2019年湖北省荆州市中考数学试题(含答案解析)
2019年湖北省荆州市中考数学试卷及答案解析(word版)

2019年湖北省荆州市中考数学试卷及答案解析(word版)2019年湖北省荆州市中考数学试卷一、选择题(每小题3分,共30分)1.比小1的有理数是()A。
-1 B。
1 C。
0 D。
22.下列运算正确的是()A。
m6÷m2=m3 B。
3m2-2m2=m2 C。
(3m2)3=9m6 D。
m×2m2=m23.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A。
55° B。
65° C。
75° D。
85°4.我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是()A。
7,6 B。
6,5 C。
5,6 D。
6,65.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A。
120元 B。
100元 C。
80元 D。
60元6.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是A。
15° B。
20° C。
25° D。
30°7.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A。
2 B。
$\frac{1}{2}$ C。
$\frac{\sqrt{2}}{2}$ D。
$\frac{\sqrt{3}}{2}$8.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A。
1 B。
2 C。
3 D。
49.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2019个白色纸片,则n的值为()A。
2019年湖北宜昌中考数学试题(解析版)

2019年湖北省宜昌市中考数学试卷考试时间:120分钟满分:150分{题型:1-选择题}一、选择题:本大题共 15小题,每小题 3分,合计45分.{题目}1.(2019年宜昌T1)﹣66的相反数是()A.-66 B.66 C.166D. -166{答案} B{解析}本题考查相反数的求法,﹣66的相反数是66.因此本题选B.{分值}3{章节:[1-1-2-3]相反数}{考点:相反数的定义}{类别:常考题}{难度:1-最简单}{题目}2.(2019年宜昌T2)如下字体的四个汉字中,是轴对称图形的是()A.智B.慧C.宜D.昌{答案}D{解析}本题考查了轴对称图形的定义, A选项的汉字不是轴对称图形,故本选项不符合题意;B选项的汉字不是轴对称图形,故本选项不符合题意;C选项的汉字不是轴对称图形,故本选项不符合题意;D选项的汉字是轴对称图形,故本选项符合题意;故选D.{分值}3{章节:[1-13-1-1]轴对称}{考点:轴对称图形}{类别:常考题}{难度:1-最简单}{题目}3.(2019年宜昌T3)如图,A,B,C,D是数轴上的四个点,其中最适合表示无理数π的点是()第3题图A.点A B.点B C.点C D.点D{答案} D{解析}本题主要考查了估算无理数的大小,∵π≈3.14,∴3<π<4,因此本题选D.{分值}3{章节:[1-6-3]实数}{考点:实数与数轴}{类别:常考题}{难度:2-简单{题目}4.(2019年宜昌T4)如图所示的几何体的主视图是 ( ).(第4题) A . B .C .D .{答案}D{解析}本题考查了简单几何体的三视图,该几何体的主视图为;左视图为;俯视图为,因此本题选D . {分值}3{章节:[1-29-2]三视图}{考点:简单组合体的三视图} {类别:常考题} {难度:2-简单}{题目}5.(2019年宜昌T5)往纳木错开展的第二青藏高原综合科学考察研究中.我国自主研发的系留浮空器于5月23日凌晨达到海拔7003米昀高度.这一高度也是已知的同类型同量级浮空器驻空高度的世界纪录,数据7 003用科学记数法表示为 ( ).A .0.7× 104B .70.03×102C .7.003×103D .7.003×104{答案} C{解析}本题考查科学记数法的表示方法,7 003=7.003×103,因此本题选C . {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:2-简单}{题目}6.(2019年宜昌T6) 如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α =135°,则∠β等于 ( )第6题图A .45°B .60°C .75°D .85° {答案}C{解析}本题考查了平行线的性质, ∵直尺的两条a 、b 平行,∠α =135°,∴∠γ+∠β=∠α=135°,又∠γ=60°,∴∠β=135°-∠γ=135°-60°=75°,因此本题选C .第6题答图{分值}3{章节:[1-5-3]平行线的性质}{考点:两直线平行内错角相等}{类别:常考题}{难度:2-简单}{题目}7.(2019年宜昌T7)下列计算正确的是().A.3ab -2ab=1 B.(3a2)2=9a4C.a6÷a2=a3D.3a2·2a=6a2{答案} B{解析}本题考查了整式的混合运算,∵3ab -2ab=ab,∴选项A错误;∵(3a2)2=9a4,∴选项B正确;∵a6÷a2=a4,∴选项C错误;∵3a2·2a=6a3,选项D错误.因此本题选B.{分值} 3{章节:[1-15-2-3]整数指数幂}{考点:合并同类项}{考点:同底数幂的除法}{考点:幂的乘方}{考点:单项式乘以单项式}{类别:常考题}{难度:2-简单}{题目}8.(2019年宜昌T8)李大伯前年在驻村扶贫工作队的帮助下种了一片果林,今年收获一批成熟的果子.他选取了5棵果树,采摘后分别称重.每棵果树果子总质量(单位:kg)分别为:90,100,120,110,80.这五个数据的中位数是 ( ) A.120 B.110 C.100 D.90{答案}C{解析}本题考查了中位数,把这一组数从大到小排列80,90,100,110,120.中位数是100,因此本题选C.{分值}3{章节:[1-20-1-2]中位数和众数}{考点:中位数}{类别:常考题}{难度:2-简单}{题目}9.(2019年宜昌T9)化简(x-3)2-x(x -6)的结果为 ( ).A.6x -9B.-12x+9C.9D.3x+9{答案}C{解析}本题考查了整式的乘法,原式=x2-6x+9-x2+6x =9,因此本题选C.{分值}3{章节:[1-14-2]乘法公式}考点:完全平方公式}{类别:常考题}{难度:2-简单}{题目}10.(2019年宜昌T10)通过如下尺规作图,能确定点D是B边中点的是().A.B.C.D.{答案}A{解析}本题考查了尺规作图找线段中点的知识,∵选项A的图形中作了BC的垂直平分线,它与BC的交点是BC的中点,∴选项A正确;∵选项B的图形中作了AB的垂直平分线,它与AB的交点D是AB的中点,不是BC的中点∴选项B错误;∵选项C的图形中作了∠BAC的平分线,它与BC的交点D不是BC的中点,∴选项C错误;∵选项D的图形中作了BC的垂线,它与BC的交点不是BC的中点,选项D错误.因此本题选A.{分值}3{章节:[1-13-1-2]垂直平分线}{考点:与垂直平分线有关的作图}{考点:与角平分线有关的作图问题}{考点:垂直的画法}{类别:常考题}{难度:2-简单}{题目}11.(2019年宜昌T11)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为( ).A.43B.34C.35D.45第11题{答案}D第11题答图{解析}本题考查了正弦函数的定义,过C作CD⊥AB于D,则CD=4,AD=3,由勾股定理得AC=5=,∴sin∠BAC=45CDAC=,因此本题选D.{分值}3{章节:[1-28-3]锐角三角函数}{考点:正弦}{类别:常考题}{难度:2-最简单}{题目}12.(2019年宜昌T12)如图,点A,B,C均在⊙O上,当∠OBC =40°时,∠A的度数是( ).A.50°B.55°C. 60°D.65°第12题{答案}A{解析}本题考查了同弧所对圆周角与圆心角的关系及等腰三角形性质,∵OB=OC,∴∠OCB =∠OBC =40°,∴∠BOC =180°-∠OBC-∠OCB =100°,∠BOC、∠A所对的都是»BC,∠A=12∠BOC ==50°,因此本题选A.{分值}3{章节:[1-24-1-4]圆周角}{考点:圆周角定理}{类别:常考题}{难度:2-最简单}{题目}13.(2019年宜昌T13)在“践行生态文明,你我一起行动”主题有奖竞赛活动中.903班热设置“生态知识、生态技能、生态习惯、生态文化”四个类别的竞赛内容,如果参赛两学抽到每一类别的可能性相同,那么小宇参赛时抽到“生态知识”的概率是( ).A.12B.14C.18D.116{答案}B{解析}本题考查了古典型概率,小宇参赛时抽到“生态知识”的概率=14,因此本题选B.{分值}3{章节:[1-25-1-2]概率}{考点:一步事件的概率}{类别:常考题}{难度:2-简单}{题目}14.(2019年宜昌T14)古希腊几何学家海伦和我国南宋数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦一秦九韶公式:若一个三角形的三边分别为a,b,c,记p12=(a +b +c ),那么三角形的面积为S =.如图,在△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,C .若a =5,b =6.C =7.则△ABC 的面积为( ).A .B .C . 18D .192第14题图{答案{解析p 12=(a +b +c )=9,△ABC 的面积S A.{分值}3{章节:[1-16-2]二次根式的乘除} {考点:二次根式的乘法法则} {类别:常考题} {难度:2-简单}{题目}15.(2019年宜昌T15)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°, OA =2.将△AOB 绕点O 逆时针旋转90°,点B 的对应点B ′的坐标是( ).A.(-1,B.(,3)C.( D .(-3)第15题图{答案}B{解析}本题考查了旋转特征以及坐标的意义、解直角三角形等知识,过B ′作B ′C ⊥y 轴与C ,则∠A ′OB ′=∠B =∠AOB =∠A ′B ′O =30°,OA ′=OA =2,∴A ′B ′= A ′O =2,∠CA ′B ′=∠A ′B ′O +∠A ′OB ′=60°,∴sin ∠CA ′B ′=2B C B C B A ''==''B ′C ,c o s ∠CA ′B ′=122A C A CB A ''=='',解得A ′C =1,CO =2+1=3,B ′C ,∴B ′的坐标是(3),因此本题选B.第15题答图{分值}3{章节:[1-23-1]图形的旋转}{考点:旋转的性质}{考点:解直角三角形}{类别:常考题}{难度:3-中等难度}{题目}16.(2019年宜昌T16)已知x≠y,y=-x+8,求代数式22x yx y y x+--的值.{解析}本题考查了分式的加减与求分式的值,先通分,再化简,最后代入求值.{答案}解:原式=22x yx y x y---=22x yx y--=()()x y x yx y+--=x+y.x≠y,y=-x+8,原式=x+-x+8=8. {分值}6{章节:[1-15-2-2]分式的加减} {考点:两个分式的加减}{类别:常考题}{难度:2-简单}{题目}17.(2019年宜昌T17)解不等式组127313xxx x-⎧>⎪⎪⎨⎛⎫⎪-+⎪⎪⎝⎭⎩,<,并求此不等式组的整数解.{解析}本题考查了一元一次不等式组的解法以及不等式组的整数解,先分开求每个不等式的解集,再求公共部分得不等式组的解集,最后求解集范围的整数解.{答案}解:由①得13x>;由②得x<4,所以原不等式组的解集为13<x<4,∴该不等式组的整数解为1,2,3.{分值} 6{章节:[1-9-3]一元一次不等式组} {考点:一元一次不等式组的整数解}{类别:常考题}{难度:2-最简单}{题目}18.(2019年宜昌T18)如图,在△ABC 中,D 是BC 边上一点,AB =DB ,BE 平分∠ABC ,交AC 边于点E .连接DE .(1)求证:△ABE ≌△DBE ;(2) ∠A =100°,∠C =50°,求∠AEB 的度数。
