九年级下册数学锐角三角函数单元重点练习试卷附答案学生版

合集下载

人教版九年级下数学第二十八章锐角三角函数单元练习题(含答案)

人教版九年级下数学第二十八章锐角三角函数单元练习题(含答案)

《锐角三角函数》单元练习题一.选择题1.在Rt△ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于()A.3sinαB.3cosαC.D.2.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.B.C.D.3.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米4.如图,护林员在离树8m的A处测得树顶B的仰角为45°,已知护林员的眼睛离地面的距离AC 为1.6m,则树的高度BD为()A.8m B.9.6m C.(4)m D.(8+1.6)m5.如图,P是∠α的边OA上一点,且点P的横坐标为3,sinα=,则tanα=()A.B.C.D.6.如图,网格中小正方形的边长都为1,点A,B,C在正方形的顶点处,则cos∠ACB的值为()A.B.C.D.7.如图,河对岸有铁塔AB,在C处测得塔顶A的仰角为30°,向塔前进14m到达D,在D处测得A的仰角为45°,塔高AB为()A.m B.m C.m D.m8.如图,在Rt△ABC中,∠ACB=90°,AC=24,AB=25,CD是斜边AB上的高,则cos∠BCD 的值为()A.B.C.D.9.如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m千米后到达点B处,又测得标志物P的俯角为β,那么此时飞机离地面的高度为()A.千米B.千米C.千米D.千米10.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8B.12C.13D.1811.已知某条传送带和地面所成斜坡的坡度为1:2,如果它把一物体从地面送到离地面9米高的地方,那么该物体所经过的路程是()A.18米B.4.5米C.米D.米.12.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.cm B.cm C.64 cm D.54cm二.填空题13.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,若3a=4b,则sin B的值是.14.已知∠A是锐角,且cos A=,则tan A=.15.如图,在点A处测得点B处的仰角是.(用“∠1,∠2,∠3或∠4”表示)16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.如图,某兴趣小组用无人机进行航拍测高,无人机从1号楼和2号楼的地面正中间B点垂直起飞到高度为50米的A处,测得1号楼顶部E的俯角为60°,测得2号楼顶部F的俯角为45°.已知1号楼的高度为20米,则2号楼的高度为米(结果保留根号).18.如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是米.三.解答题19.计算:2cos60°+4sin60°•tan30°﹣6cos245°.20.如图,P点是某海域内的一座灯塔的位置,船A停泊在灯塔P的南偏东53°方向的50海里处,船B位于船A的正西方向且与灯塔P相距海里.(本题参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)(1)试问船B在灯塔P的什么方向?(2)求两船相距多少海里?(结果保留根号)21.如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.22.如图,已知:R t△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A 作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.23.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡AF上的D处测得大树顶端B的仰角是30°,在地面上A处测得大树顶端B的仰角是45°.若坡角∠F AE=30°,AD=6m,求大树的高度.(结果保留整数,参考数据:≈1.73)24.“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)25.被誉为“中原第一高楼”的郑州会展宾馆(俗称“大玉米”)坐落在风景如画的如意湖,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华同学决定用自己学到的知识测量“大王米”的高度,他们制订了测量方案,并利用课余时间完成了实地测量.测量项目及结果如下表:项目内容课题测量郑州会展宾馆的高度的仰角是α,前进一段距离到达C点用测倾器CF测得楼β,且点A、B、C、D、E、F均在同一竖直平测量数据∠α的度数∠β的度数EC的长度,40°45°53米……请你帮助该小组根据上表中的测量数据,求出郑州会展宾馆的高度(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)参考答案一.选择题1.【解答】解:∵∠A=α,AB=3,∴cosα=,∴AC=AB•cosα=3cosα,故选:B.2.【解答】解:∵AC=4,BC=3,∴tan A==,故选:A.3.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.4.【解答】解:在Rt△CBH中,∠HCB=45°,CH=8m,∴,∴HB=CH•tan∠HAB=8×tan45°=8m,∴HD=HB+AC=8+1.6=9.6.答:树的高度为9.6m.故选:B.5.【解答】解:如图,由sinα==可设PQ=4a,OP=5a,∵OQ=3,∴由OQ2+PQ2=OP2可得32+(4a)2=(5a)2,解得:a=1(负值舍去),∴PQ=4,OP=5,则tanα==,故选:C.6.【解答】解:如右图所示,∵网格中小正方形的边长都为1,∴CE==2,AC==,AE=3,CD=4,作AH⊥CE于点H,∵,∴,解得,AH=,∵AC=,AH=,∠AHC=90°,∴CH==,∴cos∠ACH=,即cos∠ACB=,故选:D.7.【解答】解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB.在Rt△ABC中,∵∠ACB=30°,∴BC=AB.设AB=x(米),∵CD=14,∴BC=x+14.∴x+14=x∴x=7(+1).即铁塔AB的高为7(+1)米.故选:B.8.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=24,AB=25,∴BC=7,∵CD是斜边AB上的高,,∴CD==,∵CD⊥AB,∴∠CDB=90°,∴cos∠BCD===,故选:B.9.【解答】解:作PC⊥AB交AB于点C,如右图所示,AC=,BC=,∵m=AC﹣BC,∴m=﹣,∴PC==,故选:A.10.【解答】解:∵△ABC中,∠C=90°,AC=5,cos∠A=,∴=,∴AB=13,∴BC==12,故选:B.11.【解答】解:如图:由题意得:斜坡AB的坡度:i=1:2,AE=9米,AE⊥BD,∵i==,∴BE=18米,∴在Rt△ABE中,AB==9(米).故选:D.12.【解答】解:如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选:C.二.填空题(共6小题)13.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,令b=3x,则a=4x,由勾股定理可得c=5x,所以sin B===,故答案为:.14.【解答】解:∵∠A为锐角,且cos A=,以∠A为锐角作直角三角形△ABC,∠C=90°.∴cos A==.设AC=5k,则AB=13k.根据勾股定理可得:BC=12k.∴tan A==.故答案为:.15.【解答】解:在点A处测得点B处的仰角是∠4,故答案为:∠4.16.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.【解答】解:过点E作EG⊥AB于G,过点F作FH⊥AB于H,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD,∵B为CD的中点,∴EG=CB=BD=HF,由已知得:∠EAG=90°﹣60°=30°,∠AFH=45°.在Rt△AEG中,AG=AB﹣GB=50﹣20=30米,∴EG=AG•tan30°=30×=10米,在Rt△AHP中,AH=HF•t an45°=10米,∴FD=HB=AB﹣AH=50﹣10(米).答:2号楼的高度为(50﹣10)米.故答案为:(50﹣10).18.【解答】解:如图所示:过点D作DM⊥AB于点M,作CN⊥AB于点N,设DM=CN=x,∵背水坡AD和迎水坡BC的坡度都为1:2.5,∴AM=BN=2.5x,故AB=AM+BN+MN=5x+10=90,解得:x=16,即这个水库大坝的坝高是16米.故答案为:16.三.解答题(共7小题)19.【解答】解:原式=2×+4××﹣6×()2=1+2﹣3=0.20.【解答】解:(1)过P作PC⊥AB交AB于C,在Rt△APC中,∠C=90°,∠APC=53°,AP=50海里,∴PC=AP•cos53°=50×0.60=30海里,在Rt△PBC中,∵PB=20,PC=30,∴cos∠BPC==,∴∠BPC=30°,∴船B在灯塔P的南偏东30°的方向上;(2)∵AC=AP•sin53°=50×0.8=40海里,BC=PB=10,∴AB=AC﹣BC=(40﹣10)海里,答:两船相距(40﹣10)海里.21.【解答】解:(1)∵P为AC的中点,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=2,∵D是边AB的中点,P为AC的中点,∴点E是△ABC的重心,∴BE=BP=;(2)如图1,过点B作BF∥CA交CD的延长线于点F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,则CD=5,∴EF=8,∴=,∴=,∴=,设CP=k,则P A=3k,∵PD⊥AB,D是边AB的中点,∴P A=PB=3k∴BC=2k,∴AB=2k,∵AC=4k,∴cos A=;(3)∵∠ACB=90°,D是边AB的中点,∴CD=BD=AB,∵PB2=2CD2,∴BP2=2CD•CD=BD•AB,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,∴△DPE∽△DCP,∴PD2=DE•DC,∵DE=3,DC=5,∴PD=.22.【解答】解:(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△F AC,∴=,即=,解得CF=;(2)如图,过点C作CH⊥AB于点H,∵AC=3,BC=4,∴AB=5,则CH==,∴AH==,EH=AE﹣AH=,∴tan D=tan∠ECH==.23.【解答】解:延长BD交AE于点G,作DH⊥AE于H,设BC=xm,由题意得,∠DGA=∠DAG=30°,∴DG=AD=6,∴DH=3,GH==3,∴GA=6,在Rt△BGC中,tan∠BGC=,∴CG==x,在Rt△BAC中,∠BAC=45°,∴AC=BC=x,由题意得,x﹣x=6,解得,x=≈14,答:大树的高度约为14m.24.【解答】解:(1)过C作CG⊥AB于G,过D作DH⊥AB于H,∵AC=20,∠CAB=60°,∴AG=AC=10,CG=AG=10,∵BC=BD﹣CD=30,∵CG⊥AB,DH⊥AB,∴CG∥DH,∴△BCG∽△BDH,∴=,∴=,∴DH=≈23(厘米);∴支点D到滑轨MN的距离为23厘米;(2)过C′作C′S⊥MN于S,∵A′C′=AC=20,∠C′A′S=45°,∴A′S=C′S=10,∴BS==10,∴A′B=10+10,∵BG==10,∴AB=10+10,∴AA′=A′B﹣AB≈6(厘米),∴滑块A向左侧移动的距离是6厘米.25.【解答】解:由题意可得:设BN=FN=x,则tan40°==≈0.84,解得:x=278.25,故AB=278.25+1.5≈280(m),答:郑州会展宾馆的高度为280m.。

