测量平差知识大全
测量平差知识大全

➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
测量平差期末考试公式总结

测量平差期末复习资料1. 将静止的海水面向整个陆地延伸,用所形成的封闭曲面代替地球表面,形成的重力等位面,这个曲面称为大地水准面。
其特点是水准面上任意一点的铅垂线(重力作用线)都垂直于该点的曲面。
2. 6°带中央子午线经度N=L=6N-3, 3°带中央子午线经度L=3n 。
3. 高程系统:确定该点沿铅垂方向到某基准面的距离。
绝对高程(海拔):指某点沿铅垂线方向到大地水准面的距离,用H表示。
相对高程:某点距假定水准面的铅垂距离。
高差:地面上两点间的高程之差。
4. 地形 :a,地物:地面上固定性物体,如河流、房屋、道路、湖泊等; b.地貌:地面的高低起伏的形态,如山岭、谷地和陡崖等。
5. 线性代数补充知识1) 由n m ⨯个数有次序地排列成m 行n 列的表叫矩阵通常用一个大写字母表示, 如:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⨯mn m m n n n m a a a a a a a a a A212222111211 2)若m=n ,即行数与列数相同,称A 为方阵。
元素a11、a22……ann 称为对角元素。
3)若一个矩阵的元素全为0,称零矩阵,一般用O 表示。
4)对于 的方阵,除对角元素外,其它元素全为零,称为对角矩阵。
如:)(00000022112211nn mn n m a a adiag a aa A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⨯5)对于 对角阵,若a11=a22=……=ann =1,称为单位阵,一般用E 、I 表示。
6)若aij=aji ,则称A 为对称矩阵.矩阵的基本运算:1)若具有相同行列数的两矩阵各对应元素相同,则: 2)具有相同行列数的两矩阵A 、B 相加减,其行列数与A 、B 相同,其元素等于A 、B 对应元素之和、差。
且具有可交换性与可结合性。
3)设A 为m*s 的矩阵,B 为s*n 的矩阵,则A 、B 相乘才有意义,C=AB ,C 的阶数为m*n 。
O A=A O =O ,IA=AI=A ,A (B+C )=AB+AC ,ABC=A (BC )矩阵的转置:对于任意矩阵Cmn:nn ⨯n n ⨯BA =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⨯mn m m n n n m c c c c c c c c c C 212222111211将其行列互换,得到一个nm 阶矩阵,称为C 的转置。
测量平差概要

测量平差概要一、基本概念01、极条件的个数等于中点多边形、大地四边形和扇形的总数。
02、在间接平差中,独立未知量的个数等于必要观测数。
03、协方差与权互为倒数。
04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
05、在间接平差中,误差方程的个数等于观测值的个数。
06、协因数阵与权阵互为逆阵。
07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。
08、圆周条件的个数等于中点多边形的个数。
09、偶然误差服从正态分布。
10、只有包含中点多边形的三角网才会产生圆周角条件。
11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。
12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。
13、同一个量多次不等精度观测值的最或是值等于其加权平均值。
14、应用权倒数传播律时观测值间应误差独立。
15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。
16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。
17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。
18、在测角中正倒镜观测是为了消除系统误差。
19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。
20、在水准测量中估读尾数不准确产生的误差是偶然误差。
21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
22、定权时单位权中误差可任意给定,它仅起比例常数的作用。
23、测角精度与角度的大小无关。
24、观测值的权通常是没有量纲的。
25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。
26、测角网的必要观测个数等于待定点个数的2倍。
27、仪器误差、观测者和外界环境的综合影响称为观测条件28、独立水准网的条件方程式只有闭合水准路线。
29、根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
30、观测值的协因数与方差成正比,观测值的权与方差反比。
测量平差概要