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。
湖北荆州江陵区2019年中考重点试题--数学

湖北荆州江陵区2019年中考重点试题--数学(考试时间120分钟总分值120分)温馨提示:愿你放松心情,认真审题,慎密思考,细心演算,交一份中意的答卷、【一】选择题(本大题共10个小题,每题3分,共30分)1、以下各式运算正确的选项是〔〕A 、325x x x +=B 、32x x x -=C 、326x x x ⋅=D 、32x x x ÷=2.荆州市政府2006年全面实施“工业兴市”战略,实现了经济持续快速增长。
全市当年财政收入达到24.4亿元。
请将那个数据用科学记数法表示出来是〔〕A.8104.24⨯元B.81044.2⨯元C.91044.2⨯元D.101044.2⨯元3、一人乘雪橇沿坡比1的斜坡笔直滑下,滑下的距离s 〔米〕与时间t 〔秒〕之间的关系为s =10t +2t 2,假设滑到坡底的时间为4秒,那么此人下降的高度为〔〕A 、72mB 、、36mD 、第3题图第4题图4.如图,D 是等腰Rt △ABC 内一点,BC 是斜边,假如将△ABD 绕点A 按逆时针方向旋转到△ACD ′的位置,那么∠ADD ′的度数是〔〕A.25°B.30°C.35°D.45°5.假设关于x 的方程x 2+2(k -1)x +k 2=0有实数根,那么k 的取值范围是〔〕 A.12k < B.12k ≤ C.12k > D.k ≥126、下图所示的几何体的俯视图是 〔〕7如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A.25B.310C.320D.15第7题图第8题图第9题图8.如图,P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足如此条件的直线共有〔〕条。
A.1B.2C.3D.49.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm ,那么此光盘的直径是()cm. A.7B.237 C.37 D.1410.如图,△ABC 和△DEF 是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B 、C 、E 、F 在同一直线上、现从点C 、E 重合的位置动身,让△ABC 在直线EF 上向右作匀速运动,而△DEF 的位置不动、设两个三角形重合部分的面积为y ,运动的距离为x 、下面表示y 与x 的函数关系式的图象大致是〔〕【二】填空题〔本大题共8个小题,每空3分,共24分〕11.计算:8·cos450-(2-π)0-(21)-1=.12、关于x 的不等式3x 一2a ≤一2的解集如下图,那么a 的值是_______________。
2019年中考数学试题含答案 (13)

2019年中考数学试卷一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示亿元.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在平行四边形ABCD中,添加一个条件,使平行四边形ABCD是矩形.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.5.(3分)不等式组有3个整数解,则a的取值范围是.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种20.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:=AB•AC④OE=AD⑤S△APO=,正确的个数①∠CAD=30°②BD=③S平行四边形ABCD是()A.2 B.3 C.4 D.5三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为件,图中d值为.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段AE与EF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B 坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示8×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将80万亿用科学记数法表示为:8×105亿.故答案为:8×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)如图,在平行四边形ABCD中,添加一个条件AC=BD或∠ABC=90°,使平行四边形ABCD是矩形.【分析】根据矩形的判定方法即可解决问题;【解答】解:若使▱ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形),∠ABC=90°等(有一个角是直角的平行四边形是矩形),故答案为:任意写出一个正确答案即可,如:AC=BD或∠ABC=90°.故答案为AC=BD或∠ABC=90°【点评】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用白球的个数除以总个数,求出恰好摸到白球的概率是多少即可.【解答】解:∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3分)不等式组有3个整数解,则a的取值范围是﹣2≤a<﹣1.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=60°.【分析】连接DC,得出∠BDC的度数,进而得出∠A的度数,利用互余解答即可.【解答】解:连接DC,∵AC为⊙O的直径,OD⊥AC,∴∠DOC=90°,∠ABC=90°,∵OD=OC,∴∠ODC=45°,∵∠BDO=15°,∴∠BDC=30°,∴∠A=30°,∴∠ACB=60°,故答案为:60°.【点评】此题考查圆周角定理,关键是根据直径和垂直得出∠BDC的度数.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高==.故答案为.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为2.【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【解答】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2【点评】本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 3.6或4.32或4.8.【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S=6,找出所有可△ABC能的剪法,并求出剪出的等腰三角形的面积即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,=AB•BC=6.∴AC==5,S△ABC沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S=S△ABC=×6=4.32;等腰△ABP④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.【点评】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=•()n﹣1.【分析】先计算出S1=,再根据阴影三角形都相似,后面的三角形面积是前面面积的.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故S n=•()n﹣1.故答案为:•()n﹣1.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.【点评】本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.14.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【解答】解:A、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.【点评】此题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义是解题关键.15.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.17.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,=2,S△OBD=,然后根据相似三角形面积的比等于相似比的平方,即即可得S△AOC可得=,然后由正切函数的定义求得答案.【解答】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC,∴△OBD∽△AOC,∴=()2,∵点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,∴S=,S△AOC=2,△OBD∴=,∴tan∠OAB==.故选:A.【点评】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.注意掌握数形结合思想的应用,注意掌握辅助线的作法.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种 B.3种 C.2种 D.1种【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为正整数即可得.【解答】解:设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=,∵x、y均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4;所以购买资金恰好用尽的情况下,购买方案有3种,故选:B.【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.(3分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S=AB•AC④OE=AD⑤S△APO=,正确的个数平行四边形ABCD是()A.2 B.3 C.4 D.5【分析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC==和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;=S△EOC=OE•OC=,⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=,代入可得结论.