人教版九年级下册数学 第28章 锐角三角函数 单元测试卷(有答案)

人教版九年级下册数学 第28章 锐角三角函数  单元测试卷(有答案)

2020-2021学年人教新版九年级下册数学《第28章锐角三角函数》单元测试卷一.选择题1.在Rt△ABC中,∠C=90°,各边都扩大5倍,则锐角A的三角函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定2.用计算器求sin28°,cos27°,tan26°的值,它们的大小关系是()A.tan26°<cos27°<sin28°B.tan26°<sin28°<cos27°C.sin28°<tan26°<cos27°D.cos27°<sin28°<tan26°3.已知锐角α满足cosα=,则tanα是()A.B.C.2D.24.在直角三角形中不能求解的是()A.已知一直角边和一锐角B.已知斜边和一锐角C.已知两边D.已知两角5.如图,为测一河两岸相对两电线杆A、B间的距离,在距A点15米处的C点(AC⊥BA)测得∠C=50°,则A、B间的距离应为()A.15sin50°米B.15cos50°米C.15tan50°米D.米6.如图,在高为2m,坡比为1:的楼梯上铺地毯,地毯的长度应为()A.4m B.6m C.m D.m 7.在Rt△ABC中,∠C=90°,cos A=,则sin B的值为()A.B.C.D.28.△ABC中,tan A=1,cos B=,则△ABC为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.在△ABC中,∠C=90°,a=5,c=13,用计算器求∠A约等于()A.14°38′B.65°22′C.67°23′D.22°37′10.如图,在某海岛的观察所A测得船只B的俯角是30°.若观察所的标高(当水位为0m 时的高度)是53m,当时的水位是+3m,则观察所A和船只B的水平距离BC是()A.50m B.50m C.5m D.53m二.填空题11.比较大小:sin87°tan47°.12.在Rt△ABC中,∠C=90°,AB=,BC=1,则tan B=.13.在△ABC中,∠B=74°37′,∠A=60°23′,则∠C=,sin A+cos B+tan C ≈.14.计算:tan45°+sin260°=.15.已知:∠α是锐角,且sinα•cosα=,则sinα+cosα=.16.一船向西航行,上午9时30分在小岛A的南偏东30°,距小岛A60海里的B处,上午11时,船到达小岛A的正南方向,则该船的航行速度为.17.如图,小明想测量南塔的高度.她在A处仰望塔顶,测得仰角为30°,再往塔的方向前进20m至B处,测得仰角为60°,那么塔高约为m.(小明身高忽略不计,≈1.732)18.如图,已知l1∥l2,l1与l2之间的距离为,∠α=60°,则AB=.19.在Rt△ABC中,∠C=90°,若cos B=,则tan A=,若此时△ABC的周长为48,那么△ABC的面积.20.如图,△ABC中,∠C=90°,BC=4,AB的垂直平分线MN交AC于D,且CD:DA =3:5,则sin A=.三.解答题21.在Rt△ABC中,∠C=90°,AC=5cm,BC=2cm.求∠A,∠B的正弦、余弦和正切的值.22.如图,梯子AB的长为2.8m.当α=60°时,求梯子顶端离地面的高度AD和两梯脚之间的距离BC.当α=45°时呢?23.已知∠A为锐角,且cos A=,求sin A、tan A.24.观察下列等式:①sin30°=,cos60°=;②sin45°=,cos45°=;③sin60°=,cos30°=.(1)根据上述规律,计算sin2α+sin2(90°﹣α)=.(2)计算:sin21°+sin22°+sin23°+…+sin289°.25.如图,广场上空有一个气球A,地面上点B,C,D在一条直线上,BC=20m,在点B,C分别测得气球A的仰角∠ABD为45°,∠ACD为56°,求气球A离地面的高度AD(精确到0.1m).26.在直角坐标系中,点P(x,6)在第一象限,且OP与x轴正半轴的夹角α的正切值是.求x的值,及角α的正弦和余弦值.27.用“<”符号连接下列各三角函数cos15°、cos30°、cos45°、cos60°、cos75°.参考答案与试题解析一.选择题1.解:因为三角函数值与对应边的比值有关,所以各边的长度都扩大5倍后,锐有A的各三角函数值没有变化,故选:A.2.解:∵tan26°≈0.488,cos27°≈0.891,sin28°≈0.469.故sin28°<tan26°<cos27°.故选:C.3.解:∵cosα==,∴可设b=x,则c=3x,∵a2+b2=c2,∴a=2x,∴tanα===2.故选:D.4.解:A、已知一直角边和一锐角能够求解;B、已知斜边和一锐角能够求解;C、已知两边能求解;D、已知两角不能求解.故选:D.5.解:因为AC=15米,∠C=50°,在直角△ABC中tan50°=,所以AB=15•tan50°米.故选:C.6.解:如图,根据题意得:AC=2m,i=AC:BC=1:,∴BC=AC=2m,∴地毯的长度应为:AC+BC=2+2(m).故选:D.7.解:在△ABC中,∠C=90°,∠A+∠B=90°,则sin B=cos A=.故选:A.8.解:由tan A=1,cos B=,得A=45°,B=30°,由三角形内角和定理,得C=180°﹣A﹣B=105°,故选:B.9.解:sin A==≈0.385,A=sin﹣10.385=22.64°=22°37′,故选:D.10.解:由题意得,AC=50米,∠ABC=30°,在Rt△ABC中,BC=AC cot∠ABC=50(米).故选:B.二.填空题11.解:∵sin87°<1,tan47°>tan45°=1,∴sin87°<tan47°,故答案为:<.12.解:∵∠C=90°,AB=,BC=1,∴AC==2,∴tan B==2,故答案为:2.13.解;∠C=180°﹣(∠A+∠B)=180°﹣135°=45°.sin A+cos B+tan C≈0.86935+0.26527+1≈2.1346.故答案为:45°;2.1346.14.解:tan45°+sin260°=1+()2=1.故答案为:1.15.解:∵(sinα+cosα)2=sin2α+2sinα•cosα+cos2α=1+2sinα•cosα,∴当sinα•cosα=时,原式=1+=,则sinα+cosα=±=±,∵∠α是锐角,sinα,cosα都为正数,∴sinα+cosα=.故答案为:.16.解:如图在Rt△ABC中,∠BAC=90°﹣60°=30°,AB=60海里,故BC=30海里,11时﹣9时30分=1.5小时,船航行的速度为30÷1.5=20海里/时.故答案为:20海里/时.17.解:∵∠DAB=30°,∠DBC=60°,∴BD=AB=20m.∴DC=BD•sin60°=20×≈17.32(m).故答案为:17.32.18.解:如图,过点B作BC⊥l2于点C,则BC=,在Rt△ABC中,∠BAC=α=60°,BC=,所以AB===2.故答案是:2.19.解:设c=5k,a=3k.由勾股定理得:b===4k.∴tan A==.∵△ABC的周长为48,∴5k+3k+4k=48.解得:k=4.∴3k=3×4=12,4k=4×4=16.∴△ABC的面积==96.故答案为:;96.20.解:如图,连BD,设CD=3x,则DA=5x,又∵MN垂直平分AB,∴DB=DA=5x,在Rt△BCD中,BC=4,∵BD2=CD2+BC2,∴(5x)2=(3x)2+42,∴x=1,∴AC=AD+DC=5x+3x=8x=8,在Rt△ABC中,AB===4.sin A=.故答案为:三.解答题21.解:由勾股定理得:AB===7(cm).∴sin A==,cos A==,tan A==,sin B==,cos B==,tan B===.22.解:∵AB=AC,AD⊥BC,∴BC=2BD,∠ABD=∠ACD.当α=60°时,在Rt△ABD中,∠ADB=90°,AB=2.8m,∠ABD=60°,∴BD=AB•cos∠ABD=1.4m,AD=AB•sin∠ABD=m,∴BC=2BD=2.8m;当α=45°时,在Rt△ABD中,∠ADB=90°,AB=2.8m,∠ABD=45°,∴BD=AB•cos∠ABD=m,AD=AB•sin∠ABD=m,∴BC=2BD=m.23.解:∵sin2A+cos2A=1,即sin2A+()2=1,∴sin2A=,∴sin A=或﹣(舍去),∴sin A=,∵tan A=,∴tan A==.24.解:(1)∵根据已知的式子可以得到sin(90°﹣α)=cosα,∴sin2α+sin2(90°﹣α)=1;(2)sin21°+sin22°+sin23°+…+sin289°=(sin21°+sin289)+(sin22°+sin288°)+…+sin245°=1+1+…1+=44+=.25.解:根据题意,得∠ADB=90°,∠ABD=45°,∴∠DAB=45°,∴AD=BD,∴CD=BD﹣BC=AD﹣20,在Rt△ADC中,∠ACD=56°,∴tan56°=,即1.48≈,解得AD≈61.7(m).答:气球A离地面的高度AD约为61.7m.26.解:如图所示,过点P作PQ⊥x轴于点Q,由P(x,6)且P在第一象限知OQ=x,PQ=6,∵tan∠POQ=tanα=,∴=,即=,解得x=9,则OP===3,∴sinα===,cosα===.27.解:∵75°>60°>30°>15°,∴cos75°<cos60°<cos30°<cos15°.。