测量平差概要一、基本概念01、极条件的个数等于中点多边形、大地四边形和扇形的总数。
02、在间接平差中,独立未知量的个数等于必要观测数。
03、协方差与权互为倒数。
04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
05、在间接平差中,误差方程的个数等于观测值的个数。
06、协因数阵与权阵互为逆阵。
07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。
08、圆周条件的个数等于中点多边形的个数。
09、偶然误差服从正态分布。
10、只有包含中点多边形的三角网才会产生圆周角条件。
11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。
12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。
13、同一个量多次不等精度观测值的最或是值等于其加权平均值。
14、应用权倒数传播律时观测值间应误差独立。
15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。
16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。
17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。
18、在测角中正倒镜观测是为了消除系统误差。
19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。
20、在水准测量中估读尾数不准确产生的误差是偶然误差。
21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
22、定权时单位权中误差可任意给定,它仅起比例常数的作用。
23、测角精度与角度的大小无关。
24、观测值的权通常是没有量纲的。
25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。
26、测角网的必要观测个数等于待定点个数的2倍。
27、仪器误差、观测者和外界环境的综合影响称为观测条件28、独立水准网的条件方程式只有闭合水准路线。
29、根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
30、观测值的协因数与方差成正比,观测值的权与方差反比。
(整理)测量平差

测量平差一.测量平差基本知识 1.测量平差定义及目的在设法消除系统误差、粗差影响下,其基本任务是求待定量的最优估量和评定其精度。
人们把这一数据处理的整个过程叫测量平差。
测量平差的目的:一是通过数据处理求待定量的最优估值;二是评定观测成果的质量。
2.协方差传播律及协方差传播律是观测值(向量)与其函数(向量)之间精度传递的规律。
①观测值线性函数的方差: 函数向量:Y=F(X) Z=K(X)其误差向量为:ΔY=F ΔX ΔZ=K ΔX则随机向量与其函数向量间的方差传递公式为⎪⎪⎪⎭⎪⎪⎪⎬⎫====F D K D K D F D K D K D F D F D TXZYTXYZTXZTXY②多个观测值线性函数的协方差阵t×n×n ×t×n T n XX t t ZZ K D K D =③非线性的协方差传播T XX ZZ K KD D =3.权及常用的定权方法①权表示比例关系的数字特征称之为权,也就是权是表征精度的相对指标。
权的意义不在于它们本身数值的大小,而在于它们之间所存在的比例关系。
()n i iiP ,...,2,1220==σσi P 为观测值i L 的权,20σ是可以任意选定的比例常数。
②单位权方差权的作用是衡量观测值的相对精度,称其为相对精度指标。
确定一组权时,只能用同一个0σ,令0σσ=i ,则得:iiP ===02202021σσσσ上式说明20σ是单位权(权为1)观测值的方差,简称为单位权方差。
凡是方差等于20σ的观测值,其权必等于1。
权为1的观测值,称为单位权观测值。
无论20σ取何值,权之间的比例关系不变。
③ ⅰ.水准测量的权NC P h =式中,N 为测站数。
SC P h =式中,S 为水准路线的长度。
ⅱ.距离量测的权ii S C P =式中,i S 为丈量距离。
ⅲ.等精度观测算术平均值的权CP ii N=式中,i N 为i 次时同精度观测值的平均值。
测量平差知识大全

➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
最新测量平差知识大全

➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论➢✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
测量平差基础名词解释