【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD==,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=AB,∵AB=BC,∴OE=BC=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,=S△EOC=OE•OC==,∴S△AOE∵OE∥AB,∴,∴=,∴S===;△AOP故⑤正确;本题正确的有:①②③④⑤,5个,故选:D.【点评】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:(a﹣)÷===a﹣b,当a=,b=1时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).【分析】(1)直接利用关于x轴对称的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出对应点位置进而得出答案;(3)直接利用弧长公式计算得出答案.【解答】解:(1)如图:△A1B1C1,即为所求;(2)如图:△A2B2C2,即为所求;(3)r==,A经过的路径长:×2×π×=π.【点评】此题主要考查了旋转变换以及轴对称变换和弧长公式应用,正确得出对应点位置是解题关键.23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=30,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为80件,图中d值为770.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?【分析】(1)由图象的信息解答即可;(2)利用待定系数法确定解析式即可;(3)根据题意列出方程解答即可.【解答】解:(1)由图象甲车间每小时加工零件个数为720÷9=80个,d=770,故答案为:80,770(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,∴B(4,120),C(9,770)设y BC=kx+b,过B、C,∴,解得,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=答:甲车间加工天时,两车间加工零件总数为1000件【点评】本题为一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点。
2019-2020学年湖北省荆州市中考数学试卷(含解析及答案)

2019-2020学年湖北省荆州市中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3.00分)下列代数式中,整式为()A.x+1 B. C.D.2.(3.00分)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上3.(3.00分)下列计算正确的是()A.3a2﹣4a2=a2B.a2•a3=a6 C.a10÷a5=a2D.(a2)3=a64.(3.00分)如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B 分别在l1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°5.(3.00分)解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4 C.﹣1﹣3(2﹣x)=﹣4D.1﹣3(2﹣x)=46.(3.00分)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A.B.C.D.7.(3.00分)已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小8.(3.00分)如图,将一块菱形ABCD硬纸片固定后进行投针训练.已知纸片上AE⊥BC于E,CF⊥AD于F,sinD=.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是()A.B.C.D.9.(3.00分)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人10.(3.00分)如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD 的值是()A.2 B.3 C.4 D.5二、填空题(本大题共8小题,每小题3分,共24分)11.(3.00分)计算:|﹣2|﹣+()﹣1+tan45°=.12.(3.00分)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC 即为所求.上述作图用到了全等三角形的判定方法,这个方法是.13.(3.00分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是.14.(3.00分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).15.(3.00分)为了比较+1与的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=3,D在BC上且BD=AC=1.通过计算可得+1.(填“>”或“<”或“=”)16.(3.00分)关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是.17.(3.00分)如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为cm(圆锥的壁厚忽略不计).18.(3.00分)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD、BC 分别与x轴交于E、F,连接BE、DF,若正方形ABCD有两个顶点在双曲线y=上,实数a满足a3﹣a=1,则四边形DEBF的面积是.三、解答题(本大题共7小题,共66分)19.(10.00分)(1)求不等式组的整数解;(2)先化简,后求值(1﹣)÷,其中a=+1.20.(8.00分)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.21.(8.00分)如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:(1)△AFG≌△AFP;(2)△APG为等边三角形.22.(8.00分)探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为,它的另一条性质为;(2)请用配方法求函数y=x+(x>0)的最小值;(3)猜想函数y=x+(x>0,a>0)的最小值为.23.(10.00分)问题:已知α、β均为锐角,tanα=,tanβ=,求α+β的度数.探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为1),请借助这个网格图求出α+β的度数;延伸:(2)设经过图中M、P、H三点的圆弧与AH交于R,求的弧长.24.(10.00分)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.25.(12.00分)阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P (x1,y1)、Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是;(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②+为定值.2019-2020学年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3.00分)下列代数式中,整式为()A.x+1 B. C.D.【分析】直接利用整式、分式、二次根式的定义分析得出答案.【解答】解:A、x+1是整式,故此选项正确;B、,是分式,故此选项错误;C、是二次根式,故此选项错误;D、,是分式,故此选项错误;故选:A.【点评】此题主要考查了整式、分式、二次根式的定义,正确把握相关定义是解题关键.2.(3.00分)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上【分析】根据互为相反数的两个数,它们分别在原点两旁且到原点距离相等解答.【解答】解:∵点A、点B表示的两个实数互为相反数,∴原点在到在线段AB上,且到点A、点B的距离相等,∴原点在线段AB的中点处,故选:B.【点评】本题考查的是实数与数轴、相反数的概念,掌握互为相反数的两个数,它们分别在原点两旁且到原点距离相等是解题的关键.3.(3.00分)下列计算正确的是()A.3a2﹣4a2=a2B.a2•a3=a6 C.a10÷a5=a2D.(a2)3=a6【分析】根据合并同类项法则,单项式的乘法运算法则,单项式的除法运算法则,对各选项分析判断后利用排除法求解.【解答】解:A、3a2﹣4a2=﹣a2,错误;B、a2•a3=a5,错误;C、a10÷a5=a5,错误;D、(a2)3=a6,正确;故选:D.【点评】本题考查了整式的除法,单项式的乘法,合并同类项法则,是基础题,熟记运算法则是解题的关键.4.(3.00分)如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B 分别在l1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°【分析】根据平行线的性质和等腰直角三角形的性质解答即可.【解答】解:∵l1∥l2,∴∠1+∠CAB=∠2,∵Rt△ACB中,∠C=90°,AC=BC,∴∠CAB=45°,∴∠2=20°+45°=65°,故选:C.【点评】本题考查的是等腰直角三角形,根据平行线的性质和等腰直角三角形的性质解答是解答此题的关键.5.(3.00分)解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4 C.﹣1﹣3(2﹣x)=﹣4D.1﹣3(2﹣x)=4【分析】分式方程去分母转化为整式方程,即可作出判断.【解答】解:去分母得:1﹣3(x﹣2)=﹣4,故选:B.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.6.(3.00分)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A.B.C.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.7.(3.00分)已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(﹣1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误;故选:C.【点评】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.8.(3.00分)如图,将一块菱形ABCD硬纸片固定后进行投针训练.已知纸片上AE⊥BC于E,CF⊥AD于F,sinD=.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是()A.B.C.D.【分析】根据题意可以分别求得矩形的面积和菱形的面积,从而可以解答本题.