人教版九年级下《第二十八章锐角三角函数》单元检测卷含答案

人教版九年级下《第二十八章锐角三角函数》单元检测卷含答案

人教版数学九年级下册二十八章锐角三角函数单元检测卷一、选择题1.如图K -16-2,将∠AOB 放置在5×5的正方形网格中,则sin ∠AOB 的值是( D )图K -16-2A.32B.23C.21313D.313132.在Rt △ABC 中,∠C =90°,则tanA ·tanB 的值一定( D ) A .小于1 B .不小于1 C .大于1 D .等于13.在△ABC 中,若⎪⎪⎪⎪⎪⎪cosA -12+(1-tanB)2=0,则∠C 的度数是( C ) A .45° B .60° C .75° D .105°4.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( A )A .csinA =aB .bcosB =cC .atanA =bD .ctanB =b5.在Rt △ABC 中,∠C =90°,BC =5,AC =15,则∠A 的度数为( D ) A .90° B .60° C .45° D .30°6.2017·温州如图K -20-2,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是( A )图K-20-2A.5米 B.6米 C.6.5米 D.12米7.如图K-21-3,在一个20米高的楼顶上有一信号塔DC,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30°,然后他正对塔的方向前进了8米到达B处,又测得信号塔顶端C的仰角为45°,CD⊥AB于点E,点E,B,A在一条直线上,则信号塔CD的高度为( C )图K-21-3A.20 3米 B.(20 3-8)米C.(20 3-28)米 D.(20 3-20)米8.2017·重庆B卷如图K-22-2,已知点C与某建筑物底端B相距306米(点C 与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处.斜坡CD的坡度(或坡比)i=1∶2.4,在D处测得该建筑物顶端A 的俯角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( A )图K-22-2A.29.1米 B.31.9米 C.45.9米 D.95.9米9.如图K-17-6,在△ABC中,∠BAC=90°,AB=AC,D为边AC的中点,DE ⊥BC于点E,连接BD,则tan∠DBC的值为( A )图K -17-6A.13B.2-1 C .2- 3 D.1410.如图K -17-4是教学用的直角三角板,边AC 的长为30 cm ,∠C =90°,tan ∠BAC =33,则边BC 的长为(C ) 图K -17-4A .30 3 cmB .20 3 cmC .10 3 cmD .5 3 cm 二、填空题11.如图K -16-5,在△ABC 中,∠C =90°,sinA =45,则sinB =________.图K -16-5[答案] 2312.如图K -16-8,在▱ABCD 中,连接BD ,已知AD ⊥BD ,AB =4,sinA =34,则▱ABCD 的面积是________.图K-16-8[答案] 3 714.如图K-17-8,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=________.图K-17-8[答案] 2 215.2017·烟台在Rt△ABC中,∠C=90°,AB=2,BC=3,则sin A2=________.[答案] 1 216.2017·大连如图K-22-6,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.此时,B处与灯塔P的距离为________n mile.(结果取整数,参考数据:3≈1.7,2≈1.4)图K-22-6[答案] 102三、解答题17.如图K-16-11,小明将一张矩形纸片ABCD沿CE折叠,点B恰好落在AD边上的点F处,若AB∶BC=4∶5.求sin∠DCF的值.图K-16-11解:∵AB∶BC=4∶5,∴设AB=4x,则BC=5x.由题意,得FC=BC=5x,DC=AB=4x.由勾股定理,得DF=3x.在Rt△CDF中,∠D=90°,DF=3x,FC=5x,∴sin∠DCF=DFFC=35.18.如图K-17-11,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD =1,记∠CAD=α.(1)试写出α的三个三角函数值;(2)若∠B=α,求BD的长.图K-17-11解: (1)∵CD=1,AC=2,∴AD=AC2+CD2=5,∴sinα=CDAD=55,cosα=ACAD=2 55,tanα=12.(2)∵∠B=α,∴tanB=tanα=1 2 .∵tanB=AC BC ,∴BC=ACtanB=212=4.∵CD=1,∴BD=BC-CD=3.19.如图K-18-5,河的两岸l1与l2互相平行,A,B是l1上的两点,C,D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20 m到达点E(点E在线段AB上),测得∠DEB=60°,求C,D两点间的距离.图K-18-5解:如图,过点D作l1的垂线,垂足为F.∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB-∠DAB=30°,∴DE=AE=20 m.在Rt△DEF中,EF=DE·cos60°=20×12=10(m).∵DF⊥AF,∴∠DFB=90°,∴AC∥DF.由l1∥l2,可知CD∥AF,∴四边形ACDF为矩形,∴CD=AF=AE+EF=30 m.答:C,D两点间的距离为30 m.20.如图K-19-11,在△ABC中,∠C=150°,AC=4,tanB=1 8 .(1)求BC的长;(2)利用此图形求tan15°的值(精确到0.1,参考数据:2≈1.4,3≈1.7,5≈2.2).图K-19-11解:(1)过点A作AD⊥BC,交BC的延长线于点D,如图①所示.在Rt△ADC中,AC=4.∵∠ACB=150°,∴∠ACD=30°,∴AD=12AC=2,CD=AC·cos30°=4×32=2 3.在Rt△ABD中,tanB=ADBD=2BD=18,∴BD=16,∴BC=BD-CD=16-2 3.(2)在BC边上取一点M,使得CM=AC,连接AM,如图②所示.∵∠ACB=150°,∴∠AMC=∠MAC=15°,tan15°=tan∠AMD=ADMD=24+2 3=12+3≈12+1.7≈0.3.21.2017·安徽如图K-20-11,游客在点A处坐缆车出发,沿A—B—D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600 m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,2≈1.41)图K-20-11解:在Rt△ABC中,∵cosα=BC AB ,∴BC=AB·cosα≈600×0.26=156(m);在Rt△BDF中,∵sinβ=DF BD ,∴DF=BD·sinβ=600×22=300 2≈300×1.41=423(m).又EF=BC,∴DE=DF+EF≈423+156=579(m).22.如图K-21-8,某无人机于空中A处探测到目标B,D的俯角分别是30°,60°,此时无人机的飞行高度AC为60 m,随后无人机从A处继续水平飞行30 3 m到达A′处.(1)求A,B之间的距离;(2)求无人机在A′处看目标D的俯角的正切值.图K-21-8解:(1)∵∠BAC=90°-30°=60°,AC=60 m,∴在Rt△ABC中,AB=ACcos∠BAC=60cos60°=120(m).即A,B之间的距离为120 m.(2)如图,过点D作DE⊥AA′于点E,连接A′D.∵∠DAC=90°-60°=30°,AC=60 m,∴在Rt△ADC中,CD=AC·tan∠DAC=60×tan30°=20 3(m).∵∠AED=∠EAC=∠C=90°,∴四边形ACDE是矩形.∵ED=AC=60 m,EA=CD=20 3 m,∴在Rt△A′ED中,tan∠EA′D=EDEA′=EDEA+AA′=6020 3+30 3=2 3 5.即无人机在A′处看目标D的俯角的正切值为2 3 5.23.2017·河南如图K-22-10所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A 船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C 在其南偏东53°方向,已知A船的航速为30海里/时,B船的航速为25海里/时,则C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,2≈1.41)图K -22-10解:如图,过点C 作CD ⊥AB 于点D ,设BD =x. 在Rt △ACD 中, ∵∠DAC =45°, ∴AD =DC =x +5. 在Rt △BDC 中, 由tan53°=DC BD ,得x +5x =43, ∴x =15,则BC =152+202=25, AC =202+202=20 2, ∴A 到C 所用时间为20 230≈0.94(时); B 到C 所用时间为2525=1(时).∵0.94<1,∴C 船至少要等待0.94小时才能得到救援.11/ 11。

