用牛顿定律解决问题(一)--每课一练

用牛顿定律解决问题(一)--每课一练
用牛顿定律解决问题(一)--每课一练

4.6 用牛顿运动定律解决问题(一) 作业

1.粗糙水平面上的物体在水平拉力F 作用下做匀加速直线运动,现使F 不断减小,则在滑动过程中( )

A .物体的加速度不断减小,速度不断增大

B .物体的加速度不断增大,速度不断减小

C .物体的加速度先变大再变小,速度先变小再变大

D .物体的加速度先变小再变大,速度先变大再变小

答案 D 解析 合外力决定加速度的大小,滑动过程中物体所受合外力是拉力和地面摩擦力的合力.因为F 逐渐减小,所以合外力先减小后反向增大,而速度是增大还是减小与加速度的大小无关,而是要看加速度与速度的方向是否相同.前一阶段加速度与速度方向同向,所以速度增大,后一阶段加速度与速度方向相反,所以速度减小,因此D 正确.

2.A 、B 两物体以相同的初速度滑上同一粗糙水平面,若两物体的质量为m A >m B ,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离x A 与x B 相比为( )

A .x A =x

B B .x A >x B

C .x A

D .不能确定

答案 A 解析 通过分析物体在水平面上滑行时的受力情况可以知道,物体滑行时受到的滑动摩擦力μmg 为合外力,由牛顿第二定律知:μmg =ma 得:a =μg ,可见:a A =a B .

物体减速到零时滑行的距离最大,由运动学公式可得:

v 2A =2a A x A ,v 2B =2a B x B ,又因为v A =v B ,a A =a B .所以x A =x B ,A 正确.

3.假设洒水车的牵引力不变且所受阻力与车重成正比,未洒水时,车匀速行驶,洒水时它的运动将是( )

A .做变加速运动

B .做初速度不为零的匀加速直线运动

C .做匀减速运动

D .继续保持匀速直线运动

答案 A

解析 a =F 合m =F -kmg m =F m

-kg ,洒水时质量m 减小,则a 变大,所以洒水车做加速度变大的加速运动,故A 正确.

4.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止

转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车刹车前的速度为()

A.7 m/s B.14 m/s C.10 m/s D.20 m/s

答案B解析设汽车刹车后滑动过程中的加速度大小为a,由牛顿第二定律得:μmg =ma,解得:a=μg.由匀变速直线运动的速度位移关系式v20=2ax,可得汽车刹车前的速度为:v0=2ax=2μgx=2×0.7×10×14 m/s=14 m/s,因此B正确.

5.用30 N的水平外力F拉一静止在光滑的水平面上质量为20 kg的物体,力F作用3 s后消失,则第5 s末物体的速度和加速度分别是()

A.v=7.5 m/s,a=1.5 m/s2B.v=4.5 m/s,a=1.5 m/s2

C.v=4.5 m/s,a=0 D.v=7.5 m/s,a=0

答案C解析前3 s物体由静止开始做匀加速直线运动,由牛顿第二定律得:F=ma,

解得:a=F

m=30

20m/s

2=1.5 m/s2,3 s末物体的速度为v=at=1.5×3 m/s=4.5 m/s;3 s后,力F消失,由牛顿第二定律可知加速度立即变为0,物体做匀速直线运动,所以5 s末的速度仍是3 s末的速度,即4.5 m/s,加速度为a=0,故C正确.

6.一个物体在水平恒力F的作用下,由静止开始在一个粗糙的水平面上运动,经过时间t,速度变为v,如果要使物体的速度变为2v,下列方法正确的是() A.将水平恒力增加到2F,其他条件不变

B.将物体质量减小一半,其他条件不变

C.物体质量不变,水平恒力和作用时间都增为原来的两倍

D.将时间增加到原来的2倍,其他条件不变

答案D解析由牛顿第二定律得F-μmg=ma,所以a=F

m-μg,对比A、B、C三项,均不能满足要求,故选项A、B、C均错,由v=at可得选项D对.

7.某气枪子弹的出口速度达100 m/s,若气枪的枪膛长0.5 m,子弹的质量为20 g,若把子弹在枪膛内的运动看做匀变速直线运动,则高压气体对子弹的平均作用力为() A.1×102 N B.2×102 N

C.2×105 N D.2×104 N

答案 B

解析根据v2=2ax,得a=v2

2x=

1002

2×0.5

m/s2=1×104 m/s2,从而得高压气体对子弹的作

用力F =ma =20×10-3×1×104 N =2×102 N.

8.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带.假定乘客质量为70 kg ,汽车车速为90 km/h ,从踩下刹车闸到车完全停止需要的时间为5 s ,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)( )

A .450 N

B .400 N

C .350 N

D .300 N

答案 C

解析 汽车的速度v 0=90 km/h =25 m/s 设汽车匀减速的加速度大小为a ,则

a =v 0t

=5 m/s 2 对乘客应用牛顿第二定律可得:F =ma =70×5 N =350 N ,所以C 正确.