【解答】解:设CD=5a,∵四边形ABCD是菱形,AE⊥BC于E,CF⊥AD于F,sinD=,∴CF=4a,DF=3a,∴AF=2a,∴命中矩形区域的概率是:=,故选:B.【点评】本题考查几何概率、菱形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.(3.00分)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【解答】解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.【点评】本题考查了频数分布直方图、扇形统计图,熟悉样本、用样本估计总体是解题的关键,另外注意学会分析图表.10.(3.00分)如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD 的值是()A.2 B.3 C.4 D.5【分析】直接连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,求出⊙P的半径,进而结合勾股定理得出答案.【解答】解:连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D 到弦OB的距离最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,则⊙P的半径为5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3.故选:B.【点评】此题主要考查了圆周角定理以及勾股定理、解直角三角形等知识,正确作出辅助线是解题关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(3.00分)计算:|﹣2|﹣+()﹣1+tan45°=3.【分析】直接利用特殊角的三角函数值以及负指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:|﹣2|﹣+()﹣1+tan45°=2﹣2+2+1=3.故答案为:3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3.00分)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC 即为所求.上述作图用到了全等三角形的判定方法,这个方法是SSS.【分析】利用基本作图得到OM=ON,CM=CN,加上公共边OC,则可根据SSS证明三角形全等.【解答】解:由作法①知,OM=ON,由作法②知,CM=CN,∵OC=OC,∴△OCM≌△OCN(SSS),故答案为:SSS.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定.13.(3.00分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是5.【分析】根据运算程序可找出前几次输出的结果,根据输出结果的变化找出变化规律“第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数)”,依此规律即可得出结论.【解答】解:∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是5,…,∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数),∴第2018次输出的结果是5.故答案为:5.【点评】本题考查了代数式求值以及规律型中数字的变化类,根据输出结果的变化找出变化规律是解题的关键.14.(3.00分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为24.1米(≈1.73,结果精确到0.1).【分析】设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,进而得出BE=CE=33,AE=a+33,在Rt△ACE中,依据tanA=,即可得到a的值.【解答】解:如图,设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,∴CE=33,∵∠CBE=45°=∠BCE,∠CAE=30°,∴BE=CE=33,∴AE=a+33,∵tanA=,∴tan30°=,即33=a+33,解得a=33(﹣1)≈24.1,∴a的值约为24.1米,故答案为:24.1.【点评】此题考查了解直角三角形的应用,关键是根据在直角三角形中三角函数的定义列出算式,得出关于a的方程.15.(3.00分)为了比较+1与的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=3,D在BC上且BD=AC=1.通过计算可得+1>.(填“>”或“<”或“=”)【分析】依据勾股定理即可得到AD==,AB==,BD+AD=+1,再根据△ABD中,AD+BD>AB,即可得到+1>.【解答】解:∵∠C=90°,BC=3,BD=AC=1,∴CD=2,AD==,AB==,∴BD+AD=+1,又∵△ABD中,AD+BD>AB,∴+1>,故答案为:>.【点评】本题主要考查了三角形三边关系以及勾股定理的运用,解题时注意:三角形两边之和大于第三边.16.(3.00分)关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是4.【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【解答】解:∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=4,∴=4,(2k)2﹣2(k2﹣k)=4,2k2+2k﹣4=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣4×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=4﹣0=4.故答案为:4.【点评】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.17.(3.00分)如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为cm(圆锥的壁厚忽略不计).【分析】根据相似三角形的性质先求出钢球的直径,进一步得到钢球的半径.【解答】解:钢球的直径:×20=(cm),钢球的半径:÷2=(cm).答:钢球的半径为cm.故答案为:.【点评】考查了圆锥的计算,相似三角形的性质,关键是求出钢球的直径.18.(3.00分)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD、BC 分别与x轴交于E、F,连接BE、DF,若正方形ABCD有两个顶点在双曲线y=上,实数a满足a3﹣a=1,则四边形DEBF的面积是6或2或10.【分析】根据乘方,可得a的值,根据正方形的对称中心在坐标原点,可得B 点的横坐标等于纵坐标,根据平行四边形的面积公式,可得答案.【解答】解:由a3﹣a=1得a=1,或a=﹣1,a=3.①当a=1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=6②当a=﹣1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=1,四边形DEBF的面积是2x•y=2×1×1=2;③当a=3时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=10,故答案为:6或2或10.【点评】本题考查了反比例函数的意义,利用乘方的意义得出a的值是解题关键,又利用了中心对称的正方形,平行四边形的面积.三、解答题(本大题共7小题,共66分)19.(10.00分)(1)求不等式组的整数解;(2)先化简,后求值(1﹣)÷,其中a=+1.【分析】(1)分别解每个不等式,再根据“大小小大中间找”确定不等式组的解集,从而得出答案;(2)先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:(1)解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1、0;(2)原式=(﹣)÷=•=,当a=+1时,原式==.【点评】本题主要考查分式的化简求值与解一元一次不等式组,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解不等式的能力.20.(8.00分)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.【分析】(1)根据平均数、中位数、众数的概念解答即可;(2)根据它们的方差,从而可以解答本题.【解答】解:(1)a=,b=85,c=85,(2)∵22.8>19.2,∴八(2)班前5名同学的成绩较好,【点评】本题考查平均数、众数、中位数、方差,解题的关键是明确题意,找出所求问题需要的条件.21.(8.00分)如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:(1)△AFG≌△AFP;(2)△APG为等边三角形.【分析】(1)由折叠的性质得到M、N分别为AD、BC的中点,利用平行线分线段成比例得到F为PG的中点,再由折叠的性质得到AF垂直于PG,利用SAS即可得证;(2)由(1)的全等三角形,得到对应边相等,利用三线合一得到∠2=∠3,由折叠的性质及等量代换得到∠PAG为60°,根据AP=AG且有一个角为60°即可得证.【解答】证明:(1)由折叠可得:M、N分别为AD、BC的中点,∵DC∥MN∥AB,∴F为PG的中点,即PF=GF,由折叠可得:∠PFA=∠D=90°,∠1=∠2,在△AFP和△AFG中,,∴△AFP≌△AFG(SAS);(2)∵△AFP≌△AFG,∴AP=AG,∵AF⊥PG,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=30°,∴∠2+∠3=60°,即∠PAG=60°,∴△APG为等边三角形.【点评】此题考查了翻折变换(折叠问题),全等三角形的判定与性质,等边三角形的判定,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.22.(8.00分)探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为2,它的另一条性质为当x>1时,y随x的增大而增大;(2)请用配方法求函数y=x+(x>0)的最小值;(3)猜想函数y=x+(x>0,a>0)的最小值为2.【分析】(1)根据函数图象可以得到函数y=x+(x>0)的最小值,然后根据函数图象,可以写出该函数的一条性质,注意函数的性质不唯一,写的只要复合函数即可;(2)根据配方法可以求得函数y=x+(x>0)的最小值;(3)根据配方法可以求得函数y=x+(x>0,a>0)的最小值.【解答】解:(1)由图象可得,函数y=x+(x>0)的最小值是2,它的另一条性质是:当x>1时,y随x的增大而增大,故答案为:2,当x>1时,y随x的增大而增大;(2)∵y=x+(x>0),∴y=,∴当时,y取得最小值,此时x=1,y=2,即函数y=x+(x>0)的最小值是2;(3)∵y=x+(x>0,a>0)∴y=,∴当时,y取得最小值,此时y=2,故答案为:2.【点评】本题考查正比例函数的图象和性质、反比例函数的图象和性质,解答本题的关键是明确题意,利用数形结合的思想解答.23.