锐角三角函数测试题(含答案)

锐角三角函数测试题(含答案)

九年级下册《锐角三角函数》单元测试一、选择题1. 4sin tan 5ααα=若为锐角,且,则为 ( ) 933425543A B C D . . . . 2.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( )A .sinA = sinB B .cosA=sinBC .sinA=cosBD .∠A+∠B=90° 3.直角三角形的两边长分别是6,8,则第三边的长为( )A .10B .22C .10或27D .无法确定4.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( ) A .c =sin a A B .c =cos a A C .c = a ·tanA D .c = tan aA5、45cos 45sin +的值等于( )A.2B.213+ C.3D. 16.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( )A. 3B. 300C. 503 D. 157.当锐角α>30°时,则cos α的值是( ) A .大于12 B .小于12C .大于32D .小于328.小明沿着坡角为30°的坡面向下走了2米,那么他下降( ) A .1米 B .3米 C .23 D .2339.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( )(A )4 (B )5 (C )23 (D )83310.已知Rt △ABC 中,∠C=90°,tanA=43,BC=8,则AC 等于( ) A .6 B .323C .10D .12 二、填空题11.计算2sin30°+2cos60°+3tan45°=_______. 12.若sin28°=cos α,则α=________.13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______. 14.某坡面的坡度为1:3,则坡角是_______度.15.在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则BC 的长为_______cm . 16.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为A.82米B.163米C.52米D.70米17.如图,小鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的高度CD =1m ,测得旗杆顶端B 的仰角α=60°,则旗杆AB 的高度为 .(计算结果保留根号)(16题) (17题) 三、解答题18.由下列条件解直角三角形:在Rt △ABC 中,∠C=90°:(1)已知a=4,b=8, (2)已知b=10,∠B=60°.(3)已知c=20,∠A=60°. (4) (2)已知a=5,∠B=35°19.计算下列各题.(1)s in 230°+cos 245°+2sin60°·tan45°; (2)22cos 30cos 60tan 60tan 30︒+︒︒⨯︒+ sin45°(45︒30︒BAD C四、解下列各题20.如图所示,平地上一棵树高为5米,两次观察地面上的影子,•第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长多少米?21.如图,AB是江北岸滨江路一段,长为3千米,C为南岸一渡口,•为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A在C北偏西30°方向,B在C的东北方向,从C处连接两岸的最短的桥长多少?(精确到0.1)22. 如图,点A是一个半径为300米的圆形森林公园的中心,在森林公园附近有B、C两个村庄,现要在B、C两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC=45o,∠ACB=30o,问此公路是否会穿过该森林公园?请通过计算进行说明。

九年级数学下册《锐角三角函数》单元测试卷(含答案解析)

九年级数学下册《锐角三角函数》单元测试卷(含答案解析)

