变压器负载运行理

合集下载

变压器并联运行的负载分配原理

变压器并联运行的负载分配原理

变压器并联运行的负载分配原理
变压器并联运行是一种提高电力系统稳定性和可靠性的常用方法,但在实际应用中,如何合理地分配负载却是一个关键问题。

以下是变压器并联运行的负载分配原理。

1. 同等负载分配原则
当变压器容量和变比相同,且运行条件相同时,应采取同等负载分配原则。

即将负载平均分配到每个变压器上,以达到共同工作的目的。

这种方式能有效避免变压器过载或欠载的情况,保证变压器并联运行的稳定性和可靠性。

2. 不等负载分配原则
当变压器容量或变比不同,或者运行条件不同,应采取不等负载分配原则。

即根据变压器的容量和运行条件的不同,合理分配负载。

这种方式能实现变压器的最大利用,同时保证其正常运行。

3. 优先级分配原则
当变压器容量和变比相同,但运行条件不同时,应采取优先级分配原则。

即将负载分配到运行条件较好的变压器上,以保证系统的稳定性和可靠性。

4. 临时负载分配原则
在特殊情况下,如设备维护、故障处理等,可采取临时负载分配原则。

即将一个变压器的全部或部分负载转移到另一个变压器上,以保证供电的连续性和稳定性。

总之,变压器并联运行的负载分配原理应根据变压器的容量、变
比和运行条件等因素进行合理分配,以保证系统的稳定性和可靠性。

第2章 变压器的运行原理和特性

第2章 变压器的运行原理和特性
16

E U 20 2
Y,d接线 D,y接线
U 1N k 3U 2 N
k
3U1N U2N
由于 R m R1 , X m X 1 ,所以有时忽略漏阻抗,空载等效电路只是一 个Z m元件的电路。在 U1一定的情况下,I 0大小取决于Z m的大小。从运行角度 讲,希望 I 0 越小越好,所以变压器常采用高导磁材料,增大 Z m,减小 I 0 , 提高运行效率和功率因数。
使

1 与 I 0成线性关系; 1)性质上: 0 与 I 0 成非线性关系;
– 变压器各电磁量正方向
• 由于变压器中各个电磁量的大小和方向都随时间以 电源频率交变的,为了用代数式确切的表达这些量 的瞬时值,必须选定各电磁量的正方向,才能列式 子。 • 当某一时刻某一电磁量的瞬时值为正时,说明它与 实际方向一致; 当某一时刻某一电磁量的瞬时值为负时,说明它与 实际方向相反。 • 注:正方向是人为规定的有任选性,而各电磁量的 实际方向则由电磁定律决定。

(2)二次侧电动势平衡方程
U1
I 0
0
) (I 2

E U 20 2
(3)变比
U 1
U2
E 1
使
E 1
1
E 2
U 20
u2

对三相变压器,变比为一、二次侧的相电动势之比,近似为 额定相电压之比,具体为 Y,d接线
U1N k 3U 2 N
8

22

F F F 1 2 0 N I 或 N1 I 1 2 2 N1 I 0 N I I ( 2 ) I I ( 2 ) I I 用电流形式表示 I 2 0 0 1L 1 0 N1 k

第二章 变压器的运行原理

第二章 变压器的运行原理
答:变压器空载运行时也需要从电网吸收电功率,以供给变压器本身功 率损耗,它转化成热能消耗在周围介质中。小负荷用户使用大容量变压器时, 在经济、技术两方面都不合理。对电网来说,由于变压器容量大,励磁电流 较大,而负荷小,电流负载分量小,即有功分量小,使电网功率因数降低, 输送有功功率能力下降;对用户来说投资增大,空载损耗也较大,变压器效 率低。
Electric Machinery
本章节重点和难点: 重点: (1)变压器空载运行时磁动势、电动势平衡关系,等值电路和相 量图; (2)变压器负载运行时磁动势、电动势平衡关系,等值电路和相 量图; (3)绕组折算前后的电磁关系; (4)变压器空载实验和短路实验,变压器各参数的物理意义; (5)变压器的运行特性。 难点: (1)变压器绕组折算的概念和方法; (2)变压器的等值电路和相量图; (3)励磁阻抗Zm与漏阻抗Z1的区别; (4)励磁电流与铁芯饱和程度的关系; (5)参数测定、标么值。
空载损耗约占额定容量的(0.2~1)%,随 容量的增大而减小。这一数值并不大,但因为 电力变压器在电力系统中用量很大,且常年接 在电网上,因而减少空载损耗具有重要的经济 意义。工程上为减少空载损耗,改进设计结构 的方向是采用优质铁磁材料:优质硅钢片、激 光化硅钢片或应用非晶态合金。
Electric Machinery
漏电动势 : E1
2 2
fN 1 1
2 fN 1 1
Electric Machinery
E 1 j 2 f