第一章1、观测误差产生的原因很多,概括起有以下三种:测量仪器(感觉器官的局限、技术水平、工作态度)、观测者(具有一定限度的准确度)、外界条件(温度、湿度、风力、大气折光等)。
2、偶然误差:在相同的观测条件下作一系列的观测,如果误差在大小和符号上都表现出偶然性,即从单个误差看,该列误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律,这种误差称为偶然误差,也叫随机误差。
采取措施:处理带有偶然误差的观测值,就是本课程的内容,也叫做测量平差。
3、系统误差:在相同的观测条件下作一系列的观测,如果误差在大小、符号上表现出一致性,或者在观测过程中按一定的规律变化,或者为一常数,这种误差就称为系统误差。
消除或削弱的方法:采取合理的操作程序(正、倒镜,中间法,对向观测等);用公式改正,即加改正数。
4、粗差:粗差即粗大误差,或者说是一种大量级的观测误差,是由于测量过程中的差错造成的。
发现、剔除粗差的方法:进行必要的重复测量或多余观测,采用必要而又严格的检核、验算等,发现后舍弃或重测。
5、测量平差两大任务:(1)、求平差值(求未知量的最佳估值);(2)、精度评定(评定测量成果精度)。
6、测量平差第二章7、8、9、真值:任一观测量,客观上总是存在一个能代表其真正大小的数值,这一数值就称为该观测值真值10、真误差:真值与观测值之差11、残差(改正数):改正数(V)= 平差值() - 观测值()12、偶然误差的四个统计特性:(1)一定观测条件下,误差绝对值有一定限值(有限性);(2)绝对值较小的误差比绝对值较大的误差出现概率大(渐降性);(3)绝对值相等的正负误差出现概率相同(对称性);(4)偶然误差的数学期望为零(抵偿性)13、平均误差:在一定的观测条件下,一组独立的偶然误差绝对值的数学期望,称为平均误差14、或然误差:误差出现在(- ρ ,+ ρ )之间的概率等于1/2,即15、极限误差:通常将三倍(或两倍)的中误差作为极限误差,即16、相对中误差的定义是:中误差与观测值之比,即17、精度:是指误差分布的密集或离散程度,即:L与E(L)接近程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢绪论
➢测量平差理论
➢4种基本平差方法
➢讨论点位精度
➢统计假设检验的知识
➢近代平差概论
✧绪论
§1-1观测误差
测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源
观测值中包含有观测误差,其来源主要有以下三个方面:
1. 测量仪器;
2. 观测者;
3. 外界条件。
二、观测误差分类
1. 偶然误差
定义,例如估读小数;
2. 系统误差
定义,例如用具有某一尺长误差的钢尺量距;
系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差
定义,例如观测时大数读错。
误差分布与精度指标
§2-1 正态分布
概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布
§2-2偶然误差的规律性
2. 直方图
由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)
在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性
第三章协方差传播律及权
在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个角L1,L2和L3,其闭合差w和各角度的平差值分别
又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要容,阐述这种关系的公式称为协方差传播律。
§3—1 数学期望的传播
数学期望是描述随机变量的数字特征之一,在以后的公式推导中经常要用到它,因此,首先介绍数学期望的定义和运算公式。
其定义是:
§3—2 协方差传播律
从测量工作的现状可以看出:观测值函数与观测值之间的关系可分为以下3种情况,下面就按这3种情况来讨论两者之间中误差的关系。
第四章平差数学模型与最小二乘原理
第五章条件平差
§5-1条件平差原理以条件方程为函数模型的方法称之条件平差。
二、按条件平差求平差值的计算步骤及示例计算步骤:
1. 列出r=n-t个条件方程;
2. 组成并解算法方程;
3. 计算V和的值;
4. 检核。
例5-2
课外作业:
1. 在图1中,已知角度独立观测值及其中误差为:
(1)试列出改正数条件方程;
(2)试按条件平差法求的平差值。
2. 在图2中,A,B,C三点在一直线上,测出了AB,BC及AC的距离,得4个独立观测值:
若令100m量距的权为单位权,试按条件平差法确定A,C之间各段距离的平差值。
第六章附有参数的条件平差