第二十八章达标测试卷一、选择题(每题3分,共30分)1.sin 30°的值为()A.32 B.22 C.12 D.332.在△ABC中,∠C=90°,AC=5,AB=13,则sin B的值是()A.512 B.125 C.1213 D.5133.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.35 B.34 C.105D.14.如图所示,在四边形ABCD中,AD∥BC,AC⊥AB,AD=CD,cos∠DCA=45,BC=10,则AB的长是()A.3 B.6 C.8 D.95.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB 的延长线于点E,若∠A=30°,则sin E的值为()A.12 B.22 C.32 D.336.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处.已知AB=8,BC=10,则tan∠EFC的值为()A.34 B.43 C.35 D.457.如图,若△ABC和△DEF的面积分别为S1,S2,则()A.S1=12S2B.S1=72S2C.S1=85S2D.S1=S28.如图,长4 m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC 的长为()A.2 3 m B.2 6 m C.(23-2)m D.(26-2)m9.等腰三角形一腰上的高与腰长之比是1:2,则等腰三角形顶角的度数为()A.30°B.50°C.60°或120°D.30°或150°10.如图,在Rt △ABC 中,∠B =90°,∠BAC =30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以点A ,D 为圆心,AB 的长为半径画弧,两弧交于点E ,连接AE ,DE ,则∠EAD 的余弦值是( ) A.312B.36C.33D.32二、填空题(每题3分,共30分)11.在△ABC 中,∠A ,∠B 都是锐角,若sin A =32,cos B =12,则∠C =________.12.计算:⎝ ⎛⎭⎪⎫13-1-|-2+3tan45°|+(2-1.41)0=________.13.如图,正方形ABCD 的边长为4,点M 在边DC 上,M ,N 两点关于对角线AC 所在的直线对称,若DM =1,则tan ∠ADN =________.14.已知锐角A 的正弦sin A 是一元二次方程2x 2-7x +3=0的根,则sin A=________.15.如图,在菱形ABCD 中,DE ⊥AB ,垂足为点E ,DE =6 cm ,sin A =35,则菱形ABCD 的面积是________cm 2.16.如图,在高度是21 m的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD=____________.(结果保留根号)17.如图所示,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的点D′处,那么tan∠BAD′等于________.18.一次函数的图象经过点(tan 45°,tan 60°)和(-cos 60°,-6tan 30°),则此一次函数的解析式为________.19.如图所示,在△ABC中,∠ACB=90°,CD是AB边上的中线,AC=6,CD=5,则sin A等于________.20.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且CF FD=13.连接AF并延长交⊙O于点E,连接AD,DE.若CF=2,AF=3.下列结论:①△ADF∽△AED;②FG=2;③tan E=52;④S△DEF=45,其中正确的是________.三、解答题(21题12分,23题8分,其余每题10分,共60分) 21.计算:(1)2(2cos 45°-sin 60°)+24 4;(2)(-2)0-3tan 30°-|3-2|.22.在△ABC中,∠C=90°.(1)已知c=83,∠A=60°,求∠B,a,b;(2)已知a=36,∠A=45°,求∠B,b,c.23.如图,已知▱ABCD,点E是BC边上的一点,将边AD延长至点F,使∠AFC=∠DEC.(1)求证:四边形DECF是平行四边形;(2)若AB=13,DF=14,tan A=125,求CF的长.24.如图,大海中某岛C的周围25 km范围内有暗礁.一艘海轮向正东方向航行,在A处望见C在其北偏东60°的方向上,前进20 km后到达B 处,测得C在其北偏东45°的方向上.如果该海轮继续向正东方向航行,有无触礁危险?请说明理由.(参考数据:2≈1.41,3≈1.73)25.如图,拦水坝的横断面为等腰梯形ABCD,坝顶宽BC为6 m,坝高为3.2 m,为了提高水坝的拦水能力需要将水坝加高2 m,并且保持坝顶宽度不变,迎水坡CD的坡度不变,但是背水坡的坡度由原来的1∶2变成1∶2.5(坡度是坡高与坡的水平长度的比).求加高后的坝底HD的长为多少.26.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sin α=13,求sin 2α的值.小娟是这样给小芸讲解的:如图①,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°. 设∠BAC=α,则sin α=BCAB=13.易得∠BOC=2α.设BC=x,则AB=3x,AC=22x.作CD⊥AB于D,求出CD=________(用含x的式子表示),可求得sin 2α=CDOC=________.【问题解决】已知,如图②,点M,N,P为⊙O上的三点,且∠P=β,sin β=35,求sin 2β的值.答案一、1.C 2.D 3.B4.B 点拨:因为AD =DC ,所以∠DAC =∠DCA .又因为AD ∥BC ,所以∠DAC =∠ACB ,所以∠DCA =∠ACB .在Rt △ACB 中,AC =BC ·cos ∠ACB =10×45=8,则AB =BC 2-AC 2=6. 5.A 6.A7.D 点拨:如图,过点A 作AM ⊥BC 于点M ,过点D 作DN ⊥EF ,交FE 的延长线于点N .在Rt △ABM 中,∵sin B =AMAB ,∴AM =3×sin 50°,∴S 1=12BC ·AM =12×7×3×sin 50°=212sin 50°.在Rt △DEN 中,∠DEN =180°-130°=50°.∵sin ∠DEN =DN DE ,∴DN =7×sin 50°,∴S 2=12EF·DN =12×3×7×sin 50°=212sin 50°,∴S 1=S 2.故选D.8.B 点拨:在Rt △ABD 中,∵∠ABD =60°,∴AD =4sin 60°=23(m).在Rt △ACD 中,∵∠ACD =45°,∴AC =2AD =2×23=26(m). 9.D 点拨:有两种情况:当顶角为锐角时,如图①,sin A =12,则∠A =30°;当顶角为钝角时,如图②,sin (180°-∠BAC )=12,则180°-∠BAC =30°,所以∠BAC =150°.10.B 点拨:如图所示,设BC =x .在Rt △ABC 中,∠B =90°,∠BAC =30°,∴AC =2BC =2x ,AB =3BC =3x .根据题意,得AD =BC =x ,AE =DE =AB =3x ,过点E 作EM ⊥AD 于点M ,则AM =12AD =12x .在Rt △AEM 中,cos ∠EAD =AM AE =12x3x =36,故选B.二、11.60° 点拨:∵在△ABC 中,∠A ,∠B 都是锐角,sin A =32,cos B=12,∴∠A =∠B =60°,∴∠C =180°-∠A -∠B =180°-60°-60°=60°.12.2+3 点拨:原式=3-|-2+3|+1=4-2+3=2+ 3. 13.43 14.1215.60 点拨:在Rt △ADE 中,sin A =DE AD =35,DE =6 cm ,∴AD =10 cm ,∴AB =AD =10 cm ,∴S 菱形ABCD =AB·DE =10×6=60(cm 2). 16.(73+21)m17.2 点拨:由题意知BD ′=BD =2 2.在Rt △ABD ′中,tan ∠BAD ′=BD′AB =222= 2.18.y =23x -3 点拨:tan 45°=1,tan 60°=3,-cos 60°=-12,-6tan30°=-2 3.设y =kx +b 的图象经过点(1,3),⎝ ⎛⎭⎪⎫-12,-23,则用待定系数法可求出k =23,b =- 3.19.45 点拨:∵CD 是Rt △ABC 斜边上的中线,∴AB =2CD =2×5=10,∴BC =AB 2-AC 2=102-62=8,∴sin A =BC AB =810=45. 20.①②④三、21.解:(1)原式=2×⎝ ⎛⎭⎪⎫2×22-32+62 =2-62+62 =2.(2)原式=1-3+3-2 =-1.22.解:(1)∵∠C =90°,∠A =60°,∴∠B =30°.∵sin A =a c ,sin B =bc , ∴a =c ·sin A =83×32=12.b =c ·sin B =83×12=4 3. (2)∵∠C =90°,∠A =45°, ∴∠B =45°. ∴b =a =3 6. ∴c =a 2+b 2=6 3.23.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠ADE =∠DEC .又∵∠AFC =∠DEC ,∴∠AFC =∠ADE ,∴DE ∥FC . ∴四边形DECF 是平行四边形. (2)解:过点D 作DH ⊥BC 于点H ,如图.∵四边形ABCD 是平行四边形, ∴∠BCD =∠A ,AB =CD =13.又∵tan A=125=tan ∠DCH=DHCH,∴DH=12,CH=5.∵DF=14,∴CE=14.∴EH=9.∴DE=92+122=15.∴CF=DE=15.24.解:该海轮继续向正东方向航行,无触礁危险.理由如下:如图,过点C作CD⊥AB,交AB的延长线于点D,∴∠BCD=∠CBM=45°.设BD=x km,则CD=x km.∵∠CAN=60°,∴∠CAD=30°.在Rt△CAD中,tan ∠CAB=tan 30°=CDAD=33,∴AD=3CD=3x(km).∵AB=20 km,AB+BD=AD,∴20+x=3x,解得x=103+10,∴CD=103+10≈27.3(km)>25 km,∴该海轮继续向正东方向航行,无触礁危险.25.解:由题意得BG=3.2 m,MN=EF=3.2+2=5.2(m),ME=NF=BC=6 m.在Rt△DEF中,EFFD=12,∴FD=2EF=2×5.2=10.4(m).在Rt△HMN中,MN HN=12.5,∴HN=2.5MN=13(m).∴HD=HN+NF+FD=13+6+10.4=29.4(m).∴加高后的坝底HD的长为29.4 m.26.解:22x3;429如图,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR ⊥NO于点R.在⊙O中,易知∠NMQ=90°.∵∠Q=∠P=β,∴∠MON=2∠Q=2β.在Rt△QMN中,∵sin β=MNNQ=35,∴设MN=3k,则NQ=5k,∴MQ=QN2-MN2=4k,OM=12NQ=52k.∵S△NMQ=12MN·MQ=12NQ·MR,∴3k·4k=5k·MR.∴MR=125k.在Rt△MRO中,sin 2β=sin ∠MOR=MROM=125k52k=2425.。