N 1 1


I 0 j 2 fL 1 I 0 j I 0 x 1



I0
x 1 2 f
N1
2
为一次侧漏抗,反映漏磁通的作用。

变压器的运行原理

变压器的运行原理

变压器的运行原理
变压器是一种用来改变交流电压的电气设备,其运行原理主要基于电磁感应和法拉第电磁感应定律。

变压器主要由一个铁芯和两个绕组组成,分别是输入侧的初级绕组和输出侧的次级绕组。

首先,当交流电流通过变压器的初级绕组时,产生的磁场会使铁芯磁化,从而在次级绕组中感应出电动势。

根据法拉第电磁感应定律,感应电动势的大小与磁场的变化率成正比,因此变压器的初级和次级绕组匝数的比值决定了输出电压和输入电压的比值。

其次,由于铁芯的存在,可以大大增强磁场的传导效果,减小电磁泄漏,提高变压器的效率。

铁芯的磁化特性也对变压器的运行有重要影响,通常使用硅钢片制成的铁芯可以减小铁芯的磁滞和涡流损耗,提高变压器的效率和稳定性。

此外,变压器的运行还受到电阻、感抗和容抗等因素的影响。

电阻会导致变压器的损耗,感抗和容抗会影响变压器的电流和功率因数,需要在设计和运行过程中进行合理的补偿和控制。

总的来说,变压器的运行原理是利用电磁感应的原理,通过变压器的变压比和铁芯的磁化来改变输入和输出的电压。

在实际应用中,需要考虑电阻、感抗和容抗等因素,以确保变压器的稳定运行和高效率的电压变换。

变压器作为电力系统中的重要设备,承担着电压变换和电力传输的重要功能,对电力系统的运行和稳定性起着至关重要的作用。

变压器经济运行负载率标准

变压器经济运行负载率标准

变压器经济运行负载率标准
变压器的经济运行负载率标准因变压器类型、额定容量、使用环境等因素而异。

一般来说,变压器的经济运行负载率在50%~80%之间,以保证变压器的正常运行和寿命。

如果负载率过低,变压器可能会出现过载现象,导致温升过高、油漏、绕组烧毁等故障。

如果负载率过高,变压器可能会过热、损耗过大,缩短使用寿命。

具体来说,对于民用建筑中常用的双绕组变压器,其经济运行负载率通常在75%左右。

而在其他类型的变压器中,如配电变压器、居民住宅小区配电变压器等,其经济运行负载率会因具体标准和要求而有所不同。

因此,在实际应用中,需要根据变压器的具体情况和实际需求来确定其经济运行负载率标准,以保证变压器的安全、经济、高效运行。

第2章 变压器的基本作用原理与理论分析

第2章 变压器的基本作用原理与理论分析

3、油枕 4、高低压绝缘套管 5、油标` 6、起吊孔
1、油箱
2、散热管
7、铭牌
18
大型电力变压器
19
五、变压器的额定值
1 额定容量S N (kVA) : 、
指铭牌规定的额定使用条件下所能输出的视在功率。
2 额定电流I1N 和I 2 N ( A) : 、
指在额定容量下,允许长期通过的额定电流。在三相 变压器中指的是线电流
铁轭
铁芯柱
铁芯叠片
装配实物
11
铁芯各种截面
充分利用空间
提高变压器容量
减小体积。
12
㈡、绕组
变压器的电路,一般用绝缘铜线或铝线绕制而成。
按照绕组在铁芯中的排列方法分为:铁芯式和铁壳式两类 按照变压器绕组的基本形式分为:同芯式和交叠式两种.
1、铁芯式:
(1)、每个铁芯柱上都套有
高压绕组和低乐绕组。为了绝
3 额定电压U1N 和U 2 N (kV ) : 、
指长期运行时所能承受的工作电压( 线电压)
U1N是指加在一次侧的额定 电压,U 2 N 是指一次侧加 U1N时二次的开路电压对三相变压器指的是线 . 电压.
20
三者关系:
单相 : S 三相 : S
N N
U 1 N I1 N U 2 N I 2 N 3U1N I1N 3U 2 N I 2 N
同理,二次侧感应电动势也有同样的结论。
则:
e2 N 2 d 0 2fN 2 m sin(t 90 0 ) E2 m sin(t 90 0 ) dt
有效值: E2 4.44 fN2m
相量:
E2 j 4.44 fN2m
25
⒉ E1﹑E2在时间相位上滞后于磁通 0 900. 其波形图和相量图如图2—8所示

