形状记忆合金
形状记忆合金

• Ti-Ni合金中有三种金属化合物:Ti2Ni,TiNi和TiNi3 • 近等原子比的Ti-Ni 合金是最早得到应用的一种记忆合金。 由于其具有优异的形状忆效应、高的耐热性、耐蚀性、高 的强度以及其他合金无法比拟的热疲劳性与良好的生物相 容性以及高阻尼特性等,因而得到广泛的应用。 •
• Ti-Ni 记忆合金的相变温度对成分最敏感,含Ni量每增加 0.1%,就会引起相变温度降低10℃,添加的第三元素对
非热弹性马氏体相变 非热弹性马氏体的热滞后现象严重,连续冷却中不断形成 马氏体,而且每个马氏体片都是以极快的速率长到最后大小, 马氏体量由成核率和马氏体片的大小来确定,与马氏体片的生 长速率无关。
热弹性马氏体相变
热弹性马氏体相变,相变温度滞后很小,马氏体相和母相
间保持着弹性平衡。马氏体片可随着(温度或外应力)驱动 力的改变而反复发生长大或缩小。具有这种特征的马氏体称 为“热弹性马氏体” 。 具有热弹性马氏体转变的合金会产生“超弹性”和“形状
Ti-Ni 合金相变温度的影响也很大。
优缺点
• 具有丰富的相变现象、优异的形状记忆和超弹性性能、良 好的力学性能、耐腐蚀性、生物相容性以及高阻尼特性; • 研究最全面、记忆性好、实用性强的形状记忆合金材料, 是目前应用最为广泛的形状记忆材料; • 缺点:制造过程较复杂,价格较昂贵。
铜系形状记忆合金 与Ti-Ni合金相比,Cu-Zn-Al制造加工容易,价格便宜, 并有良好的记忆性能,相变点可在一定温度范围内调节, 见表3-5,不同成分的Cu-Zn-Al合金相变温度不同。
双程形状记忆效应
形状记忆合金 全程形状记忆效应——当加热时恢复高温相形状,冷 却时变为形状相同而取向相反 的高温相形状的现象。只能在 富镍的Ti- Ni合金中出现。
cu-基形状记忆合金

cu-基形状记忆合金Cu-基形状记忆合金(Cu-based shape memory alloys,简称Cu-SMA)是一类以铜为主要成分的形状记忆合金。
它们具有良好的形状记忆效应和超弹性特性,广泛应用于航空航天、汽车、电子、医疗器械等领域。
Cu-基形状记忆合金通常由铜、镍、锌、钛等元素组成,其中铜和镍是主要元素。
Cu-基形状记忆合金的主要性能特点如下:1. 形状记忆效应:在一定的温度范围内,合金发生相变,从而实现自变形和恢复原状的能力。
2. 超弹性:Cu-基形状记忆合金在变形过程中,具有很高的弹性极限和应变恢复能力。
3. 良好的疲劳性能:Cu-SMA在反复变形过程中,具有较低的疲劳极限和良好的耐疲劳性能。
4. 耐腐蚀性:Cu-基形状记忆合金具有较好的耐腐蚀性能,适用于腐蚀环境下的应用。
5. 易于加工:Cu-SMA具有较高的塑性,可以采用传统的金属加工方法进行加工和成型。
根据组成和性能特点,Cu-基形状记忆合金可分为以下几类:1. Cu-Ni系:这是最常用的Cu-基形状记忆合金,具有较好的形状记忆效应和超弹性。
Cu-Ni合金中,镍含量一般在30%-50%之间。
2. Cu-Zn系:Cu-Zn合金具有较高的抗拉强度和耐腐蚀性能,但形状记忆效应相对较差。
锌含量一般在10%-40%之间。
3. Cu-Ti系:Cu-Ti合金具有较高的弹性极限和抗拉强度,但在高温下易发生相变。
钛含量一般在5%-15%之间。
4. Cu-Ni-Ti系:这是近年来发展较快的一类Cu-基形状记忆合金,具有优良的形状记忆效应、超弹性和耐腐蚀性能。
镍和钛的含量分别在30%-50%和5%-15%之间。
Cu-基形状记忆合金在我国的研发和应用取得了显著成果,已成功应用于航空航天、汽车、电子、医疗器械等领域。
未来,随着科学技术的进步和市场需求的增长,Cu-SMA在我国的发展前景十分广阔。
未来潜力材料之形状记忆合金

形状记忆合金(shape memory alloys,SMA)是一种由两种以上金属元素构成、能够在温度和应力作用下发生相变的新型功能材料,通过热弹性与马氏体相变及其逆变而具有独特的形状记忆效应、相变伪弹性等特性,广泛应用于航空航天、生物医疗、机械电子、汽车工业、建筑工程等领域。
形状记忆合金按合金种类主要分为镍钛基形状记忆合金(Ni-Ti SMA)、铜基形状记忆合金(Cu SMA)、铁基形状记忆合金(Fe SMA)3类。
其中,镍钛基形状记忆合金包括Ni-Ti-Cu、Ni-Ti-Co、Ni-Ti-Fe、Ni-Ti-Nb等具有较高实用价值的记忆合金;铜基形状记忆合金主要有Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Zn-Ga、Cu-Sn等种类;铁基形状记忆合金主要有Fe-Pt、Fe-Mn-Si、Fe-Ni-Co-Ti、Fe-Mn-Al-Ni、Fe-C-Mn-Si-Cr-Ni等种类。