九年级下册数学《锐角三角函数》单元测试卷及答案2试卷(含答案)

九年级下册数学《锐角三角函数》单元测试卷及答案2试卷(含答案)

人教版 九下数学《锐角三角函数》单元测试卷及答案2一、填空题:(30分)1.在Rt △ABC 中,∠C =90°,a =2,b =3,则cosA = ,sinB = ,tanB = 。

2.直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = 。

3.已知tan α=125,α是锐角,则sin α= 。

4.cos 2(50°+α)+co s 2(40°-α)-tan(30°-α)tan(60°+α)= ; 5.如图1,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为 .(结果保留根号).(1) (2) (3)6.等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 .7.某人沿着坡度i=1:3的山坡走了50米,则他离地面 米高。

8.如图2,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米。

9.在△ABC 中,∠ACB=90°,cosA=33,AB =8cm ,则△ABC 的面积为______ 。

10.如图3,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N ,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角45°,则这间房子的宽AB 是 _米。

二、选择题:(30分)11.sin 2θ+sin 2(90°-θ) (0°<θ<90°)等于( )A.0 B.1 C.2 D.2sin 2θxO A y B12.在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值 ( )A.也扩大3倍B.缩小为原来的13C. 都不变D.有的扩大,有的缩小 13.以原点O 为圆心,以1为半径作圆。

【单元练】人教版初中九年级数学下册第二十八章《锐角三角函数》经典练习题(含答案解析)

【单元练】人教版初中九年级数学下册第二十八章《锐角三角函数》经典练习题(含答案解析)