9.某消防队员从一平台上跳下,下落2 m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m ,在着地过程中地面对他双脚的平均作用力估计为( )

A .自身所受重力的2倍

B .自身所受重力的5倍

C .自身所受重力的8倍

D .自身所受重力的10倍

答案 B

解析 由自由落体规律可知:v 2=2gH 缓冲减速过程:v 2=2ah

由牛顿第二定律列方程F -mg =ma 解得F =mg (1+H /h )=5mg ,故B 正确.

10.如图1所示为某小球所受的合力与时间的关系,各段的合力大小相同,且一直作用下去,作用时间相同,设小球从静止开始运动.由此可判定( )

A .小球向前运动,再返回停止

B .小球向前运动再返回不会停止

C .小球始终向前运动

D .小球向前运动一段时间后停止

答案 C

解析 作出相应的小球的v —t 图象如图所示,物体的运动方向由

速度的方向决定.由图象可以看出,小球的速度方向始终没有变化,

故小球始终向前运动,故选C.

11.物体以14.4 m/s 的初速度从斜面底端冲上倾角为θ=37°的斜坡,到最高点后再滑下,如图2所示.已知物体与斜面间的动摩擦因数为0.15,求:

(1)物体沿斜面上滑的最大位移; 图2

(2)物体沿斜面下滑的时间.(已知sin 37°=0.6,cos 37°=0.8)

答案 (1)14.4 m (2)2.4 s

解析 (1)上升时加速度大小设为a 1,由牛顿第二定律得:

mg sin 37°+μmg cos 37°=ma 1

解得a 1=7.2 m/s 2

上滑最大位移为x =v 202a 1

代入数据得x =14.4 m

(2)下滑时加速度大小设为a 2,由牛顿第二定律得:

mg sin 37°-μmg cos 37°=ma 2

解得a 2=4.8 m/s 2

由x =12

a 2t 2得下滑时间 t =2x a 2

= 6 s ≈2.4 s 12.如图3所示,在海滨游乐场里有一场滑沙运动.某人坐

在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点

后,沿水平的滑道再滑行一段距离到C 点停下来.如果人和滑板

的总质量m =60 kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数

均为μ=0.5,斜坡的倾角θ=37°(已知sin 37°=0.6,cos 37°=0.8), 图3

斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,人从斜坡滑上水平滑道时没有速度损失,重力加速度g 取10 m/s 2.

(1)人从斜坡上滑下的加速度为多大?

(2)若由于场地的限制,水平滑道的最大距离BC 为L =20 m ,则人从斜坡上滑下的距离AB 应不超过多少?

答案 (1)2 m/s 2 (2)50 m

解析 (1)人在斜坡上受力如图所示,建立直角坐标系,设人在

斜坡上滑下的加速度为a 1,由牛顿第二定律得:

mg sin θ-F f1=ma 1

F N1-mg cos θ=0 图3

又F f1=μF N1

联立解得a 1=g (sin θ-μcos θ)

=10×(0.6-0.5×0.8) m/s 2=2 m/s 2.

(2)人在水平滑道上受力如图所示,由牛顿第二定律得:

F f2=ma 2,F N2-mg =0

又F f2=μF N2

联立解得a 2=μg =5 m/s 2

设人从斜坡上滑下的距离为L AB ,对AB 段和BC 段分别由匀变速直线运动公式得: v 2-0=2a 1L AB,0-v 2=-2a 2L

联立解得L AB =50 m.

13.如图4所示,质量m =2 kg 的物体静止于水平地面的A 处,A 、B 间距L =20 m .物体与地面间的动摩擦因数μ=0.5,现用大小为20 N ,与水平方向成53°的力斜向上拉此物体,使物体从A 处由静止开始运动并能到达B 处,求该力作用的最短时间t (已知sin 53°=0.8,cos 53°=0.6,g 取10 m/s 2).

图4

答案 2 s

解析 物体先以大小为a 1的加速度匀加速运动,撤去外力后,再以大小为a 2的加速度减速到B ,且到B 时速度恰好为零.

力F 作用时:F cos 53°-μ(mg -F sin 53°)=ma 1

t 时刻:x 1=12

a 1t 2 v =a 1t 撤去力F 后:μmg =ma 2 v 2=2a 2x 2

由于x 1+x 2=L

解得t =2 s

牛顿运动定律的运用教案

牛顿运动定律的运用教 案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

牛顿运动定律的应用 教学目标 一、知识目标 1.知道运用牛顿运动定律解题的方法 2.进一步学习对物体进行正确的受力分析 二、能力目标 1.培养学生分析问题和总结归纳的能力 2.培养学生运用所学知识解决实际问题的能力 三、德育目标 1.培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、新课教学

(一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况 例1.如图所示,质量m=2Kg 的物体静止在光滑的水平地 面上,现对物体施加大小F=10N 与水平方向夹角θ= 370的斜向上的拉力,使物体向右做匀加速直线运动。已知sin370=,cos370=取g=10m/s 2,求物体5s 末的速度及5s 内的位移。 问:a.本题属于那一类动力学问题 (已知物体的受力情况,求解物体的运动情况) b.物体受到那些力的作用这些力关系如何 引导学生正确分析物体的受力情况,并画出物体受力示意图。