(10.00分)问题:已知α、β均为锐角,tanα=,tanβ=,求α+β的度数.探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为1),请借助这个网格图求出α+β的度数;延伸:(2)设经过图中M、P、H三点的圆弧与AH交于R,求的弧长.【分析】(1)连结AM、MH,则∠MHP=∠α,然后再证明△AMH为等腰直角三角形即可;(2)先求得MH的长,然后再求得弧MR所对圆心角的度数,最后,再依据弧长公式求解即可.【解答】解:(1)连结AM、MH,则∠MHP=∠α.∵AD=MC,∠D=∠C,MD=HC,∴△ADM≌△MCH.∴AM=MH,∠DAM=∠HMC.∵∠AMD+∠DAM=90°,∴∠AMD+∠HMC=90°,∴∠AMH=90°,∴∠MHA=45°,即α+β=45°.(2)由勾股定理可知MH==.∵∠MHR=45°,∴==.【点评】本题主要考查的是弧长的计算、等腰直角三角形的判定,锐角三角函数的性质,掌握本题的辅助线的作法是解题的关键.24.(10.00分)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.【分析】(1)根据矩形的面积公式计算即可;(2)构建方程即可解决问题,注意检验是否符合题意;(3)利用二次函数的性质求出y的最大值,设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,由题意:14(400﹣a﹣b)+16a+28b=8600,可得a+7b=1500,推出b的最大值为214,此时a=2,再求出实际植物面积即可判断;【解答】解:(1)y=x(36﹣2x)=﹣2x2+36x.(2)由题意:﹣2x2+36x=160,解得x=10或8.∵x=8时,36﹣16=20<18,不符合题意,∴x的值为10.(3)∵y=﹣2x2+36x=﹣2(x﹣9)2+162,∴x=9时,y有最大值162,设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,由题意:14(400﹣a﹣b)+16a+28b=8600,∴a+7b=1500,∴b的最大值为214,此时a=2,需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=162.8>162,∴这批植物不可以全部栽种到这块空地上.【点评】本题考查二次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.(12.00分)阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P (x1,y1)、Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是x2+(y﹣)2=1;(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②+为定值.【分析】(1)利用两点间的距离公式即可得出结论;(2)利用两点间的距离公式即可得出结论;(3)①先确定出m+n=2k,mn=﹣1,再确定出M(m,﹣),N(n,﹣),进而判断出△AMN是直角三角形,再求出直线AQ的解析式为y=﹣x+,即可得出结论;②先确定出a=mk+,b=nk+,再求出AE=ME=a+=mk+1,AF=NF=b+=nk+1,即可得出结论.【解答】解:(1)设到点A的距离等于线段AB长度的点D坐标为(x,y),∴AD2=x2+(y﹣)2,∵直线y=kx+交y轴于点A,∴A(0,),∵点A关于x轴的对称点为点B,∴B(0,﹣),∴AB=1,∵点D到点A的距离等于线段AB长度,∴x2+(y﹣)2=1,故答案为:x2+(y﹣)2=1;(2)∵过点B作直线l平行于x轴,∴直线l的解析式为y=﹣,∵C(x,y),A(0,),∴AC2=x2+(y﹣)2,点C到直线l的距离为:(y+),∵动点C(x,y)满足到直线l的距离等于线段CA的长度,∴x2+(y﹣)2=(y+)2,∴动点C轨迹的函数表达式y=x2,(3)①如图,设点E(m,a)点F(n,b),∵动点C的轨迹与直线y=kx+交于E、F两点,∴,∴x2﹣2kx﹣1=0,∴m+n=2k,mn=﹣1,∵过E、F作直线l的垂线,垂足分别是M、N,∴M(m,﹣),N(n,﹣),∵A(0,),∴AM2+AN2=m2+1+n2+1=m2+n2+2=(m+n)2﹣2mn+2=4k2+4,MN2=(m﹣n)2=(m+n)2﹣4mn=4k2+4,∴AM2+AN2=MN2,∴△AMN是直角三角形,MN为斜边,取MN的中点Q,∴点Q是△AMN的外接圆的圆心,∴Q(k,﹣),∵A(0,),∴直线AQ的解析式为y=﹣x+,∵直线EF的解析式为y=kx+,∴AQ⊥EF,∴EF是△AMN外接圆的切线;②证明:∵点E(m,a)点F(n,b)在直线y=kx+上,∴a=mk+,b=nk+,∵ME,NF,EF是△AMN的外接圆的切线,∴AE=ME=a+=mk+1,AF=NF=b+=nk+1,∴+=+====2,即:+为定值,定值为2.【点评】此题是圆的综合题,主要考查了待定系数法,两点间的距离公式,直角三角形的判定和性质,根与系数的关系,圆的切线的判定和性质,利用根与系数的确定出m+n=2k,mn=﹣1是解本题是关键.。
【2019中考数学】湖北荆州数学中考真题(含解析)【2019中考真题+数学】

2019年湖北省荆州市中考数学试卷一、选择题(本大题共10小题每小题只有唯一正确答案,每小题3分,共30分)1.(3分)下列实数中最大的是()A.B.πC.D.|﹣4|2.(3分)下列运算正确的是()A.x﹣x=B.a3•(﹣a2)=﹣a6C.(﹣1)(+1)=4 D.﹣(a2)2=a4(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),3.其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为()A.10°B.20°C.30°D.40°4.(3分)某几何体的三视图如图所示,则下列说法错误的是()A.该几何体是长方体B.该几何体的高是3C.底面有一边的长是1D.该几何体的表面积为18平方单位5.(3分)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是()A.①②B.①③C.②③D.①②③6.(3分)若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)在平面直角坐标系中,点A的坐标为(1,),以原点为中心,将点A顺时针旋转30°得到点A',则点A'的坐标为()A.(,1)B.(,﹣1)C.(2,1)D.(0,2)8.(3分)在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.659.(3分)已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 10.(3分)如图,点C为扇形OAB的半径OB上一点,将△OAC沿AC折叠,点O恰好落在上的点D处,且l:l=1:3(l表示的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比为()A.1:3 B.1:πC.1:4 D.2:9二、填空题(本大题共6小题每小题3分,共18分)11.(3分)二次函数y=﹣2x2﹣4x+5的最大值是.12.(3分)如图①,已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD 的中点,截面EFG将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为cm2.13.(3分)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.14.(3分)如图,灯塔A在测绘船的正北方向,灯塔B在测绘船的东北方向,测绘船向正东方向航行20海里后,恰好在灯塔B的正南方向,此时测得灯塔A在测绘船北偏西63.5°的方向上,则灯塔A,B间的距离为海里(结果保留整数).(参考数据sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50,≈2.24)15.(3分)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP 是直角三角形时,AP的长为.16.(3分)边长为1的8个正方形如图摆放在直角坐标系中,直线y=k1x平分这8个正方形所组成的图形的面积,交其中两个正方形的边于A,B两点,过B点的双曲线y=的一支交其中两个正方形的边于C,D两点,连接OC,OD,CD,则S△OCD=.三、解答题(本大题共8小题,共72分)17.(8分)已知:a=(﹣1)(+1)+|1﹣|,b=﹣2sin45°+()﹣1,求b ﹣a的算术平方根.18.(8分)先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a 的值代入求值.19.(8分)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=;(用含α的式子表示)(2)在图②中猜想AF与DE的数量关系,并证明你的结论.20.(8分)体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:(1)表中的数a=,b=;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.21.(8分)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.22.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上一动点(不与O,B重合),过点P作射线1⊥AB,分别交弦BC,于D,E两点,在射线l上取点F,使FC=FD.(1)求证:FC是⊙O的切线;(2)当点E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若tan∠ABC=,且AB=20,求DE的长.23.(10分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?24.(12分)如图,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0).(1)求该抛物线的解析式;(2)若∠AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.2019年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题每小题只有唯一正确答案,每小题3分,共30分)1.【解答】解:∵<π<<|﹣4|=4,∴所给的几个数中,最大的数是|﹣4|.故选:D.2.【解答】解:A、x﹣x=x,故本选项错误;B、a3•(﹣a2)=﹣a5,故本选项错误;C、(﹣1)(+1)=5﹣1=4,故本选项正确;D、﹣(a2)2=﹣a4,故本选项错误;故选:C.3.【解答】解:∵直线m∥n,∴∠2+∠ABC+∠1+∠BAC=180°,∵∠ABC=30°,∠BAC=90°,∠1=40°,∴∠2=180°﹣30°﹣90°﹣40°=20°,故选:B.4.【解答】解:A、该几何体是长方体,正确;B、该几何体的高为3,正确;C、底面有一边的长是1,正确;D、该几何体的表面积为:2×(1×2+2×3+1×3)=22平方单位,故错误,故选:D.5.【解答】解:∵四边形ABCD为矩形,∴AE=CE,而OA=OC,∴OE为∠AOC的平分线.