一、选择题1.在ABC 中,若21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭,则C ∠的度数是( ) A .45︒ B .60︒C .75︒D .105︒C解析:C 【分析】根据偶次方和绝对值的非负性可得1cos 02A -=,1tan 0B -=,利用特殊角的三角函数值可得A ∠和B 的度数,利用三角形内角和定理即可求解. 【详解】解:21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭, 21cos 0,|1tan |02A B ⎛⎫∴-=-= ⎪⎝⎭,1cos 02A ∴-=,1tan 0B -=,则1cos 2A =,tan 1B =,解得:60A ∠=︒,45B ∠=︒, 则180604575C ∠=︒-︒-︒=︒. 故选:C . 【点睛】本题考查偶次方和绝对值的非负性、特殊角的三角函数值、三角形内角和定理,熟悉特殊角的三角函数值是解题的关键.2.如图,这是某市政道路的交通指示牌,BD 的距离为5m ,从D 点测得指示牌顶端A 点和底端C 点的仰角分别是60°和45°,则指示牌的高度,即AC 的长度是( )A .53mB .52mC .(5352mD .()535m D解析:D 【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°, ∴BD=BC=5,设AC=x m ,则AB=(x +5)m , 在Rt △ABD 中,tan60°=AB BD, 则535x +=, 解得:535x =-, 即AC 的长度是()535m -; 故选:D . 【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 3.下表是小红填写的实践活动报告的部分内容,设铁塔顶端到地面的高度FE 为xm ,根据以上条件,可以列出的方程为 ( ) 题目测量铁塔顶端到地面的高度测量目标示意图相关数据10,45,50CD m αβ==︒=︒A .()10tan50x x =-︒B .()10cos50x x =-︒C .10tan50x x -=︒D .()10sin50x x =+︒A解析:A 【分析】过D 作DH ⊥EF 于H ,则四边形DCEH 是矩形,根据矩形的性质得到HE =CD =10,CE =DH ,求得FH =x−10,得到CE =x−10,根据三角函数的定义列方程即可得到结论. 【详解】过D 作DH ⊥EF 于H , 则四边形DCEH 是矩形, ∴HE =CD =10,CE =DH , ∴FH =x−10,∵∠FDH =α=45°, ∴DH =FH =x−10, ∴CE =x−10,∵tanβ=tan50°=EF CE =-10x x , ∴x =(x−10)tan 50°, 故选:A . 【点睛】本题考查了解直角三角形的应用,由实际问题抽象出边角关系的等式,正确的识别图形是解题的关键.4.下列计算中错误的是( ) A .sin60sin30sin30︒-︒=︒ B .22sin 45 cos 451︒+︒= C .sin 60tan 60sin 30︒︒=︒D .cos30tan 60cos60︒︒=︒A解析:A 【分析】根据特殊角的三角函数值、二次根式的运算即可得. 【详解】A、11sin 60sin 303022︒-︒==︒=,此项错误; B、222211sin 45 cos 45122︒+︒=+=+=⎝⎭⎝⎭,此项正确; C、sin 602tan 601sin 302︒︒===︒sin 60tan 60sin 30︒︒=︒,此项正确; D、cos302tan 601cos 602︒︒===︒cos30tan 60cos60︒︒=︒,此项正确; 故选:A . 【点睛】本题考查了特殊角的三角函数值、二次根式的运算,熟记特殊角的三角函数值是解题关键.5.如图,河坝横断面迎水坡AB 的坡比为1BC =3m ,则AB 的长度为( )A .6mB .33mC .9mD .63m A解析:A 【分析】根据坡比的概念求出AC ,根据勾股定理求出AB . 【详解】解:∵迎水坡AB 的坡比为1:3, ∴13BC AC =,即313AC =, 解得,AC =33, 由勾股定理得,AB 22BC AC =+=6(m ),故选:A . 【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键. 6.如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30︒方向上,若2AB =米,则点P 到直线AB 距离PC 为( ).A .3米B 3米C .2米D .1米B解析:B 【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可. 【详解】解:设点P 到直线AB 距离PC 为x 米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:B . 【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.7.如图,在平面直角坐标系中,边长为2的正方形ABCD 的对角线AC 在x 轴上,点A 的坐标是()1,0,把正方形ABCD 绕原点O 旋转180︒,则点B 的对应点B '的坐标是( )A .(-1,-1)B .()2,1C .()2,1--D .()2,1--D解析:D 【分析】根据题意,画出图形,连接BD ,交x 轴于E ,根据正方形的性质可得AB=2,BD ⊥x 轴,AE=BE ,∠BAE=45°,利用锐角三角函数即可求出AE 和BE ,从而求出OE ,即可求出点B 的坐标,然后根据关于原点对称的两点坐标关系即可求出结论. 【详解】解:把正方形ABCD 绕原点O 旋转180︒,如图所示,连接BD ,交x 轴于E∵四边形ABCD 2∴2,BD ⊥x 轴,AE=BE ,∠BAE=45° ∴AE=BE=AB·sin ∠BAE=1 ∴OE=OA +AE=2 ∴点B 的坐标为(2,1)∴点B 绕点O 旋转180°的对应点B '的坐标(-2,-1) 故选D . 【点睛】此题考查的是正方形的性质,锐角三角函数和关于原点对称的两点坐标关系,掌握正方形的性质,锐角三角函数和关于原点对称的两点坐标关系是解题关键. 8.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B .2626C .2613D .1313B 解析:B 【分析】作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解. 【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+= ∵1113213222ABCSAC BD BD =⋅=⨯=⨯⨯, ∴2BD =, ∴2262sin 2613BD BAC AB ∠===. 故选:B . 【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.9.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB 沿射线AO 平移,平移后点A '的横坐标为43,则点B ′的坐标为( )A .(63,2)-B .(63,23)-C .()6,2-D .(63,2)-D解析:D 【详解】如解图,过点A 作AC x ⊥轴,过点A '作A D x '⊥轴,∵AOB 是等边三角形,∴4AO BO ==,60AOB ∠=︒,∴30AOC ∠=︒,∴·cos 23CO OA AOC ==,2AC =,∴(23,2)A -,∵30AOD AOC ∠'=∠=︒,43OD =,∴·t 34343an A D OD A OD ⨯=∠'==',∴(43,4)A '-,∴点A '是将点A 向右平移63个单位,向下平移6个单位得到的,∴点B '也是将点B 向右平移63个单位,向下平移6个单位得到的,∵()0,4B ,∴B '的坐标为(63,2)-.10.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()12323232323AC CD -====-++-.类比这种方法,计算tan22.5°的值为( )A 21B 2﹣1C 2D .12B 解析:B 【分析】作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值. 【详解】解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x ,()22.5==211+2AC xC tan taD xn D =∠=-︒故选:B. 【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.二、填空题11.已知ABC 与ABD △不全等,且3AC AD ==,30ABD ABC ∠=∠=︒,60ACB ∠=︒,则CD =________.或3【分析】如图△ABC ≌△ABP 当D′是PB 中点或点D″是BC 的中点时满足条件分别求解即可【详解】解:如图△ABC ≌△ABP ∴∴CAP 共线∴△BPC 是等边三角形当D′是PB 中点时AD′=BP=AC解析:3或3 【分析】如图,△ABC ≌△ABP ,当D′是PB 中点或点D″是BC 的中点时,满足条件,分别求解即可. 【详解】解:如图,△ABC ≌△ABP ,3AC AP ==,30ABP ABC ∠=∠=︒,60ACB ∠=︒,∴60APB ∠=︒,90CAB PAB ∠=∠=︒, ∴C ,A ,P 共线,BC BP AC AP ===, ∴△BPC 是等边三角形,当D′是PB 中点时,AD′=12BP=AC=3,此时ABC 与D'AB 满足条件, ∴D'90C P ∠=︒,∴CD′= PD′tan 60︒=3PD′=3,当点D″是BC 的中点时,此时ABC 与D AB "也满足条件, ∴CD″=3,∴满足条件的CD 的长为3或3. 故答案为:3或3. 【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是画出符合题意的图形,用分类讨论的思想思考问题.12.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析一、单选题(共10题;共30分)1.(3分)tan30°的值等于()A.√3B.√33C.√22D.12.(3分)如图,PA、PB分别切⊙O于A,B,⊙APB=60°,⊙O半径为2,则PB的长为()A.3B.4C.2√3D.2√23.(3分)已知Rt⊙ABC中,⊙C=90°,⊙A=50°,AB=2,则AC=()A.2sin50°B.2sin40°C.2tan50°D.2tan40°4.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,tanA=34.以点C为圆心,CB长为半径的圆交AB于点D,则AD的长是()A.1B.75C.32D.25.(3分)如图,在扇形AOB中,⊙AOB=90°,以点A为圆心,OA的长为半径作OC⌢交AB⌢于点C,若OA=2,则阴影部分的面积为()A.23π−√3B.√3−13πC.13πD.√3+13π6.(3分)如图,一艘轮船在小岛A的西北方向距小岛40√2海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东60°的B处,则该船行驶的路程为()A.80海里B.120海里C.(40+40√2)海里D.(40+40√3)海里7.(3分)如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则sin⊙ABC的值()A.√22B.1C.√33D.√28.(3分)在⊙ABC中,(2cosA-√2)2+| √3-tanB|=0,则⊙ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形9.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin⊙OBD=()A.12B.34C.45D.3510.(10分)如图(1)所示,E为矩形ABCD的边AD上一边,动点P,Q同时从点B出发,点P 沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,⊙BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分)则下列结论正确的是()A.AB:AD=3:4B.当⊙BPQ是等边三角形时,t=5秒C.当⊙ABE⊙⊙QBP时,t=7秒D.当⊙BPQ的面积为4cm2时,t的值是√10或475秒二、填空题(共5题;共15分)11.(3分)cos245∘−tan30∘⋅sin60∘=.12.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠ABC的值为.13.(3分)如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是cm.14.(3分)如图,在Rt⊙ABC中,⊙ACB=90°,CD是高,如果⊙A=α,AC=4,那么BD=.(用锐角α的三角比表示)15.(3分)如图,Rt⊙AOB中,⊙OAB=90°,⊙OBA=30°,顶点A在反比例函数y=−4x图象上,若Rt⊙AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三、解答题(共8题;共78分)16.(8分)先化简,再求代数式(aa2−1−1a+1)⋅(a−1)的值,其中a=tan60°−2sin30°.17.(9分)居庸关位于距北京市区50余公里外的昌平区境内,是京北长城沿线上的著名古关城,有“天下第一雄关”的美誉某校数学社团的同学们使用皮尺和测角仪等工具,测量南关主城门上城楼顶端距地面的高度,下表是小强填写的实践活动报告的部分内容:请你帮他计算出城楼的高度AD(结果精确到0.1m,sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)18.(9分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20 √2海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:√2≈1.41,√3≈1.73)19.(9分)如图,从甲楼AB的楼顶A,看乙楼CD的楼顶C,仰角为30°,看乙楼(CD)的楼底D,俯角为60°;已知甲楼的高AB=40m.求乙楼CD的高度,(结果精确到1m)20.(10分)如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)21.(10分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊙AB于E,设⊙ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得⊙EFD=k⊙AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan⊙DCF的值.22.(11分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)(5分)求楼间距AB;(2)(6分)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)23.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣4,0)和点B(2,0),与y轴交于点C.(1)(4分)求该抛物线的表达式及点C的坐标;(2)(4分)如果点D的坐标为(﹣8,0),联结AC、DC,求⊙ACD的正切值;(3)(4分)在(2)的条件下,点P为抛物线上一点,当⊙OCD=⊙CAP时,求点P的坐标.答案解析部分1.【答案】B【解析】【解答】解:tan30°=√33. 故答案为:B【分析】利用特殊角的三角函数值直接求解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级下册数学锐角三角函数单元重点练习试卷附答案一、单选题(共12题;共24分)1.如图,已知在 Rt ΔΑΒC 中, ∠C =90∘ , ΑΒ=5 , ΒC =3 ,则 cosΒ 的值是( )A. 35B. 45C. 34D. 432.已知△ABC 中,∠C=90°,tanA=12 , D 是AC 上一点,∠CBD=∠A ,则sin ∠ABD=( )A. 35B. √105C. 310D. 3√1010 3.正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为( )A. 12 B. √22 C. √32 D. √33 4.在Rt △ABC 中,∠C=90°,AB=4,AC=1,则cosB 的值为( )A. √154B. 14C. √1515D. 4√17175.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( )A. 13B. 12 C. √22 D.3 6.在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( )A. √22B. √32C. √33D. 1 7.已知 ΔABC 中, ∠C =90° ,CD 是AB 上的高,则 CD BD =( )A. sinAB. cosAC. tanAD. cotA8.在Rt △ABC 中,∠C=90°,BC=3,AB=4,则sinA 的值为( )A. 35B. 45C. 34D. 439.如图,一艘轮船在A 处测得灯塔P 位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B 处后,此时测得灯塔P 位于其北偏东30°方向上,此时轮船与灯塔P 的距离是( )A. 15 √3 海里B. 30海里C. 45海里D. 30 √3 海里10.如图,在直角△BAD 中,延长斜边BD 到点C ,使DC= 12 BD ,连接AC ,若tanB= 53 ,则tan ∠CAD 的值( )A. √33B. √35C. 13D. 15 11.某时刻海上点P 处有一客轮,测得灯塔A 位于客轮P 的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏听偏西60°方向航行23小时到达B 处,那么tan ∠ABP=( )A. 12B. 2C. √55D. 2√5512.在Rt △ABC 中,∠C=90°,AB=13,AC=5,则sinA 的值为( ) A. 513 B. 1213 C. 512 D. 125 二、填空题(共5题;共5分)13.sin60°1+tan45°+tan30°= ________。