用牛顿定律解决问题(一)

第6节 用牛顿定律解决问题(一) 理解领悟 牛顿第二定律揭示了运动和力的关系,结合运动学公式,我们可以从物体的受力情况确定物体的运动情况,也可以从物体的运动情况确定物体的受力情况。本课便涉及这两类应用牛顿运动定律解决的一般问题。 1. 力和运动关系的两类基本问题 关于运动和力的关系,有两类基本问题,那就是: ① 已知物体的受力情况,确定物体的运动情况; ② 已知物体的运动情况,确定物体的受力情况。 2. 从受力确定运动情况 已知物体受力情况确定运动情况,指的是在受力情况已知的条件下,要求判断出物体的运动状态或求出物体的速度和位移。处理这类问题的基本思路是:先分析物体的运动情况求出合力,根据牛顿第二定律求出加速度,再利用运动学的有关公式求出要求的速度和位移。 3. 从运动情况确定受力 已知物体运动情况确定受力情况,指的是在运动情况(如物体的运动性质、速度、加速度或位移)已知的条件下,要求得出物体所受的力。处理这类问题的基本思路是:首先分析清楚物体的受力情况,根据运动学公式求出物体的加速度,然后在分析物体受力情况的基础上,利用牛顿第二定律列方程求力。 4. 加速度a 是联系运动和力的纽带 在牛顿第二定律公式(F=ma )和运动学公式(匀变速直线运动公式v=v 0+at , x=v 0t+21at 2, v 2-v 02=2ax 等)中,均包含有一个共同的物理量——加速度a 。 由物体的受力情况,利用牛顿第二定律可以求出加速度,再由运动学公式便可确定物体的运动状态及其变化;反过来,由物体的运动状态及其变化,利用运动学公式可以求出加速度,再由牛顿第二定律便可确定物体的受力情况。 可见,无论是哪种情况,加速度始终是联系运动和力的桥梁。求加速度是解决有关运动和力问题的基本思路,正确的受力分析和运动过程分析则是解决问题的关键。 5. 解决力和运动关系问题的一般步骤 牛顿第二定律F=ma ,实际上是揭示了力、加速度和质量三个不同物理量之间的关系。方程左边是物体受到的合力,首先要确定研究对象,对物体进行受力分析,求合力的方法可以利用平行四边形定则或正交分解法。方程的右边是物体的质量与加速度的乘积,要确定物体的加速度就必须对物体的运动状态进行分析。 由此可见,应用牛顿第二定律结合运动学公式解决力和运动关系的一般步骤是: ① 确定研究对象; ② 分析研究对象的受力情况,必要时画受力示意图; ③ 分析研究对象的运动情况,必要时画运动过程简图; ④ 利用牛顿第二定律或运动学公式求加速度; ⑤ 利用运动学公式或牛顿第二定律进一步求解要求的物理量。 6. 教材中两道例题的说明 第1道例题已知物体受力情况确定运动情况,求解时首先对研究的物体进行受力分析,根据牛顿第二定律由合力求出加速度,然后根据物体的运动规律确定了物体的运动情况(末

应用牛顿运动定律解决“四类”热点问题

专题强化三应用牛顿运动定律解决“四类”热点问题 专题解读 1.本专题是应用动力学方法分析动力学图象问题、连接体问题、临界和极值问题以及多运动过程问题.在高考中主要以选择题形式考查,且每年都有命题. 2.学好本专题可以培养同学们的分析推理能力、应用数学知识和方法解决物理问题的能力. 3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识. 1.常见图象 v-t图象、a-t图象、F-t图象、F-a图象等. 2.题型分类 (1)已知物体受到的力随时间变化的图线,要求分析物体的运动情况. (2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况. (3)由已知条件确定某物理量的变化图象. 3.解题策略 (1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等. (3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断. 例1(多选)(2019·全国卷Ⅲ·20)如图1(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s2.由题给数据可以得出() A.木板的质量为1 kg B.2~4 s内,力F的大小为0.4 N C.0~2 s内,力F的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