3.3单相变压器的负载运行

3.3单相变压器的负载运行
§3-3 单相变压器的负载运行 一、变压器负载运行时的物理情况
e1
N1
d
dt
e1
N1
d1
dt
e2
N2
d
dt
e2
N2
d2
dt
原边的电动势平衡方程: 副边的电动势平衡方程:
u1 e1 e1 i1R1
u2 e2 e2 i2R2 ☆
i2ZL
1
§3-3 单相变压器的负载运行
二、负载运行时的基本方程式
18
解 :(1)原、副边线电流: 变压器变比:
k U1N / 3 10000 25 U2N / 3 400
负载阻抗折算值:
ZL k 2ZL 252 (0.2 j0.07) 125 j43.75Ω
每相总阻抗:
Z zk ZL 1.546 j5.408125 j43.75Ω 126.546 j49.158 135.7621.23
X 2 k 2 X 2 3 0.055 0.165Ω
ZL k 2ZL 3 (4 j3) 12 j9Ω
14
根据题意,画出T形等值电路:
励磁阻抗:
Zm Rm jX m 30 j310 311.484.5
15
副边漏阻抗和负载阻抗和:
Z Z2 ZL 0.105 j0.165 12 j9 15.1837.1
『补例3-4』一台三相变压器,Y/y连接,SN=800kVA,U1N/U2N
=10000/400V;已知每相短路电阻rk=1.546,短路电抗xk=5.408
,该变压器原边接额定电压,副边接三相对称负载运行,每
相负载阻抗为:ZL=0.20+j0.07 。试用简化等值电路计算:
(1)变压器原、副边线电流; (2)副边线电压; (3)输入输出的有功功率及无功功率 (4)变压器效率

1094 电力变压器负载导则

1094 电力变压器负载导则

1094 电力变压器负载导则
电力变压器的负载导则是指在变压器运行过程中,对其进行合
理的负载安排和管理,以确保变压器运行稳定、安全、高效。

负载
导则包括了变压器的额定负载、过负荷运行、短时过载、长时过载
等内容。

首先,变压器的额定负载是指变压器在额定电压和额定频率下
能够稳定运行的负载能力。

在实际运行中,应该根据变压器的额定
容量来合理安排负载,避免超负荷运行,以确保变压器的安全运行。

其次,变压器可以短时过载运行,但是需要控制过载时间和过
载程度,避免对变压器造成损害。

在短时间内的过载运行,可以根
据变压器的设计特点和负载情况来临时提高负载能力,但是需要注
意及时恢复正常负载状态,避免长时间过载运行导致变压器损坏。

此外,对于长时间过载运行,需要谨慎安排和管理。

长时间过
载运行会导致变压器温升过高,影响绝缘性能,加速变压器老化,
从而缩短变压器的使用寿命。

因此,在实际运行中,应该根据变压
器的设计特点和负载情况,合理安排负载,避免长时间过载运行。

总的来说,合理的负载导则对于变压器的安全稳定运行非常重要。

运行人员应该严格按照变压器的负载导则进行操作,确保变压器在安全、高效的状态下运行,延长变压器的使用寿命,保障电网运行的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器负载运行原理
变压器一次绕组接额定电压,二次绕组与负载相连的运行状态称为变压器的负载运行,如图所示。

此时二次绕组中有电流I2通过,由于该电流是依据电磁感应原理由一次绕组感应而产生,因此一次绕组中的电流也由空载电流I0变为负载电流I1。

下面分析一、二次绕组中电流的关系。

图单相变压器负载运行
二次绕组中的电流I2所产生的磁通势N2I2将在铁心中产生磁通Ф2,它力图改变铁心中的主磁通Фm。

,但由前面分析的恒磁通的概念可知,由于加在一次绕组上的电压有效值U1不变,因此主磁通Фm基
本不变,故随着I2的出现,一次绕组中通过的电流将从I0增加到I1,一次绕组的磁通势也将由N1I0增加到N1I1,它所增加的部分正好与二次绕组的磁通势N2I2相抵消,从而维持铁心中的主磁通Фm 的大小不变。

由此可得变压器负载运行时的磁通势平衡方程式为
式中,KI称为变压器的变流比。

式表明,变压器一、二次绕组中的电流与一、二次绕组的匝数成反比,即变压器也有变换电流的作用,且电流的大小与匝数成反比。

由式可得出:变压器的高压绕组匝数多,而通过的电流小,因此绕组所用的导线细;反之低压绕组匝数少,通过的电流大,所用的导线较粗。

相关文档
最新文档