1/形状记忆合金的研究现状形状记忆合金因其独特的形状记忆效应一直是各主要国家的研究热点。
近年来,美国、欧洲、日本等国家和地区针对形状记忆合金制备工艺、成分配比、与先进制造技术结合的研究已取得显著的进展,尤其以4D打印技术为代表的先进制造技术使用形状记忆合金作为原材料,扩展了其在软体机器人、医疗器械、航空航天等领域的应用范围。
(一)中美欧等国开发出多种形状记忆合金制备新工艺,扩大了材料应用范围形状记忆合金/聚合物的制备方法主要有熔炼法、粉末冶金法、喷射沉积工艺、4D打印技术等,再根据应用需求配置后续的锻造、热挤压、轧制、拉拔、冷加工等成型工艺。
其中,熔炼法是传统金属冶金工艺,在真空下将金属原材料通过电子束、电弧、等离子体、高频感应等方式加热后进行熔炼,易产生杂质污染、成分不均匀、能耗高等问题,且需要经过切割加工形成合金产品。
而粉末冶金法则是利用金属或合金粉末进行热等静压和烧结,制备出最终形状的合金产品。
形状记忆合金

形状记忆合金的特点
普通金属材料弹性应变 一般不超过0.5%,而超 弹性 材料的超弹性应 变则达5%-20%。在介 入医 疗领域有超过 80%的产品利用的是N i -T i合金 的超弹性,它 使得合金支架或合金丝 具有良好的柔顺性,可 以与柔软且复杂的人体 内管道很好的贴合。
形状记忆合金的特点
ቤተ መጻሕፍቲ ባይዱ
形状记忆合金在低于M。 点的温度下进行热弹 性马氏体相变,生成 大量马氏体变体(结 构相同、取向不同), 变体问界面能和马氏 体内部孪晶界面能都 很低,易于迁移,能 有效地衰减振动、冲 击等外来机械能,因 此阻尼特性特别好, 可用做防振材料和消 声材料。
形状记忆的原理
铁有两种不同的基本晶体结 构,即体心立方铁和面心立方 铁。 这种由相同的原子组成的不 同的晶体结构,在材料学中又 称为不同的“相”。 体心立方铁和面心立方铁属 不同的“相”,前者称为α ~Fe (铁素体),后者称为 γ~Fe(奥氏体)。
形状记忆合金就是利用一些材料的晶体 结构在改变外界条件时的相互转变来使其 具有形状记忆功能的。
概念及简介
并列
单程记忆效应
双程记忆效应
全程记忆效应
在较低的温 度下变形, 加热后可恢 复变形前的 形状
加热时恢复 高温相形状 ,冷却时又 能恢复低温 相形状
加热时恢复 高温相形状 ,冷却时变 为形状相同 取向相反的 低温相形状
概念及简介 • 1932年由瑞典人Olander在研究Au-Cd合金时首 次观察到“记忆”效应 • 1938年美国哈佛大学A. B. Greninger等美国哈佛 大学A. B. Greninger等在一种Cu-Zn合金中发现 了一种随温度的升高和降低而逐渐增大或缩小的 形状变化。 • 1963年,美国海军武器试验室(Americal navy Ordinance Laboratory)的Buehler博士等发现 Ni-Ti合金具有形状记忆效应,并开发了Nitinol (Ni-Ti-Navy-Ordinance-Laboratory)形状记 忆合金;形状记忆合金所具有的“形状记忆” 和 “ 超弹性” 两大特殊功能,引起国际材料科学界 的极大兴趣。
形状记忆合金

浅谈形状记忆合金传统观念认为,只有人和某些动物才有“记忆”的能力,非生物是不可能有这种能力的。
难道合金也会像人一样具有记忆能力吗?答案是肯定的,形状记忆合金就是这样一类具有神奇“记忆”本领的新型功能材料。
形状记忆效应是指具有一定形状的固体材料,在某种条件下经过一定的塑性变形后,加热到一定温度时,材料又完全恢复到变形前原来形状的现象,即它能记忆母相的形状。
具有形状记忆效应的金属一般是两种以上金属元素的合金,这样的合金成为形状记忆合金。
其主要技术指标如下:机械性能:拉伸强度:700-900Mpa(热处理)延伸率:15-30%形状记忆功能:单程(N=1)6-10%,双程(N=10-107)0.5-5%物理性能:密度:约6.5g/cm3.热膨胀系数:10-106/℃.熔点:约1300℃,导弹率:0.209W/cm℃(室温). 比热:6-8Cal/mol℃电阻率:(50-110) ×10-6chm.cm。
那么形状记忆合金是如何被发现,原理是什么,有哪些具体的应用,又经历了怎样的发展呢?在接下来的文字中你将找到答案。
1963年,美国海军军械研究室在一项试验中需要一些镍钛合金丝,他们领回来的合金丝都是弯弯曲曲的。