用牛顿定律解决问题

第六节 用牛顿定律解决问题(一) 教学要求: 1、进一步学习分析物体的受力情况,并能结合物体的运动情况进行受力分析。 2、掌握应用牛顿运动定律解决动力学问题的基本思路方法。 3、学会如何从牛顿运动定律入手求解有关物体运动状态参量。 4、学会根据物体运动状态参量的变化求解有关物体的受力情况。 主要内容: 力是使物体产生加速度的原因,受力作用的物体存在加速度.我们可以结合运动学知识, 解决有关物体运动状态变化的问题.另一方面,当物体的运动状态变化时,一定有加速度, 我们可以由加速度来确定物体的受力. 一、动力学的两类基本问题 1.已知物体的受力情况,要求确定物体的 2.已知物体的运动情况,要求推断物体的 二、用牛顿第二定律解题的一般方法和步骤 1.确定研究对象 2.进行受力分析和运动状态分析,画出受力的示意图 3.建立坐标系,根据定理列方程 4.统一单位,代入数据求解 检查所得结果是否符合实际,舍去不合理的解. 课本例题讲解 随堂练习 1.一轻质弹簧上端固定,下端挂一重物,平衡时弹簧伸长了4cm .再将重物向下拉1cm , 然后放手.则在刚放手的瞬间,重物的加速度是(取g=10m/s 2)( ) A .2.5m/s 2 B.7.5 m/s 2 C.10 m/s 2 D.12.5 m/s 2 2.如图所示,车沿水平地面做直线运动,车厢内悬挂在车顶上小球与悬点 的连线与竖直方向的夹角为θ,放在车厢底板上的物体A 跟车厢相对静止.A 的质量为m ,则A 受到的摩擦力的大小和方向是: A .mgsinθ,向右 B. mgtanθ,向右 C. mgcosθ, 向左 C. mgtanθ, 向左 3.质量为2kg 的质点,在两个力F 1=2N ,F 2=8N 的作用下,获得的加速度大小可能是:( ) A .1m/s 2 B.3m/s 2 C.6m/s 2 D.4m/s 2 4.一质量为m 的物体,在水平恒力F 作用下沿粗糙水平面由静止开始运动,经时间t 后速 度为v .为使物体的速度增为2v ,可以采用的办法是( ) A .将物体的质量减为原来的1/2,其他条件不变 B .将水平力增为2F ,其他条件不变. C .将时间增为2t ,其他条件不变. D .将物体质量、水平恒力和时间都增为原来的两倍. 5.质量为m 的木块,以初速v 0能在水平面上滑行的距离为s .如在木块上再粘一个质量为 m 的木块,仍以初速v 0在同一水平面上滑行.它们能滑行的距离为 ( ) A . 2s B .2s . C .4 s D .s A

应用牛顿运动定律解题的方法和步骤

§3.4应用牛顿运动定律解题的方法和步骤 应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。 解题的基本步骤如下: (1)选取隔离体,即确定研究对象 一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。 在选取隔离体时,采用整体法还是隔离法要灵活运用。如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有 两种方法,一种是将两物体隔离,得方程为 ma T mg =- Ma Mg T =-μ 另—种方法是将整个系统作为研究对象,得方 程为 a M m Mg mg )(+=-μ 显然,如果只求系统的加速度,则第二种方法好;如果还要求绳的张力,则需采用前一种方法。 (2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢 图3-4-1

掌握。 ①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。并配合作物体的受力示意图。 大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。这就决定了分析受力的顺序。如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。 ②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能 同时取而说它受到三个力的作用。一般情况下选取合Array力,如物体在斜面上受到重力,一般不说它受到下滑力 和垂直面的两个力。在—些特殊情况下,物体其合力不 图3-4-2 能先确定,则可用两分力来代替它,如图3-4-2横杆左 端所接铰链对它的力方向不能明确之前,可用水平和竖直方向上的两个分力来表示,最后再求出这两个分力的合力来。 ③关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。 ④关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分 清受力体与施力体。在列方程解题时,对一对相互作用力一般采用同一字线表示。在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处

用牛顿定律解决问题(一)--每课一练

4.6 用牛顿运动定律解决问题(一) 作业 1.粗糙水平面上的物体在水平拉力F 作用下做匀加速直线运动,现使F 不断减小,则在滑动过程中( ) A .物体的加速度不断减小,速度不断增大 B .物体的加速度不断增大,速度不断减小 C .物体的加速度先变大再变小,速度先变小再变大 D .物体的加速度先变小再变大,速度先变大再变小 答案 D 解析 合外力决定加速度的大小,滑动过程中物体所受合外力是拉力和地面摩擦力的合力.因为F 逐渐减小,所以合外力先减小后反向增大,而速度是增大还是减小与加速度的大小无关,而是要看加速度与速度的方向是否相同.前一阶段加速度与速度方向同向,所以速度增大,后一阶段加速度与速度方向相反,所以速度减小,因此D 正确. 2.A 、B 两物体以相同的初速度滑上同一粗糙水平面,若两物体的质量为m A >m B ,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离x A 与x B 相比为( ) A .x A =x B B .x A >x B C .x A

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

用牛顿定律解决问题 二

4.6用牛顿定律解决问题(二) 学习目标: 1. 知道连结体问题。 2. 理解整体法和隔离法在动力学中的应用。 3. 初步掌握连结体问题的求解思路和解题方法。 学习重点: 连结体问题。 学习难点: 连结体问题的解题思路。 主要内容: 一、连结体问题 在研究力和运动的关系时,经常会涉及到相互联系的物体之间的相互作用,这类问题称为“连结体问题”。连结体一般是指由两个或两个以上有一定联系的物体构成的系统。 二、解连的基本方法:整体法与隔离法 当物体间相对静止,具有共同的对地加速度时,就可以把它们作为一个整体,通过对整体所受的合外力列出整体的牛顿第二定律方程。当需要计算物体之间(或一个物体各部分之间)的相互作用力时,就必须把各个物体(或一个物体的各个部分)隔离出来,根据各个物体(或一个物体的各个部分)的受力情况,画出隔离体的受力图,列出牛顿第二定律方程。 F A B F A B F V B A