一、问题的提出
由条件平差知,对于n个观测值,t个必要观测(n>t)的条件平差问题,可以列出r=n-t个独立的条件方程,且列出r个独立的条件方程后就可以进行后继的条件平差计算。
然而,在实际工作中,有些平差问题的r个独立的条件方程很难列出。
例如,在图1所示的测角网中,A、B为已知点,AC为已知边。
观测了网中的9个角度,即n=9。
要确定C、D、E三点的坐标,其必要观测数为t=5,故条件方程的个数为r=n-t=9-5=4,即必须列出4个独立的条件方程。
由图1知,三个图形条件很容易列出,但第四个条件却不容易列出。
第七章间接平差§7-1 间接平差原理
§7-2 精度评定
复习思考题:
1、间接平差的函数模型和随机模型是什么?
2、间接平差法与条件平差法的结果上否一样?为什么?
3、证明间接平差法中改正数向量和平差值向量不相关。
第八章附有限制条件的间接平差原理
本章重点:
1、附有限制条件的间接平差原理
2、精度评定
3、误差方程、限制条件方程的列立
在一个平差问题中,多余观测数,如果在平差中选择的参数个,其中包含了个独立参数,则参数间存在个限制条件。
平差时列出个观测方程和个限制参数间关系的条件方程,以此为函数模型的平差方法,称为附有限制条件的间接平差。
第九章概括平差函数模型第九章概括平差函数模型
第十章误差椭圆
本章重点:
1、误差椭圆的定义
2、确定误差椭圆的三个要素
3、确定任意方向上的位差
4、相对误差椭圆的应用
§10-1概述
第一章思考题
1.1 观测条件是由那些因素构成的?它与观测结果的质量有什么联系?
1.2 观测误差分为哪几类?它们各自是怎样定义的?对观测结果有什么影响?试举例说明。
1.3用钢尺丈量距离,有下列几种情况使得结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;
(2)尺不水平;
(3)估读小数不准确;
(4)尺垂曲;
(5)尺端偏离直线方向。
1.4 在水准了中,有下列几种情况使水准尺读书有误差,试判断误差的性质及符号:(1)视准轴与水准轴不平行;
(2)仪器下沉;
(3)读数不准确;
(4)水准尺下沉。
1.5 何谓多余观测?测量中为什么要进行多余观测?
答案:
1.3 (1)系统误差。
当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标
准尺长时,观测值大,符号为“-”。
(2)系统误差,符号为“-”
(3)偶然误差,符号为“+”或“-”
(4)系统误差,符号为“-”
(5)系统误差,符号为“-”
1.4 (1)系统误差,当i角为正时,符号为“-”;当i角为负时,符号为“+”
(2)系统误差,符号为“+”
(3)偶然误差,符号为“+”或“-”
(4)系统误差,符号为“-”
第二章思考题
2.1 为了鉴定经纬仪的精度,对已知精确测定的水平角'"
α=作12次同精度观测,
450000
结果为:
'"
450004
455958'"
450006'"
455955'"
'"
455958
450000'"
450003'"
450004'"
'"
450003
455959'"
450006'"
455959'"
设a没有误差,试求观测值的中误差。
2.2 已知两段距离的长度及中误差分别为300.465m±4.5cm及660.894m±4.5cm,试说
明这两段距离的真误差是否相等?他们的精度是否相等?
2.3 设对某量进行了两组观测,他们的真误差分别为:
第一组:3,-3,2,4,-2,-1,0,-4,3,-2
第二组:0,-1,-7,2,1,-1,8,0,-3,1
试求两组观测值的平均误差1ˆθ、2
ˆθ和中误差1ˆσ、2ˆσ,并比较两组观测值的精度。
2.4 设有观测向量1221[]T X L L =,已知1ˆL σ
=2秒,2ˆL σ=3秒,122ˆ2L L σ=-秒,试写出其协方差阵22XX D 。
2.5 设有观测向量12331[]T X L L L =的协方差阵334202930316XX D -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦
,试写出观测值L 1,L 2,L 3的中误差及其协方差12L L σ、13L L σ和23L L σ。
答案:
2.1 ˆ
3.62"σ
= 2.2 它们的真误差不一定相等,相对精度不相等,后者高于前者
2.3 1ˆθ=2.4 2
ˆθ=2.4 1ˆσ=2.7 2ˆσ=3.6 两组观测值的平均误差相同,而中误差不同,由于中误差对大的误差反应灵敏,故通常采用
中误差做为衡量精度的的指标,本题中1ˆσ
<2ˆσ,故第一组观测值精度高 2.4 22242()29XX D -⎛⎫= ⎪-⎝⎭
秒 2.5 1L σ=2, 2L σ=3, 34L σ=,122L L σ=-,130L L σ=,233L L σ=-。