为了使用方便,于是就将这些弯弯曲曲的细丝一根根地拉直后使用。
在后续试验中一种奇怪的现象出现了:当温度升到一定值的时候,这些已经被拉得笔直的合金丝,突然又魔术般地迅速恢复到原来弯弯曲曲的形状,而且和原来的形状丝毫不差。
再反复多次试验,每次结果都完全一致,被拉直的合金丝只要达到一定温度,便立即恢复到原来那种弯弯曲曲的模样。
就好像在从前被“冻”得失去知觉时被人们改变了形状,而当温度升高到一定值的时候,它们突然“苏醒”过来了,又“记忆”起了自己原来的模样,于是便不顾一切地恢复了自己的“本来面目”。
形状记忆合金可以分为三类:单程记忆合金、双程记忆合金、全程记忆合金。
如图1所示,形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应;某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应;加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。
形状记忆合金

Air conditioner for heating and cooling (空调)
利用形状记忆合金也可以制作成消防报警装臵及电器 设备的保安装臵。当发生火灾时,记忆合金制成的弹 簧发生形变,启动消防 报警装臵,达到报警的 目的。还可以把用记忆 合金制成的弹簧放在暖 气的阀门内,用以保持 暖房的温度,当温度过
记忆合金最令人鼓舞的应用是在航天技术中。1969年 7月20日,“阿波罗”11号登月舱在月球着陆。所用 的直径数米大的天线就是用当时刚刚发明不久的记忆 合 制成的。用极薄的记 金 忆合金材料先按预定要 求做好,然后降低温度
Apollo 11号登月舱
把它压成一团,装进登
月舱。放到月面上后,
在阳光照射下温度升高,
形状记忆效应
形状记忆效应
形状记忆合金在较低的温度下变形,加热后 可恢复变形前的形状,这种只在加热过程中 存在的形状记忆现象称为单程记忆效应。
某些记忆材料例如TiNi合金及Cu基记忆合金经 过一定的特殊处理后,材料可以“记忆”住高 温时的形态,又可“记忆”低温时的形状。当 温度在高温和低温之间往返变化时,材料自行 在两种形状之间变换,这种现象称为双向记忆 效应(Two Way Memory Effect,简写为 TWME)。
三、形状记忆合金的应用(Applications)
形状记忆合金在工程上的应用很多,最早的应用就是
作各种结构件,如
紧固件、连接件、
密封垫等。另外,
也可以用于一些控
制元件,如一些与
温度有关的传感及 自动控制。
1. 工业上的应用
⑴连接件:用作连接件,是形状记忆合金用量最大的 一项用途。形状记忆效应应用最简单的例子是外部无 法接触部位的铆接。形状记忆合金可大量用于制作管 接头,连接方法是预先将管接头内径做成比待接管外
形状记忆合金

TiNi形状记忆合金在医学领域的应用现状:
用于医学领域中的记忆合金必须满足化学和生物学等方面可靠性的 要求。实验证明,现有记忆合金中仅有TiNi形状记忆合金满足上述条 件,因此它是目前医学上使用的唯一一种记忆合金。因其具有奇特的形 状记忆效应、生物相容性、超弹性及优良的耐磨性,所以它在临床和医 疗器械等方面获得了广泛的应用。 (1)TiNi形状记忆合金在治疗机械中的应用:从目前的研究成果来看,TiNi形 状记忆合金元件的形状恢复力与其特征尺寸2次方成正比,且特征尺寸减小后 其表面积增加,冷却加快,这些特性使得其在医疗器械领域中得到了较广泛的应 用,主要表现在以下几个方面。
SMART MATERIALS - SHAPE MEMORY ALLOY (SMA)
MUSCLE WIRE
The diagramshows a battery and switch connected to muscle wire. A small weight stretches the muscle wire approximately 3 to 5 percent of its length. However, when a current is applied to the wire, it shortens lifting the weight. This cycle of turning on and off the current has the effect of lifting and then lowering the weight.