许多具体问题中,常需要交叉运用整体法和隔离法,有分有合,从而可迅速求解。 【例一】如图所示,置于光滑水平面上的木块A 和B ,其质量为m A 和m B 。当水平力 F 作用于A 左端上时,两物体一起作加速运动,其A 、B 间相互作用力大小为 N 1;当水平力F 作用于B 右端上时,两物体一起做加速度运动,其A 、B 间 相互作用力大小为N 2。则以下判断中正确的是( ) A .两次物体运动的加速度大小相等 B .N 1+N 2

【参考版】4.7《用牛顿运动定律解决问题(二)示范教案

第四章 牛顿运动定律 4.7 用牛顿运动定律解决问题(二) ★教学目标 (一) 知识与技能 1. 理解共点力作用下物体平衡状态的概念,能推导出共点力作用下物体的平衡条件。 2. 会用共点力平衡条件解决有关力的平衡问题。 3. 通过实验认识超重和失重现象,理解产生超重、失重现象的条件和实质。 4. 进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤。 (二) 过程与方法 5. 培养学生处理多共点力平衡问题时一题多解的能力。 6. 引导帮助学生归纳总结发生超重、失重现象的条件及实质。 (三) 情感态度与价值观 7. 渗透“学以致用”的思想,有将物理知识应用于生产和生活实践的意识,勇于探究与日常生活有关的物理问题。 8. 培养学生联系实际,实事求是的科学态度和科学精神。 ★教学重点 1. 共点力作用下物体的平衡条件及应用。 2. 发生超重、失重现象的条件及本质。 ★教学难点 1. 共点力平衡条件的应用。 2. 超重、失重现象的实质。 ★教学过程 一、引入 师:今天我们继续来学习用牛顿定律解决问题。首先请同学们回忆一个概念:平衡状态。什么叫做平衡状态。 生:如果一个物体在力的作用下保持静止或匀速直线运动状态,我们就说这个物体处于平衡状态。 师:物体处于平衡状态时它的受力特点是什么? 生:因为牛顿定律是力与运动状态相联系的桥梁,所以根据牛顿第二定律m F a 合 知当合外力为0时,物体的加速度为0,物体将静止或匀速直线运动。 师:当一个物体受几个力作用时,如何求解合力? 生:根据平行四边形定则将力进行分解合成。 师:力的分解合成有注意点吗?或力的分解合成有适用范围吗?

牛顿运动定律应用

高考第一轮复习---牛顿运动定律考点例析 牛顿三个运动定律是力学的基础,对整个物理学也有重大意义。本章考查的重点是牛顿第二定律,而牛顿第一定律和第三定律在牛顿第二定律的应用中得到了完美的体现。从近几年高考看,要求准确理解牛顿第一定律;加深理解牛顿第二定律,熟练掌握其应用,尤其是物体受力分析的方法;理解牛顿第三定律;理解和掌握运动和力的关系;理解超重和失重。本章内容的高考试题每年都有,对本章内容单独命题大多以选择、填空形式出现,趋向于用牛顿运动定律解决生活、科技、生产实际问题。经常与电场、磁场联系,构成难度较大的综合性试题,运动学的知识往往和牛顿运动定律连为一体,考查推理能力和综合分析能力。如:2000年上海物理试题第21题(风洞实验)、2001年全国物理试题第8题(惯性制导系统)、2001年上海物理试题第8题(升降机下落)、2001年上海物理试题第20题(轻绳和轻弹簧的辩析纠错题)、2002年理科综合全国卷第26题(蹦床运动)、2003年全国春季理综第16题(滑冰运动)、2004年全国理综四第19题(猫在木板上跑动)等等。同学们只要把任何一套高考试题拿来研究,总会发现有与牛顿定律有关的试题。 一、夯实基础知识 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x=ma x, F y=ma y,F z=ma z;(4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互

53-用牛顿定律解决问题(一)

用牛顿定律解决问题(一) 一、知识与技能 1、进一步学习分析物体的受力情况,并能结合物体的运动情况进行受力分析。 2、掌握应用牛顿运动定律解决动力学问题的基本思路方法。 3、学会如何从牛顿运动定律入手求解有关物体运动状态参量。 4、学会根据物体运动状态参量的变化求解有关物体的受力情况。 二、过程与方法 1、培养学生利用物理语言表达、描述物理实际问题的能力。 2、帮助学生提高信息收集和处理能力,分析、思考、解决问题能力和交流、合作能力。 3、帮助学生学会运用实例总结归纳一般问题解题规律的能力。 4、让学生认识数学工具在表达解决物理问题中的作用。 三、情感、态度与价值观 1、利用我国的高科技成果激发学生的求知欲及学习兴趣。 2、培养学生科学严谨的求实态度及解决实际问题的能力。 3、初步培养学生合作交流的愿望,能主动与他人合作的团队精神,敢于提出与别人不同的见解,也勇于放弃或修正自己的错误观点。 ★教学重点 用牛顿运动定律解决动力学问题的基本思路方法 ★教学难点 正确分析受力并恰当地运用正交分解法 ★教学方法 创设情景一一导入课题一一实例分析一-实践体验一一交流总结 ★教学过程 一、引入新课 教师活动:利用多媒体投影播放“神州”5号飞船的升空及准确定点回收情景的实况录像资料,教师提出问题,引导启发学生初步讨论。 学生活动:观看录像,思考老师所提问题,在教师的引导下初步讨论。 点评:通过实际问题的分析激发学生探索的兴趣。 教师活动:提出两个问题让大家思考讨论:

l、我国科技工作者能准确地预测火箭的变轨,卫星的着落点,他们靠的是 什么? 2、利用我们已有的知识是否也能研究类似的较为简单的问题? 学生活动:学生思考讨论、阅读教材并回答:牛顿第二定律确定了力和运动的关系,使我们能够把物体的运动情况和受力情况联系起来,从受力情况确定出物体的 运动情况。 点评:趁热打铁,设置疑问,激发学生将新问题与所学知识联系挂钩。 教师活动:限于目前的知识水平,我们还不能直接研究上述问题,但我们可以本着由易到难的原则,从最简单的例子入手去探讨运动和力的关系问题的求解思路。 下面我们就来学习有关知识。 点评:充分利用新时期的高科技成果展示自然科学规律的巨大魅力,同时激发学生的爱国热情和奋发学习探索的精神。 二、进行新课 1、从受力确定运动情况 教师活动:投影展示例题1 并布置学生审题:一个静止在水平地面上的物体,质量是2kg,在6.4N的水平拉力作用下沿水平地面向右运动。物体与地面间的摩 擦力是4.2N。求物体在4s末的速度和4s内的位移。 问:l、本题研究对象是谁?它共受几个力的作用?物体所受的合力沿什么 方向?大小是多少? 2、本题要求计算位移和速度,而我们只会解决匀变速运动问题。这个 物体的运动是匀变速运动吗?依据是什么? 3、F N和G在竖直方向上,它们有什么关系? 学生活动:学生思考讨论后作答,并进一步判定:物体所受的合力水平向右,根据牛顿第二定律其加速度一定水平向右,因此物体向右做匀加速直线运动。 F N和G在竖直方向上,大小相等、方向相反,是一对平衡力。 借机让学生对平衡力和作用力与反作用力进行比较鉴别。 点评:通过分析实例,培养学生分析探索和寻找物理量之间的关系,发现浅层次规律的能力,运用物理语言的能力。 教师活动:经分析发现该题属于已知受力求运动呢,还是已知运动求受力呢? 学生活动:学生讨论并形成一致意见:已知受力求运动学情况。

用牛顿运动定律解决问题(一)含答案

一、选择题 1、用3N的水平恒力,在水平面上拉一个质量为2kg的木块,从静止开始运动,2s内的位移为2m,则木块的加速度为() A.0.5m/s2 B.1m/s2 C.1.5m/s2 D.2m/s2 2、据《新消息》报道,在北塔公园门前,李师傅用牙齿死死咬住长绳的一端,将停放着的一辆卡车缓慢拉动。小华同学看完表演后做了如下思考,其中正确的是() A.李师傅选择斜向上拉可以减少车对地面的正压力,从而减少车与地面间的摩擦力 B.若将绳系在车顶斜向下拉,要拉动汽车将更容易 C.车被拉动的过程中,绳对车的拉力大于车对绳的拉力 D.当车由静止被拉动时,绳对车的拉力大于车受到的摩擦阻力 3、行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害。为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带。假定乘客质量为70kg,汽车车速为90km/h,从踩下刹车闸到车完全停止需要的时间为5s,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)( ) A.450N B.400N C.350N D.300N 4、粗糙水平面上的物体在水平拉力F作用下做匀加速直线运动,现使F不断减小,则在滑动过程中( ) A.物体的加速度不断减小,速度不断增大 B.物体的加速度不断增大,速度不断减小 C.物体的加速度先变大再变小,速度先变小再变大 D.物体的加速度先变小再变大,速度先变大再变小 6、有种自动扶梯,无人乘行时运转很慢,有人站上扶梯时,它会先慢慢加速,再匀速运转。一顾客乘扶梯上楼,正好经历了这两个过程,则能正确反映该乘客在这两个过程中的受力示意图的是() 二、多项选择 7、正在加速上升的气球,下面悬挂重物的绳子突然断开,此时( ) A.重物的加速度立即发生改变 B.重物的速度立即发生改变 C.气球的速度立即改变 D.气球的加速度立即增大 三、计算题 8、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s内速度由5.0m/s增加到15.0m/s. (1)求列车的加速度大小. (2)若列车的质量是1.0×106kg,机车对列车的牵引力是1.5×105N,求列车在运动中所受的阻力大小. 9、质量为1000Kg的汽车在水平路面上从静止开始运动,经过4s速度达到10m/s,汽车受到的水平牵引力为3000N。求汽车在运动过程中所受到的阻力大小。 10、水平面上有一质量为1 kg的木块,在水平向右、大小为5 N的力作用下,由静止开始运动.若木块与水平面间的动摩擦因数为0.2. (1)画出木块的受力示意图;(2)求木块运动的加速度; (3)求出木块4 s内的位移.(g取10 m/s2) 11、一个质量m=2 kg的物体从空中由静止下落,已知物体所受空气阻力大小F f=10N,取重力加速度g=10m/s2。求: (1)物体下落时的加速度大小; (2)物体下落时间t=2s时(物体未着地)的位移大小。 12、如图甲,在水平地面上,有一个质量为4kg的物体,受到在一个与水平地面成37°的斜向右下方F=50N的推力,由静止开始运动,其速度时间图象如图乙所示. (g=10N/kg , sin370=0.6, cos370=0.8.)求: (1)物体的加速度大小; (2)物体与地面间的动摩擦因数。 13、如图4-3-12所示,物体A的质量为10 kg,放在水平地面上,物体A与地面间的动摩擦因数μ=0.2,如果用与水平面成30°的力拉它,为了产生1 m/s2的加速度,F需要多大?(g取10 m/s2 ) 14、一个质量为20 kg的物体,从斜面的顶端由静止匀加速滑下,物体与斜面间的动摩擦因数为0.2,斜面与水平面间的夹角为37°.求物体从斜面下滑过程中的加速度.(g取10 m/s2,cos37°=0.8,sin37°= 0.6)

