cm,d2=5cm,d3=2.5cm的管道流入大气中.当出口流速10m/时,求 (1)容积流量及质量流量;(2) d1及d2管段的流速 解:(1)由Q v3A30.0049m3 / s t 57 —q 质量流量Q 4.9kg /s (2)由连续性方程: v1A1 v3A3,v2A2 v3A3 j 亍]打 d、心心 得:v, 0.625m/s,v2 2.5m/ s 4.设计输水量为294210kg/h的给水管道,流速限制在0.9 s 1.4m/s之间。试确定管道直 径,根据所选直径求流速。直径应是50mm的倍数。 解:Q vA 将v 0.9 s 1.4m/s代入得d 0.343s 0.275m ???直径是50mm的倍数,所以取d 0.3m 代入Q vA得v 1.18m 5.圆形风道,流量是10000m3/h,,流速不超过20 m/s。试设计直径,根据所定直径求流速。 直径规定为50 mm的倍数。 解:Q vA 将v 20m/s代入得:d 420.5mm 取d 450mm 代入Q vA 得:v 17.5m/s 6.在直径为d圆形风道断面上,用下法选定五个点,以测局部风速。设想用和管轴同心但不 同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。测点即位于 等分此部分面积的圆周上,这样测得的流速代表相应断面的平均流速。(1)试计算各测点到 管心的距离,表为直径的倍数。(2)若各点流速为5, u2, u3, u4, u5,空气密度为,求质量流量

大学物理第2章质点动力学

第2章 质点动力学 2.1 牛顿运动定律 一、牛顿第一定律 任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改变这种状态为止。 二、牛顿第二定律 物体所获得的加速度的大小与合外力的大小成正比,与物体的质量成反比, 方向与合外力的方向相同。表示为 a m f = 说明: ⑴ 物体同时受几个力n f f f 21,的作用时,合力f 等于这些力的矢量和。 。 ∑=+++==n i n i f f f f f 121 力的叠加原理 ⑵ 在直角坐标系中,牛顿方程可写成分量式 x x ma f =,y y ma f =,z z ma f =。 ⑶ 在圆周运动中,牛顿方程沿切向和法向的分量式 t t ma f = n n ma f = ⑷ 动量:物体质量m 与运动速度v 的乘积,用p 表示。 m = 动量是矢量,方向与速度方向相同。 由于质量是衡量,引入动量后,牛顿方程可写成 dt d dt d m m f === 【 当0=f 时, 0=dt p d ,=p d 常量,即物体的动量大小和方向均不改变。

此结论成为质点动量守恒定律。 三、牛顿第三定律:物体间的作用力和反作用力大小相等,方向相反,且在同一直线上。 说明:作用力和反作用力是属于同一性质的力。 四、国际单位制量纲 基本量与基本单位 导出量与导出单位 五、常见的力 力是物体之间的相互作用。 力的基本类型:引力相互作用、电磁相互作用和核力相互作用。 " 按力的性质来分,常见的力可分为引力、弹性力和摩擦力。 六、牛顿运动定律的应用 用牛顿运动定律解题时一般可分为以下几个步骤: (1)隔离物体,受力分析。 (2)建立坐标,列方程。 (3)求解方程。 (4)当力是变力时,用牛顿第二定律得微分方程形式求解。 |

工程流体力学课后答案 第三章 流体动力学基础

第3章流体动力学基础 3.1 解: z u u y u u x u u t u a x z x y x x x x? ? + ? ? + ? ? + ? ? = ()() 34 2 2 4 6 2 2 2 2 2 2 2 2 2 = + + + + = + - + + + + = + + = z y x t z y t y x t u u y x z u u y u u x u u t u a y z y y y x y y? ? + ? ? + ? ? + ? ? = ()() 3 2 1 1 1 = - + + = - + + + - - = + - = z y x z x t z y t u u x y z u u y u u x u u t u a z z z y z x z z? ? + ? ? + ? ? + ? ? = ()() 11 2 1 2 2 2 1 1 = + + + + = - + - + + + = - + = z y x t z y t y x t u u z x 2 2 2 286 . 35s m a a a a z y x = + + = 3.2 解: (1)32 35 6 2 3= - = + =xy xy u xy y u a y x x 2 2 2 5 2 7310 . 33 3 32 3 1 s m a a a y u y a y x y y = + = = = - = (2)二元流动 (3)恒定流 (4)非均匀流 3.3 解: bh u y h u bdy h y u udA Q h h A max 7 8 7 1 max 7 1 max8 7 8 7 = = ? ? ? ? ? = =? ?

流体力学龙天渝课后答案第三章一元流体动力学基础

第三章 一元流体动力学基础 1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。 解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→// A Q v ρ= 得:s m v /57.1= 2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v = 由连续性方程知2211A v A v = 得:s m v /5.122= 3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速 解:(1)由s m A v Q /0049.0333== 质量流量s kg Q /9.4=ρ (2)由连续性方程: 33223311,A v A v A v A v == 得:s m v s m v /5.2,/625.021== 4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。试确定管道直径,根据所选直径求流速。直径应是mm 50的倍数。 解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1= 5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。试设计直径,根据所定直径求流速。直径规定为50 mm 的倍数。 解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17= 6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。测点即位于等分此部分面积的圆周上,这样测得的流速代表相应断面的平均流速。(1)试计算各测点到管心的距离,表为直径的倍数。(2)若各点流速为54321u u u u u ,,,,,空气密度为ρ,求质量流量G 。

第2章 质点动力学

第2章 质点动力学 一、基本要求 1.理解冲量、动量,功和能等基本概念; 2.会用微积分方法计算变力做功,理解保守力作功的特点; 3.掌握运用动量守恒定律、角动量守恒定律和机械能守恒定律分析简单系统在平面内运动的力学问题的思想和方法。 二、基本内容 (一)本章重点和难点: 重点:动量守恒定律和能量守恒定律的条件审核、综合性力学问题的分析求解。 难点:微积分方法求解变力做功。 (二)知识网络结构图: ???? ? ? ????? ?? ???? ? ? ? ?????????????????????????????? ???????????公式合外力矩为条件角动量守恒定律公式只有保守内力做功条件能量守恒定律公式合外力为条件动量守恒定律守恒定律角动量定理 动能定理动量定理基本定理能功角动量 冲量动量基本物理量)0()()0(

(三)容易混淆的概念: 1.动量和冲量 动量是质点的质量与速度的乘积;冲量是合外力随时间的累积效应,合外力的冲量等于动量增量。 2.力矩和角动量 力矩是位矢与力的矢积;角动量是位矢与动量的矢积。合外力矩等于质点角动量随时间的变化率。 3.保守力和非保守力 保守力是做功只与始末位置有关而与具体路径无关的力,沿闭合路径运动一周保守力做功为0;非保守力是做功与具体路径有关的力。 (四)主要内容: 1.动量、冲量 动量:p mv = 冲量:? ?= 2 1 t t dt F I 2.动量定理: 质点动量定理:? ?=-=?= 2 1 1 2t t v m P P dt F I 质点系动量定理:dt P d F = 3.动量守恒定律: 当系统所受合外力为零时,即0=ex F 时,或in ex F F 系统的总动量保持不变,即:∑===n i i i C v m P 1 4.变力做功:

相关文档
最新文档