SMA的应用
SMA管接头:可以得到比一般接头更好的连接效果。接头内径比被 接管外径小4%。操作时,接头浸内径回复到扩径前的状态,箍紧被接管。 类似的用途还有电源连接器、自紧固螺钉、自紧固夹板、固定销、密封 垫圈、接骨板和脊柱侧弯矫形哈伦顿棒等。
形状记忆合金

形狀記憶合金形狀記憶合金,Shape Memory Alloy(SMA),是一種加熱後能恢復其原有形狀的特殊合金。
最早是在1951年時,在Au-Cu合金中發現具有形狀記憶的特性,之後又陸續在許多合金中發現有類似的反應,目前較引人注目的有Ti-Ni系合金及Cu系合金。
而形狀記憶合金所表現出來的特性有兩種,一種是形狀記憶效應(Shape Memory Effect,SME),一種是擬彈性效應(Pseudeoelastic Effect)。
形狀記憶合金的特色一般金屬的塑性變形乃是由於差排的移動,而差排移動之後造成的塑性變形無法用加熱方法使其恢復形狀。
在形狀記憶合金中,當材料溫度降低,一種新的結構,我們稱之為麻田散相,會自原來的結構(我們稱之為奧斯田母相)中長出。
而其過程為可逆的,當溫度升高時,會轉換成奧斯田母相。
形狀記憶效應是利用當溫度低於麻田散相轉換溫度時,若外力超過彈性極限,材料結構會重新排列,使材料產生如塑性變形的情形,當溫度升高時,麻田散相會轉換回原來的奧斯田母相,而記得原來的樣子。
當溫度高於麻田散相轉換溫度,外加應力一樣會促使奧斯田母相產生麻田散相而得到如塑?岒雱峈滷“峞A,但是若外力去除,不穩定的麻田散相將轉換回母相,此時其“塑性變形“會隨之消失,故稱此種效應為擬彈性效應。
一班來說,金屬的彈性變形量只有2%,形狀記憶合金能夠承受的彈性變形量是一般金屬的四到五倍。
而形狀記憶效應或擬彈性效應的發生,完全取決於材料的麻田散轉換溫度相對於測試溫度的變化,如(圖一)是發生此兩種效應的應力及溫度範圍相對於滑移臨界應力的關係。
(圖二)形狀記憶效應與擬彈性效應的示意圖。
如何製作形狀記憶合金使用形狀記憶合金最重要的就是它的麻田散相轉換溫度,此一轉換溫度會因經歷此寸、外加應力、熱循環次數....等因素而改變,其中以合金成份的改變對麻田散相轉換溫度的影響最劇烈,以Cu-Zn-Al記憶合金來說,增加一個重量百分比的鋅會使麻田散相轉換溫度下降51℃;增加一個重量百分比的鋁會使麻田散相轉換溫度下降134.5℃之多,因此成份的控制包括正確的百分比及均勻的品質將非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形状记忆合金
形状记忆合金的发现
20世纪60年代初,美国马里兰州海军军 械研究所的科学家比勒,用镍钛合金丝做试验。 这些合金丝弯弯曲曲,为了使用方便,他把这 些合金丝弄直了。但是,当他无意中把合金丝 靠近火的时候,奇迹发生了:已经弄直的合金 丝居然完全恢复了它们原来弯弯曲曲的形状。
形状记忆合金的特点
形状记忆合金的分类
(1)单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢 复变形前的形状,这种只在加热过程中存在的形状记 忆现象称为单程记忆效应。 (2)双程记忆效应 某些合金加热时恢复高温相形状,冷却时又能恢 复低温相形状,称为双程记忆效应。 (3)全程记忆效应 加热时恢复高温相形状,冷却时变为形状相 同而取向相反的低温相形状,称为全程记忆 效应。
形状记忆合金的用途归纳