用牛顿定律解决问题二

用牛顿定律解决问题二 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第七节用牛顿定律解决问题(二) 教材要求: 1、理解共点力作用下物体平衡状态的概念,能推导出共点力作用下物体的平衡条件。 2、会用共点力平衡条件解决有关力的平衡问题。 3、通过实验认识超重和失重现象,理解产生超重、失重现象的条件和实质。 4、进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤。 主要内容: 一、共点力的平衡条件 1、平衡状态:物体处于和,我们说物体处于平衡状态。 2、在共点力作用下处于平衡状态的物体所受的合外力, 即:。 二、超重 1.超重现象是指:___________________________ ________________________________________。 2.超重的动力学特征:支持面(或悬线)对物体的(向上)作用力_____物体所受的重力.(填“大于”、“小于”、“等于”) 3.超重的运动学特征:物体的加速度向上,它包括两种可能的运动情况:_______________________________________________________。 三、失重 1.失重现象是指:__________________________ 。 2.失重的动力学特征: _______________________ 。 3.失重的运动学特征:物体的加速度向,它包括两种可能的运动情况:___________________ 。四、对超重和失重的进一步理解 1.当物体处于“超重”状态时,物体的重力_______.当物体处于“失重”状态时,物体的重力_________,当物体处于“完全失重”状态时,物体的重力________.(填“增大”、“减小”、“不变”) 2.超(失)重现象是指物体对悬挂物的拉力(或对支持物的压力)大于(小于)重力的现象. 3.“超重”“失重”现象与物体运动的速度方向和大小均无关,只决定于物体的_______的方向. 4.日常所说的“视重”与“重力”有区别.视重大小是指物体对支持物或悬挂物的作用力大小,只有当物体的加速度为零时,视重大小等于重力的大小. 课本例题讲解: 随堂练习: 1.在升降机中用弹簧秤称一物体的重力,由弹簧秤示数的变化可以判定系统的运动状态,下面说法正确的是( ) A.示数大于物重,则升降机可能是向上作加速运动. B.示数小于物重,则升降机一定是向下作加速运动. C.示数等于物重,则升降机一定是作匀速直线运动.

高一物理牛顿运动定律的应用

第三章 D 牛顿运动定律的应用 一、教学任务分析 本节内容是对牛顿运动定律的综合提高和延伸,也为学习以后的物理学习打好力学基础。 学习本节内以受力分析、力的合成与分解、匀加速直线运动规律、牛顿运动定律等基础知识和相应的技能为基础。 通过实例情景和学生活动,了解建立国际单位制的重要性和必要性,介绍用国际单位制及其应用。 通过对典型示例的分析和讨论,归纳出用牛顿运动定律解决力学问题的一般规律和方法。 通过对观察录像、演示实验和学生小实验,感受超重、失重现象,应用牛顿第二定律分析、探究超重、失重现象的本质与规律。 二、教学目标 1、知识与技能 (1)知道国际单位制。知道基本单位和导出单位。理解力学中的三个基本单位。 (2)学会导出单位的推演方法并能进行单位换算。 (3)掌握用牛顿运动定律解决力学问题的一般规律和方法。 (4)知道超重和失重现象。 (5)学会用牛顿第二定律分析超重、失重现象。 2、过程与方法 (1)通过创设情景、实例分析和练习的过程,认识引入国际单位制的重要性和必要性。 (2)通过对典型示例的分析、讨论过程,认识分析、比较、等效、演绎、归纳、验证等科学方法。 (3)通过对电梯中进行的超重失重实验的定性观察和学生小实验,感受用牛顿运动定律解决实际问题的一般规律和方法。 3、情感、态度与价值观 (1)通过阅读关于“火星探测器失事原因”的STS材料,在了解统一单位重要性的同时,感悟严谨的治学态度对科学发展的重大意义。 (2)通过应用牛顿运动定律解决实际问题的过程,感悟物理学在社会发展中的重要作用。 (3)通过学生实验的过程,激发求知欲,获得成就感。 (4)通过观察神舟六号飞船录像片段,了解我国航天事业的发展,激发民族自豪感。三、教学重点与难点 重点:怎样应用牛顿运动定律解决力学问题。 难点:对超重失重视现象的认识。 四、教学资源 1、器材:多媒体投影仪,演示超重、失重的DIS实验器材,改锥,饮料瓶(人手一个)。