故选:C.6.【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.7.【解答】解:如图,作AE⊥x轴于E,A′F⊥x轴于F.∵∠AEO=∠OFA′=90°,∠AOE=∠AOA′=∠A′OF=30°∴∠AOE=∠A′,∵OA=OA′,∴△AOE≌△OA′F(AAS),∴OF=AE=,A′F=OE=1,∴A′(,1).故选:A.8.【解答】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.65×4﹣1.63×3=1.71米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.9.【解答】解:∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.10.【解答】解:连接OD交OC于M.由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.二、填空题(本大题共6小题每小题3分,共18分)11.【解答】解:y=﹣2x2﹣4x+5=﹣2(x+1)2+7,即二次函数y=﹣x2﹣4x+5的最大值是7,故答案为:7.12.【解答】解:∵已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD 的中点,∴GF=GE=EF==2,过G作GH⊥EF于H,∴GH=GF=,∴图②中阴影部分的面积=×2×=2cm2.故答案为:2.13.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.14.【解答】解:由题意得,MN=20,∠ANB=63.5°,∠BMN=45°,∠AMN=∠BNM=90°,∴BN=MN=20,如图,过A作AE⊥BN于E,则四边形AMNE是矩形,∴AE=MN=20,EN=AM,∵AM=MN•tan26.5°=20×0.50=10,∴BE=20﹣10=10,∴AB==10≈22.4海里.故答案为:22.4.15.【解答】解:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.故答案为4和2.56.16.【解答】解:设A(4,t),∵直线y=k1x平分这8个正方形所组成的图形的面积,∴×4×t=4+1,解得t=,∴A(4,),把A(4,)代入直线y=k1x得4k1=,解得k1=,∴直线解析式为y=x,当x=2时,y=x=,则B(2,),∵双曲线y=经过点B,∴k2=2×=,∴双曲线的解析式为y==,当y=2时,=2,解得x=,则C(,2);当x=3时,y==,则D(3,),∴S△OCD=3×2﹣×3×﹣×2×﹣(2﹣)×(3﹣)=.故答案为.三、解答题(本大题共8小题,共72分)17.【解答】解:∵a=(﹣1)(+1)+|1﹣|=3﹣1+﹣1=1+,b=﹣2sin45°+()﹣1=2﹣+2=+2.∴b﹣a=+2﹣1﹣=1.∴==1.18.【解答】解:(﹣1)÷===,当a=﹣2时,原式==﹣1.19.【解答】解:(1)如图2,∵△OEF绕点O逆时针旋转α角,∴∠DOF=∠COE=α,∵四边形ABCD为正方形,∴∠AOD=90°,∴∠AOF=90°﹣α;故答案为90°﹣α;(2)AF=DE.理由如下:如图②,∵四边形ABCD为正方形,∴∠AOD=∠COD=90°,OA=OD,∵∠DOF=∠COE=α,∴∠AOF=∠DOE,∵△OEF为等腰直角三角形,∴OF=OE,在△AOF和△DOE中,∴△AOF≌△DOE(SAS),∴AF=DE.20.【解答】解(1)抽查了九年级学生数:5÷0.1=50(人),20≤x<30的人数:50×=20(人),即a=20,30≤x<40的人数:50﹣5﹣21﹣20=4(人),b==0.08,故答案为20,0.08;(2)该九年级排球垫球测试结果小于10的人数450×(1﹣0.1)=405(人),答:该九年级排球垫球测试结果小于10的人数为405人;(3)列表如下∴P(选出的2人为一个男生一个女生的概率)==.21.【解答】解:∵y=x2﹣4,∴其顶点坐标为(0,﹣4),∵y=x2﹣4是y=﹣x+p的伴随函数,∴(0,﹣4)在一次函数y=﹣x+p的图象上,∴﹣4=0+p.∴p=﹣4,∴一次函数为:y=﹣x﹣4,∴一次函数与坐标轴的交点分别为(0,﹣4),(﹣4,0),∴直线y=﹣x+p与两坐标轴围成的三角形的两直角边都为|﹣4|=4,∴直线y=﹣x+p与两坐标轴围成的三角形的面积为:.(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=﹣2,x1x2=n,∴,∵函数y=x2+2x+n与x轴两个交点间的距离为4,∴,解得,n=﹣3,∴函数y=x2+2x+n为:y=x2+2x﹣3=(x+1)2﹣4,∴其顶点坐标为(﹣1,﹣4),∵y=x2+2x+n是y=mx﹣3(m≠0)的伴随函数,∴﹣4=﹣m﹣3,∴m=1.22.【解答】解:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD∴∠FCD=∠FDC∵∠FDC=∠BDP∴∠OCB+∠FCD=90°∴OC⊥FC∴FC是⊙O的切线.(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②若tan∠ABC=,且AB=20,求DE的长.∵=tan∠ABC=,设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=202,解得k=4,∴AC=12,BC=16,∵点E是的中点,∴OE⊥BC,BH=CH=8,∴OE×BH=OB×PE,即10×8=10PE,解得:PE=8,由勾股定理得OP===6,∴BP=OB﹣OP=10﹣6=4,∵=tan∠ABC=,即DP=BP==3∴DE=PE﹣DP=8﹣3=5.23.【解答】解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:.答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.故答案为:8.(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:2≤m≤5.∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.24.【解答】解:(1)∵平行四边形OABC中,A(6,0),C(4,3)∴BC=OA=6,BC∥x轴∴x B=x C+6=10,y B=y C=3,即B(10,3)设抛物线y=ax2+bx+c经过点B、C、D(1,0)∴解得:∴抛物线解析式为y=﹣x2+x﹣(2)如图1,作点E关于x轴的对称点E',连接E'F交x轴于点P ∵C(4,3)∴OC=∵BC∥OA∴∠OEC=∠AOE∵OE平分∠AOC∴∠AOE=∠COE∴∠OEC=∠COE∴CE=OC=5∴x E=x C+5=9,即E(9,3)∴直线OE解析式为y=x∵直线OE交抛物线对称轴于点F,对称轴为直线:x=﹣7∴F(7,)∵点E与点E'关于x轴对称,点P在x轴上∴E'(9,﹣3),PE=PE'∴当点F、P、E'在同一直线上时,PE+PF=PE'+PF=FE'最小设直线E'F解析式为y=kx+h∴解得:∴直线E'F:y=﹣x+21当﹣x+21=0时,解得:x=∴当PE+PF的值最小时,点P坐标为(,0).(3)存在满足条件的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形.设AH与OE相交于点G(t,t),如图2∵AH⊥OE于点G,A(6,0)∴∠AGO=90°∴AG2+OG2=OA2∴(6﹣t)2+(t)2+t2+(t)2=62∴解得:t1=0(舍去),t2=∴G(,)设直线AG解析式为y=dx+e∴解得:∴直线AG:y=﹣3x+18当y=3时,﹣3x+18=3,解得:x=5∴H(5,3)∴HE=9﹣5=4,点H、E关于直线x=7对称①当HE为以点M,N,H,E为顶点的平行四边形的边时,如图2则HE∥MN,MN=HE=4∵点N在抛物线对称轴:直线x=7上∴x M=7+4或7﹣4,即x M=11或3当x=3时,y M=﹣×9+×9﹣=∴M(3,)或(11,)②当HE为以点M,N,H,E为顶点的平行四边形的对角线时,如图3 则HE、MN互相平分∵直线x=7平分HE,点F在直线x=7上∴点M在直线x=7上,即M为抛物线顶点∴y M=﹣×49+×7﹣=4∴M(7,4)综上所述,点M坐标为(3,)、(11,)或(7,4).。
2019年湖北荆门中考数学试题(解析版)

2019年湖北省荆门市中考数学试卷考试时间:120分钟满分:120分{题型:1-选择题}一、选择题:本大题共 12小题,每小题3分,合计36分.(题目} 1. (2019年荆门,T1)—点 的倒数的平方是(){题目}2. (2019年荆门,T2)已知一天有86400秒,一年按365天计算共有31536000秒.科学计数 法表示31536000正确的是()A. 3.1536X 106B. 3.1536X 107C. 31.536X 106D. 0.31536X 108{答案}B{解析}本题考查了科学记数法. 31536000= 3.1536X 10 000 000 = 3.1536X 107.因此本题选B. {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}....................................... 3x 2y 1…{题目}3. (2019年荆门,T3)已知实数x, y 满足万程组 则x —2y 2的值为()x y 2. A. - 1 B. 1 C. 3 D. - 3{答案}A.. (x)1,.{解析}本题考查了二元一次方程组的解法.用代入法或加减法解原万程组,得所以x 2—2y 2y 1.= 12-2X12=1-2=- 1,因此本题选 A.{分值}3{章节:[1-8-2]消元一一解二元一次方程组} {考点:代入消元法} {考点:加减消元法} {类别:常考题}{难度:2-简单}A. 2B. 2C. -2D. - 2{答案}B{解析}本题考查了倒数的概念、二次根式的运算. 选B. {分值}3{章节:[1-15-2-1]分式的乘除} {考点:倒数}{考点:算术平方根的平方}{类别:易错题} —22.的倒数的平方=(-1『—1 .2)- 2因此本题T4)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相){题目}4. (2019年荆门, 垂直,则/ 1的度数是( OD. 110°{答案}C {解析}本题考查了三角形内角和定理的推论. 如图1, / 1是△ ABC 的外角,其中/ B = 45°, /ACB = 60°, 1 = /B+/CAB=105°.因此本题选 C. {分值}3 {章节:[1-11-2]与三角形有关的角} {考点:三角形的外角} {考点:多边形的内角和 {类别:常考题} {难度:3-中等难度} {题目} 5. (2019年荆门, A. 0 B. 1 C. {答案}C T5)抛物线y=- x2+ 4x — 4与坐标轴的交点个数为( ) 2 D. 3 {解析}本题考查了.抛物线的解析式可改写为 y= - (x-2)2.可见它与横轴交于点(2, 0),与y 轴 交于点(0, 4),即它与坐标轴的交点个数为 2.