(1)汽车:后雾灯罩、手动变速箱的防噪音装置、燃料 蒸发气体排出控制阀;(2)电子设备:电子炉灶换气门 的开闭器、空调风向自动调节器、咖啡牛奶沸腾感知 器、电饭锅压力调节器、电磁调理器过热感知器、温 泉浴池调理器等;(3)安全器具:过热报警器、火灾报 警器、烟灰缸灭火栓等;(4)医疗方面:人工牙根、牙 齿矫正丝、导线等;(5)生活用品:自动干燥库门开闭 器、卫生间洗涤器水管转换开关、空调进出口风向调 节器、浴池保温器、玩具、路标方向指示转换器、家 庭换气门开闭器、防火挡板、净水器热水防止阀、恒 温箱混合水栓温度调节阀、眼镜固定件、眼镜框架、 胸罩丝、钓鱼线、便携电话天线、装饰品等。
形状记忆合金的原料
真正实际中使用的形状记忆合金主要是 TiNi 合金和CuALBe合金,以及在这两种合金中添 加微量元素所组成的合金,因而形状记忆合金 的主要材料是镍、钛、铜、铍青铜等,其产地 分别是我国西部地区的金昌、遵义、白银、石 嘴山等。
合金具有“记忆”的原因
据科学家推测,金属的结晶状态,在被加热时和冷却 时是不同的,虽然外表没有变化,然而在一定温度下, 金属原子的排列方式会发生突变,这称为相变。能引 起记忆合金形状改变的条件是温度。分析表明,这类 合金存在着一对可逆转变的晶体结构。如含有Ti和Ni 各为50%的记忆合金,有两种晶体结构,一种是菱形 的,另一种是立方体的,这两种晶体结构相互转变的 温度是一定的。高于这一温度,它会由菱形结构转变 为立方体结构;低于这一温度,又由立方体结构转变 为菱形结构。晶体结构类型改变了,它的形状也就随 之改变。
铁素体、奥氏体、马氏体
组成铁碳合金的铁具有两种晶格结构:910℃以下为 具有体心立方晶格结构的α——铁,910℃以上为具 有面心立方晶格结构的Υ——铁。如果碳原子挤到铁 的晶格中去,而又不破坏铁所具有的晶格结构,这样 的物质称为固溶体。碳溶解到α——铁中形成的固溶 体称铁素体。而碳溶解到Υ——铁中形成的固溶体则 称奥氏体。奥氏体是铁碳合金的高温相。 钢在高温时所形成的奥氏体,过冷到727℃以下时 变成不稳定的过冷奥氏体。如以极大的冷却速度过冷 到230℃以下,这时奥氏体中的碳原子已无扩散的可 能,奥氏体将直接转变成一种含碳过饱和的α固溶体, 称为马氏体。由于含碳量过饱和,引起马氏体强度和 硬度提高、塑性降低,脆性增大。
形状记忆合金材料是一 种新型的功能材料,其 特点是在一定的外力作 用下可以改变其形态(形 状和体积),但当温度升 高到某一定值时,它又 可完全恢复原来的形态。
通过形状记忆合金模仿肌肉的收缩 来实现人工肌肉的功能。用背部的 金属纤维振动翅膀
形状记忆合金的用途(一)
在航空上的应用—— 月球上的“奇葩”
在室温下用形状记忆合金制 成抛物面天线,然后把它揉 成直径5厘米以下的小团,放 入阿波罗11号的舱内,在月 面上经太阳光的照射加热使 它恢复到原来的抛物面形状。 这样就能用空间有限的火箭 舱运送体积庞大的天线了。
形状记忆合金的用途(二)
在医学上的应用
合金作为驱动元件,具有可动的肩、肘、腕及手 指的微型机械手。手指和手腕靠TiNi合金螺旋弹 簧的伸缩实现开闭和弯曲动作,肘和肩是靠直线 状的TiNi合金丝的伸缩做弯曲动作,各个形状记 忆合金驱动元件都由直接通上的脉宽可调电流加 以控制。
形状记忆效应与形状记忆合金
ห้องสมุดไป่ตู้
一般金属材料受到外力作用后,首先发生弹性 变形,达到屈服点,就产生塑性变形,应力消 除后留下永久变形。但有些材料,在发生了塑 性变形后,经过合适的热过程,能够回复到变 形前的形状,这种现象叫做形状记忆效应 (SME)。 具有形状记忆效应的金属一般是两种以上金属 元素组成的合金,称为形状记忆合金(SMA)