用牛顿运动定律解决问题一练习题及答案解析

(本栏目内容,在学生用书中以活页形式分册装订!) 1.A 、B 两物体以相同的初速度在同一水平面上滑动,两物体与水平面间的动摩擦因数相同,且m A =3m B ,则它们所能滑行的距离x A 、x B 的关系为( ) A .x A =x B B .x A =3x B C .x A =13x B D .x A =9x B 解析: 物体沿水平面滑动时做匀减速直线运动,加速度a =μmg m =μg 与质量无关,由0-v 20=-2ax 和题设条件知x A =x B . 答案: A 2.2009年8月31日,我国在西昌卫星发射中心用“长征三号乙”运载火箭发射印度尼西亚“帕拉帕-D ”通信卫星.假设火箭在大气层竖直升空时,发动机的推力不变,空气阻力也认为不变,则在火箭冲出大气层前的这一过程中,其v -t 图象是( ) 解析: 燃料消耗的过程中,火箭的质量不断减小,对火箭有F -mg -F f =ma ,a =F -F f m -g ,因推力F 、空气阻力F f 不变,火箭的质量m 减小,所以火箭的加速度不断增大,从A 、B 、C 、D 四个图象看,应选D 项. 答案: D 3.如右图所示,圆柱形的仓库内有三块长度不同的滑板aO 、bO 、cO ,其下端都固定于底部圆心O ,而上端则搁在仓库侧壁上,三块滑板与水平面的夹角依次是30°、45°、60°.若有三个小孩同时从a 、b 、c 处开始下滑(忽略阻力),则( ) A .a 处小孩最先到O 点 B .b 处小孩最后到O 点 C .c 处小孩最先到O 点 D .a 、c 处小孩同时到O 点 答案: D 4. 如右图所示某小球所受的合力与时间的关系,各段的合力大小相同,作用时间相同,设小球从静止开始运动.由此可判定( ) A .小球向前运动,再返回停止 B .小球向前运动,再返回不会停止 C .小球始终向前运动 D .小球向前运动一段时间后停止 解析: 由F -t 图象知:第1 s ,F 向前;第2 s ,F 向后.以后重复该变化,所以小球先加速1 s ,再减速1 s,2 s 末速度刚好减为零,以后重复该过程,所以小球始终向前运动. 答案: C 5.竖直上抛物体受到的空气阻力F f 大小恒定,物体上升到最高点时间为t 1,从最高点再落回抛出点所需时间为t 2,上升时加速度大小为a 1,下降时加速度大小为a 2,则( ) A .a 1>a 2,t 1a 2,t 1>t 2 C .a 1t 2 解析: 物体上升时所受合力F =mg +F f =ma 1,下降时所受合力F ′=mg -F f =ma 2,故a 1>a 2.又 因为h =12a 1t 21=12 a 2t 22,则t 1

牛顿运动定律的应用练习题含答案

牛顿运动定律的应用练习题含答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M =6.0kg 的物块A 。装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接。传送带的皮带轮逆时针匀速转动,使传送带上表面以u =2.0m/s 匀速运动。传送带的右边是一半径R =1.25m 位于竖直平面内的光滑 14圆弧轨道。质量m =2.0kg 的物块B 从1 4 圆弧的最高处由静止释放。已知物块B 与传送带之间的动摩擦因数μ=0.1,传送带两轴之间的距离l =4.5m 。设第一次碰撞前,物块A 静止,物块B 与A 发生碰撞后被弹回,物块A 、B 的速度大小均等于B 的碰撞前的速度的一半。取g =10m/s 2。求: (1)物块B 滑到 1 4 圆弧的最低点C 时对轨道的压力; (2)物块B 与物块A 第一次碰撞后弹簧的最大弹性势能; (3)如果物块A 、B 每次碰撞后,物块A 再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B 经第一次与物块A 碰撞后在传送带上运动的总时间。 【答案】(1)60N ,竖直向下(2)12J (3)8s 【解析】 【详解】 (1) 设物块B 沿光滑曲面下滑到水平位置时的速度大小为v 0,由机械能守恒定律得: 2 012 mgR mv 代入数据解得: v 0=5m/s

相关文档
最新文档