因此本题选C. {分值}3 {章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质} {考点:二次函数y = ax2+bx+c 的性质} {考点:抛物线与一元二次方程的关系 {类别:常考题} {类别:易错题} {难度:2-简单} {题目}6. (2019年荆门,T6)不等式组 2x 1 3x V 53 212, 的解集为(3(x 1) 1>5x 2(1 x)C, - 1 <x<02{答案}C 1{解析}本题考查了一元一次不等式组的解法. 解第一个不等式,得x> - 1 .解第二个不等式,得x<0.所以原不等式组的解集是一 1 <x<0.因此本题选C.2{分值}3{章节:[1-9-3]一元一次不等式组}{考点:解一元一次不等式组}{类别:常考题}{难度:3-中等难度}{题目}7. (2019年荆门,T7)投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a, b.那么方程x2+ax+ b = 0有解的概率是()B 3C Y D-16{答案}D{解析}本题考查了概率的计算、一元二次方程的判别式. 列表如下:原方程的判别式^= a2—4b.当a2—4b>0时,原方程有解.投掷一枚质地均匀的骰子两次,由表可知共有36种结果,其中每种结果出现的可能性相等,使△ >0的结果共有19种,即(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), (5,5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6,6).所以所求概率P=3T 因此本题选D.{分值}3{章节:[1-25-2]用列举法求概率}{考点:根的判别式}{考点:两步事件放回}{类别:常考题}{难度:3-中等难度}{题目}8. (2019年荆门,T8)欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A .盈利B.亏损C.不盈不亏 D.与售价a有关{答案}B{解析}本题考查了一元一次方程的应用. 设盈利、亏损的服装进价分别为xx、y元,则x(1+20%) = a, y(1 -20%) = a.解得x= 5a , y= 5a.6 4因为2a — (5a + 5a) = — 12<0,即总售价小于总进价,所以该服装店卖出这两件服装的盈利情况是亏损. 因此本题选B.{分值}3{章节:[1-3-3]实际问题与一元一次方程} {考点:一元一次方程的应用(商品利润问题) }{类别:常考题}{难度:3-中等难度}{题目}9. (2019年荆门,T9)如果函数丫=卜*+ b (k, b 是常数)的图象不经过第二象限,那么 k, b 应 满足的条件是()A. k>0且b<0B. k>0且b<0C. k>0且b<0D. k>0且bv0{答案}A{解析}本题考查了一次函数的图象和性质. ①当kw0时,k>0, b<0;②当k= 0时,y=b 是经过点(0, b )且平行于y 轴的直线,因此b<0.综上所述,k>0且b< 0,因此本题选A . {分值}3{章节:[1-19-2-2] 一次函数} {考点:正比例函数的图象} {类别:思想方法} {类别:常考题}{难度:3-中等难度}Rt^OCB 的斜边在y 轴上,OC=T3,含30°角的顶点与原{答案}A{解析}本题考查了旋转的性质.如 图2,旋转后点C 在横轴上,点B'在第二象限,且OC=OC =3,B' C BC = OC - tanZBOC=6X 写 =1.所以点B'的坐标为(73 , — 1).因此本题选A. 3{分值}3{章节:[1-23-1]图形的旋转} {{考点:坐标系内的旋转} {类别:常考题}{难度:3-中等难度}(题目} 11. (2019年荆门,T11)下列运算不正确的是()A . xy+x — y - 1 = (x- 1)(y+ 1){题目} 10. (2019年荆门,T10)如图,点重合,直角顶点 对应点B'的坐标是 C 在第二象限,将 Rt^OCB 绕原点顺时针旋转120°后得到^OC B ;则B 点的( )0) D . ( 73 , 0)1B. x2+y2+z2+xy+ yz+ zx= ](x+y + z)2C (x+ y)(x2-xy+y2)= x3+ y3D. (x- y)3 = x3-3x2y+ 3xy2- y3{答案}B{解析}2(x+y+ z)2= gx2+g y2+2 z2+ xy + yz+ zx,可见选项B中的运算不正确.因此本题选8.{分值}3{章节:[1-14-3]因式分解}{考点:多项式乘以多项式}{考点:因式分解-完全平方式}{类别:常考题}{难度:3-中等难度}{题目}12. (2019年荆门,T12)如图,△ ABC内心为I,连接AI并延长交^ ABC的外接圆于D,则线段DI与DB的关系是( )A. DI =DBB. DI>DBC. DIvDB D,不确定第12题图{答案}A{解析}本题考查了内心的概念、圆周角定理等知识. 连结BI. Z DIB = Z DAB + Z IBA, Z DBI = /DBC + / IBC.•・•点I为△ ABC的内心,DAB = /DAC = /DBC, /旧A =/旧C .DIB =Z DBI .DI =DB.因此本题答案是A .因此本题选A .{分值}3{章节:[1-24-2-2]直线和圆的位置关系}{考点:圆周角定理}{考点:三角形的内切圆与内心}{考点:几何选择压轴}{类别:常考题}{难度:3-中等难度}(题型:2-填空题}二、填空题:本大题共5小题,每小题3分,合计15分.{题目}13. (2019年荆门,T13)计算:一二十 | sin30°—2 + : 27 = ____________ .2.3 8{答案}1一召{解析}原式=2—耳+| 1-1\ - 2=2- 73+1 — 32 2=1 - 73.{分值}3{章节:[1-28-2-1]特殊角}{考点:二次根式的混合运算}{考点:特殊角的三角函数值}{类别:常考题}{难度:3-中等难度}{题目}14. (2019年荆门,T14)已知X1, X2是关于x的方程x2+(3k+1)x+2k2 + 1=0的两个不相等实数根,且满足(X1—1)(x2—1) = 8k2,则k的值为.{答案}1{解析}本题考查了一元二次方程根与系数的关系、根的判别式等.由根与系数的关系,得X1+x2=- (3k+ 1), X1X2=2k2+1.・•.(X1 —1)(X2—1)= 8k2,• •X1X2—(X1 + X2)+1 = 8k2..•-2k2+1 + (3k+1) + 1=8k2,整理,得2k2—k— 1 = 0.解得k1 = 1, k2= - 2 .当k=— 1时,原方程没有实数根,舍去.• • k= 1 .因此本题答案是1.{分值}3{章节:[1-21-3] 一元二次方程根与系数的关系}{考点:根的判别式}{考点:根与系数关系}{类别:常考题}{类别:易错题}{类别:新定义}{难度:3-中等难度}{题目}15. (2019年荆门,T15)如图,在平面直角坐标系中,函数y=K(k> 0, x>0)的图象与等x边三角形OAB的边OA, AB分别交于点M, N,且OM=2MA,若AB = 3,那么点N的横坐标为{答案} "5{解析}本题考查了反比例函数的性质、三角函数、一元二次方程等知识. 如图3,分别过点M, N 作x 轴的垂线,垂足依次为 C, D.依题意可知 OM = 2, / OMC=30°, : OC=1, MC =T 3.• • k= 1 x 33 =串.于是设 N (a, 雷)(1<2<3),则 OD=a, ND=哼,DB= 1 .. OB = AB=3, : a+ - =3.a解得a= 3_斐(舍去3_普). 因此本题答案是3_,5.2{分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:公式法}{考点:双曲线与几何图形的综合} {类别:常考题}{难度:4-较高难度}{题目} 16. (2019年荆门,T16)如图,等边三角形ABC 的边长为2,以A 为圆心,1为半径作圆分别 交AB, AC 边于D, E,再以点C 为圆心,CD 长为半径作圆交BC 边于F,连接E, F,那么图中阴 影部分的面积为.6 3 912{解析}本题考查了曲边三角形面积的计算.]S 阴影=S CDF + Sb ACD ——Ss ADE ——S^ CEF .{答案}如图4,连结CD,过点E 作EH^BC 于点H.. CF=CD=V3, / BCD = 30。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年湖北省荆州市中考数学试卷一、选择题(本大题共10小题每小题只有唯一正确答案,每小题3分,共30分)1.(3分)下列实数中最大的是()A.B.πC.D.|﹣4|2.(3分)下列运算正确的是()A.x﹣x=B.a3•(﹣a2)=﹣a6C.(﹣1)(+1)=4D.﹣(a2)2=a43.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为()A.10°B.20°C.30°D.40°4.(3分)某几何体的三视图如图所示,则下列说法错误的是()A.该几何体是长方体B.该几何体的高是3C.底面有一边的长是1D.该几何体的表面积为18平方单位5.(3分)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是()A.①②B.①③C.②③D.①②③6.(3分)若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)在平面直角坐标系中,点A的坐标为(1,),以原点为中心,将点A顺时针旋转30°得到点A',则点A'的坐标为()A.(,1)B.(,﹣1)C.(2,1)D.(0,2)8.(3分)在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.659.(3分)已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A.﹣2<k<0B.k>﹣2且k≠﹣1C.k>﹣2D.k<2且k≠1 10.(3分)如图,点C为扇形OAB的半径OB上一点,将△OAC沿AC折叠,点O恰好落在上的点D处,且l:l=1:3(l表示的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比为()A.1:3B.1:πC.1:4D.2:9二、填空题(本大题共6小题每小题3分,共18分)11.(3分)二次函数y=﹣2x2﹣4x+5的最大值是.12.(3分)如图①,已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD的中点,截面EFG将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为cm2.13.(3分)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.14.(3分)如图,灯塔A在测绘船的正北方向,灯塔B在测绘船的东北方向,测绘船向正东方向航行20海里后,恰好在灯塔B的正南方向,此时测得灯塔A在测绘船北偏西63.5°的方向上,则灯塔A,B间的距离为海里(结果保留整数).(参考数据sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50,≈2.24)15.(3分)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为.16.(3分)边长为1的8个正方形如图摆放在直角坐标系中,直线y=k1x平分这8个正方形所组成的图形的面积,交其中两个正方形的边于A,B两点,过B点的双曲线y=的一支交其中两个正方形的边于C,D两点,连接OC,OD,CD,则S△OCD=.三、解答题(本大题共8小题,共72分)17.