14.如图,在△ABC 中,sinB= 13 ,tanC= √22,AB=3,则AC 的长为________ .15.如图所示,为了测量出一垂直水平地面的某高大建筑物AB 的高度,一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了100米后到达D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为________米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2 ≈1.41, √3 ≈1.73)16.(2015•西宁)某校数学兴趣小组要测量西山植物园蒲宁之珠的高度.如图,他们在点A 处测得蒲宁之珠最高点C 的仰角为45°,再往蒲宁之珠方向前进至点B 处测得最高点C 的仰角为56°,AB=62m ,根据这个兴趣小组测得的数据,则蒲宁之珠的高度CD 约为 ________m .(sin56°≈0.83,tan56°≈1.49,结果保留整数)17.如图,港口A 在观测站O 的正东方向,OA=4km , 某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为________km .三、解答题(共21题;共105分)18.如图,禁渔期间,我渔政船在A处发现正北方向B处有一艘可疑船只,测得A、B两处距离为99海里,可疑船只正沿南偏东53°方向航行.我渔政船迅速沿北偏东27°方向前去拦截,2小时后刚好在C处将可疑船只拦截.求该可疑船只航行的速度.(参考数据:sin27°≈920,cos27°≈910,tan27°≈12,sin53°≈45,cos53°≈35,tan53°≈43)19.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:√6≈2.449,结果保留整数)20.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:√2≈1.41,√3=1.73)21.超速行驶是一种十分危险的违法驾驶行为,在一条笔直的高速公路MN上,小型车限速为每小时120千米,设置在公路旁的超速监测点C,现测得一辆小型车在监测点C的南偏西30°方向的A处,7秒后,测得其在监测点C的南偏东45°方向的B处,已知BC=200米,B在A的北偏东75°方向,请问:这辆车超速了吗?通过计算说明理由.(参考数据:√2≈1.41,√3≈1.73)22.如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)23.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果精确到0.1米,参考数据:√2≈1.414,√3≈1.732).24.如图,A,B两市相距150km,国家级风景区中心C位于A市北偏东60°方向上,位于B市北偏西45°方向上.已知风景区是以点C为圆心、50km为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A,B两市的高速公路,高速公路AB是否穿过风景区?通过计算加以说明.(参考数据:√3≈1.73)25.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)26.如图,A,B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB)。

经测量,森林保护区中心P点在A城市的北偏东30°方向,B城市的北偏西45°方向上。

已知森林保护区的范围在以P为圆心,50千米为半径的圆形区域内,请问:计划修筑的这条高等级公路会不会穿越保护区?为什么?27.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,√2≈1.41,√3≈1.73,√5≈2.24)28.如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C、D、B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:√2≈1.414,√3≈1.732)29.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(√3≈1.732)30.某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC= 414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)31.如图,物华大厦离小伟家60m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角为45°,而大厦底部的俯角为30°,求大厦的高度.(精确到0.1米)32.2016年12月底我国首艘航空母舰辽宁舰与数艘去驱航舰组成编队,携多架歼﹣15舰载战斗机和多型舰载直升机开展跨海区训练和试验任务,在某次演习中,预警直升机A发现在其北偏东60°,距离160千米处有一可疑目标B,预警直升机立即向位于南偏西30°距离40千米处的航母C报告,航母舰载战斗机立即升空沿北偏东53°方向向可疑目标飞去,请求出舰载战斗机到达目标的航程BC.(结果保留整数,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3,√3≈1.73)33.如图,国家规定休渔期间,我国渔政船在A处发现南偏西50°方向距A处20海里的点B处有一艘可疑船只,可疑船只正沿北偏西25°方向航行,我国渔政船立即沿北偏西70°方向前去拦截,经过1.5小时刚好在C处拦截住可疑船只,求该可疑船只航行的平均速度.(结果精确到个位,参考数据:√2≈1.4,√3≈1.7)34.如图,水库大坝的横截面是梯形,坝顶宽5米,坝高20米,斜坡AB的坡比为1:2.5,斜坡CD的坡比为1:2,求大坝的截面面积35.一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8,√3≈1.732,结果取整数)36.已知:如图,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,若CE=2,cos∠AEF= 4,求BE的长.537.如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?38.为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:√2≈1.414,√3≈1.732)四、综合题(共12题;共121分)39.如图,在Rt△ABC中,∠C=90°,D为BC上一点,AB=5,BD=1,tanB=34.(1)求AD的长;(2)求sinα的值.40.为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为56m(参考数据:sin22°≈38,tan22°≈25,sin31°≈1325,tan31°≈35)(1)求BT的长(不考虑其他因素)(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是149π,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.41.如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B 的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.42.根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速40千米/时,已知交警测速点M到该公路A点的距离为10√2米,∠MAB=45°,∠MBA=30°(如图所示),现有一辆汽车由A往B方向匀速行驶,测得此车从A点行驶到B点所用的时间为3秒.(1)求测速点M到该公路的距离;(2)通过计算判断此车是否超速.(参考数据:√2≈1.41,√3≈1.73,√5≈2.24)43.两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.44.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:√3.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.45.阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)= tanα±tanβ1±tanα⋅tanβ.例如:tan15°=tan(45°﹣30°)= tan45°−tan30°1+tan45°⋅tan30°=1−√331+1×√33= √3)(3+√3)= √3)(3−√3) (3+√3)(3−√3)= 12−6√36=2﹣√3.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔.文峰塔的木塔年久倾毁,仅存塔基.1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁塔的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据√3≈1.732,√2≈1.414)46.如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A、B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.(1)求点B到AC的距离.(2)求线段CD的长度.47.如图,船A、B在东西方向的海岸线MN上,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,在船B的北偏西37°方向上,AP=30海里.(1)尺规作图:过点P作AB所在直线的垂线,垂足为E(要求:保留作图痕迹,不写作法);(2)求船P到海岸线MN的距离(即PE的长);(3)若船A、船B分别以20海里/时、15海里/时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)48.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:√3≈1.7,√2≈1.4.49.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°≈0.75)50.某新农村乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h=________ m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:√2≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)答案解析部分一、单选题 1.【答案】 A【解析】【解答】解:在Rt △ACB 中,∵AB=5,BC=3. ∴cosB=BC AB =35. 故答案为A.【分析】根据余弦的定义即可得出答案.2.【答案】 A 【解析】【分析】作DE ⊥AB 于点E ,根据相等的角的三角函数值相等即可得到BC AC =CD BC =DE AE =12,设CD=1,则可以求得AD 的长,然后利用勾股定理即可求得DE 、AE 的长,则BE 可以求得,根据同角三角函数之间的关系即可求解.【解答】作DE ⊥AB 于点E .∵∠CBD=∠A ,∴tanA=tan ∠CBD=BCAC =CDBC =DEAE =12 设CD=1,则BC=2,AC=4, ∴AD=AC-CD=3,在直角△ABC 中,AB =√AC 2+BC 2=√4+16=2√5, 在直角△ADE 中,设DE=x ,则AE=2x , ∵AE 2+DE 2=AD 2 , ∴x 2+(2x)2=9,解得:x=3√55则DE=3√55,AE=6√55. ∴BE=AB-AE=2√5-6√55=4√55,∴tan ∠DBA=DE BE =34,∴sin∠DBA=35.故选:A.【点评】本题考查了三角函数的定义,以及勾股定理,正确理解三角函数就是直角三角形中边的比值是关键3.【答案】B【解析】【分析】要求cos∠AOB的值,连接AD,CD,根据勾股定理可以得到OD=AD,则OC是等腰三角形底边上的中线,根据三线合一定理,可以得到△ODC是直角三角形.根据三角函数的定义就可以求解。

相关文档
最新文档