(8分)已知:a=(﹣1)(+1)+|1﹣|,b=﹣2sin45°+()﹣1,求b﹣a 的算术平方根.18.(8分)先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a 的值代入求值.19.(8分)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D 分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=;(用含α的式子表示)(2)在图②中猜想AF与DE的数量关系,并证明你的结论.20.(8分)体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:组别个数段频数频率10≤x<1050.1210≤x<20210.42320≤x<30a430≤x<40b(1)表中的数a=,b=;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.21.(8分)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.22.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上一动点(不与O,B重合),过点P作射线1⊥AB,分别交弦BC,于D,E两点,在射线l上取点F,使FC=FD.(1)求证:FC是⊙O的切线;(2)当点E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若tan∠ABC=,且AB=20,求DE的长.23.(10分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?24.(12分)如图,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0).(1)求该抛物线的解析式;(2)若∠AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.2019年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题每小题只有唯一正确答案,每小题3分,共30分)1.【解答】解:∵<π<<|﹣4|=4,∴所给的几个数中,最大的数是|﹣4|.故选:D.2.【解答】解:A、x﹣x=x,故本选项错误;B、a3•(﹣a2)=﹣a5,故本选项错误;C、(﹣1)(+1)=5﹣1=4,故本选项正确;D、﹣(a2)2=﹣a4,故本选项错误;故选:C.3.【解答】解:∵直线m∥n,∴∠2+∠ABC+∠1+∠BAC=180°,∵∠ABC=30°,∠BAC=90°,∠1=40°,∴∠2=180°﹣30°﹣90°﹣40°=20°,故选:B.4.【解答】解:A、该几何体是长方体,正确;B、该几何体的高为3,正确;C、底面有一边的长是1,正确;D、该几何体的表面积为:2×(1×2+2×3+1×3)=22平方单位,故错误,故选:D.5.【解答】解:∵四边形ABCD为矩形,∴AE=CE,而OA=OC,∴OE为∠AOC的平分线.故选:C.6.【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.7.【解答】解:如图,作AE⊥x轴于E,A′F⊥x轴于F.∵∠AEO=∠OF A′=90°,∠AOE=∠AOA′=∠A′OF=30°∴∠AOE=∠A′,∵OA=OA′,∴△AOE≌△OA′F(AAS),∴OF=AE=,A′F=OE=1,∴A′(,1).故选:A.8.【解答】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.65×4﹣1.63×3=1.71米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.9.【解答】解:∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.10.【解答】解:连接OD交OC于M.由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.二、填空题(本大题共6小题每小题3分,共18分)11.【解答】解:y=﹣2x2﹣4x+5=﹣2(x+1)2+7,即二次函数y=﹣x2﹣4x+5的最大值是7,故答案为:7.12.【解答】解:∵已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD的中点,∴GF=GE=EF==2,过G作GH⊥EF于H,∴GH=GF=,∴图②中阴影部分的面积=×2×=2cm2.故答案为:2.13.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.14.【解答】解:由题意得,MN=20,∠ANB=63.5°,∠BMN=45°,∠AMN=∠BNM =90°,∴BN=MN=20,如图,过A作AE⊥BN于E,则四边形AMNE是矩形,∴AE=MN=20,EN=AM,∵AM=MN•tan26.5°=20×0.50=10,∴BE=20﹣10=10,∴AB==10≈22.4海里.故答案为:22.4.15.【解答】解:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.故答案为4和2.56.16.【解答】解:设A(4,t),∵直线y=k1x平分这8个正方形所组成的图形的面积,∴×4×t=4+1,解得t=,∴A(4,),把A(4,)代入直线y=k1x得4k1=,解得k1=,∴直线解析式为y=x,当x=2时,y=x=,则B(2,),∵双曲线y=经过点B,∴k2=2×=,∴双曲线的解析式为y==,当y=2时,=2,解得x=,则C(,2);当x=3时,y==,则D(3,),∴S△OCD=3×2﹣×3×﹣×2×﹣(2﹣)×(3﹣)=.故答案为.三、解答题(本大题共8小题,共72分)17.【解答】解:∵a=(﹣1)(+1)+|1﹣|=3﹣1+﹣1=1+,b=﹣2sin45°+()﹣1=2﹣+2=+2.∴b﹣a=+2﹣1﹣=1.∴==1.18.【解答】解:(﹣1)÷===,当a=﹣2时,原式==﹣1.19.【解答】解:(1)如图2,∵△OEF绕点O逆时针旋转α角,∴∠DOF=∠COE=α,∵四边形ABCD为正方形,∴∠AOD=90°,∴∠AOF=90°﹣α;故答案为90°﹣α;(2)AF=DE.理由如下:如图②,∵四边形ABCD为正方形,∴∠AOD=∠COD=90°,OA=OD,∵∠DOF=∠COE=α,∴∠AOF=∠DOE,∵△OEF为等腰直角三角形,∴OF=OE,在△AOF和△DOE中,∴△AOF≌△DOE(SAS),∴AF=DE.20.【解答】解(1)抽查了九年级学生数:5÷0.1=50(人),20≤x<30的人数:50×=20(人),即a=20,30≤x<40的人数:50﹣5﹣21﹣20=4(人),b==0.08,故答案为20,0.08;(2)该九年级排球垫球测试结果小于10的人数450×(1﹣0.1)=405(人),答:该九年级排球垫球测试结果小于10的人数为405人;(3)列表如下∴P(选出的2人为一个男生一个女生的概率)==.21.【解答】解:∵y=x2﹣4,∴其顶点坐标为(0,﹣4),∵y=x2﹣4是y=﹣x+p的伴随函数,∴(0,﹣4)在一次函数y=﹣x+p的图象上,∴﹣4=0+p.∴p=﹣4,∴一次函数为:y=﹣x﹣4,∴一次函数与坐标轴的交点分别为(0,﹣4),(﹣4,0),∴直线y=﹣x+p与两坐标轴围成的三角形的两直角边都为|﹣4|=4,∴直线y=﹣x+p与两坐标轴围成的三角形的面积为:.(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=﹣2,x1x2=n,∴,∵函数y=x2+2x+n与x轴两个交点间的距离为4,∴,解得,n=﹣3,∴函数y=x2+2x+n为:y=x2+2x﹣3=(x+1)2﹣4,∴其顶点坐标为(﹣1,﹣4),∵y=x2+2x+n是y=mx﹣3(m≠0)的伴随函数,∴﹣4=﹣m﹣3,∴m=1.22.【解答】解:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD∴∠FCD=∠FDC∵∠FDC=∠BDP∴∠OCB+∠FCD=90°∴OC⊥FC∴FC是⊙O的切线.(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②若tan∠ABC=,且AB=20,求DE的长.∵=tan∠ABC=,设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=202,解得k=4,∴AC=12,BC=16,∵点E是的中点,∴OE⊥BC,BH=CH=8,∴OE×BH=OB×PE,即10×8=10PE,解得:PE=8,由勾股定理得OP===6,∴BP=OB﹣OP=10﹣6=4,∵=tan∠ABC=,即DP=BP==3∴DE=PE﹣DP=8﹣3=5.23.【解答】解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:.答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.故答案为:8.(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:2≤m≤5.∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.24.【解答】解:(1)∵平行四边形OABC中,A(6,0),C(4,3)∴BC=OA=6,BC∥x轴∴x B=x C+6=10,y B=y C=3,即B(10,3)设抛物线y=ax2+bx+c经过点B、C、D(1,0)∴解得:∴抛物线解析式为y=﹣x2+x﹣(2)如图1,作点E关于x轴的对称点E',连接E'F交x轴于点P ∵C(4,3)∴OC=∵BC∥OA∴∠OEC=∠AOE∵OE平分∠AOC∴∠AOE=∠COE∴∠OEC=∠COE∴CE=OC=5∴x E=x C+5=9,即E(9,3)∴直线OE解析式为y=x∵直线OE交抛物线对称轴于点F,对称轴为直线:x=﹣7∴F(7,)∵点E与点E'关于x轴对称,点P在x轴上∴E'(9,﹣3),PE=PE'∴当点F、P、E'在同一直线上时,PE+PF=PE'+PF=FE'最小设直线E'F解析式为y=kx+h∴解得:∴直线E'F:y=﹣x+21当﹣x+21=0时,解得:x=∴当PE+PF的值最小时,点P坐标为(,0).(3)存在满足条件的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形.设AH与OE相交于点G(t,t),如图2∵AH⊥OE于点G,A(6,0)∴∠AGO=90°∴AG2+OG2=OA2∴(6﹣t)2+(t)2+t2+(t)2=62∴解得:t1=0(舍去),t2=∴G(,)设直线AG解析式为y=dx+e∴解得:∴直线AG:y=﹣3x+18当y=3时,﹣3x+18=3,解得:x=5∴H(5,3)∴HE=9﹣5=4,点H、E关于直线x=7对称①当HE为以点M,N,H,E为顶点的平行四边形的边时,如图2则HE∥MN,MN=HE=4∵点N在抛物线对称轴:直线x=7上∴x M=7+4或7﹣4,即x M=11或3当x=3时,y M=﹣×9+×9﹣=∴M(3,)或(11,)②当HE为以点M,N,H,E为顶点的平行四边形的对角线时,如图3则HE、MN互相平分∵直线x=7平分HE,点F在直线x=7上∴点M在直线x=7上,即M为抛物线顶点∴y M=﹣×49+×7﹣=4∴M(7,4)综上所述,点M坐标为(3,)、(11,)或(7,4).。