离散数学部分考试内容
离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。
B. 有向图中的边无方向性,无向图中的边有方向性。
C. 无向图和有向图都是由顶点和边组成的。
D. 无向图和有向图都只由边组成。
答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。
B. 若集合A和B相交为空集,则A和B相等。
C. 若集合A和B相等,则A和B互相包含。
D. 若集合A和B相等,则A和B相交为空集。
答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。
答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。
答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。
答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。
答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。
答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。
证明过程:假设A和B互相包含,即A包含于B且B包含于A。
设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。
同理,对于集合B中的任意元素y,y也属于集合A。
《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。
答:某,y,某,z5、判断下列语句是不是命题。
若是,给出命题的真值。
((1)北京是中华人民共和国的首都。
(2)陕西师大是一座工厂。
),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。
(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。
(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。
(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
自考离散数学考试题及答案

自考离散数学考试题及答案一、选择题(每题2分,共10分)1. 在集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 有限自动机中的一个状态不包括以下哪个元素?A. 初始状态B. 终止状态C. 转移函数D. 输入符号答案:C3. 在命题逻辑中,德摩根定律描述了哪些命题的等价性?A. (¬P ∧ ¬Q) ↔¬(P ∨ Q)B. (P ∨ Q) ↔¬(¬P ∧ ¬Q)C. (P ∧ Q) ↔¬(P ∨ Q)D. (¬P ∨ ¬Q) ↔¬(P ∧ Q)答案:A4. 以下哪个算法是用于解决图的最短路径问题?A. 欧几里得算法B. 迪杰斯特拉算法C. 快速排序算法D. 弗洛伊德算法答案:B5. 布尔代数中,一个表达式可以有的最大项数是多少?A. nB. 2^nC. n^2D. 2n答案:B二、填空题(每题3分,共15分)6. 在关系数据库中,确保实体完整性的约束称为________。
答案:主键7. 一个有向图中,如果存在从顶点A到顶点B的路径,则称顶点A可以________顶点B。
答案:到达8. 在命题逻辑中,如果命题P和命题Q都为真,则命题P → Q的真值是________。
答案:真9. 一个命题函数的真值表中,如果某一行的P和Q都为假,那么这一行的结果是________。
答案:真10. 在图论中,一个完全图是指图中任意两个顶点都________。
答案:相连三、解答题(共75分)11. (15分)证明:在任何非空集合中,至少存在一个元素不包含于该集合的任何子集中。
答案:略12. (20分)给定一个有向图,描述如何使用拓扑排序算法来对图中的顶点进行排序。
答案:略13. (20分)解释什么是正规表达式,并给出一个例子来说明如何使用它来匹配字符串。
答案:略14. (20分)证明:在任何无向图中,边数最多的生成子图最多有3n/2条边,其中n是顶点的数量。
离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。
A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。
B. 有些狗不会游泳。
C. 所有的狗都不会游泳。
D. 以上都不是真命题。
4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。
A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。
B. 有些鸟不会飞。
C. 所有的哺乳动物都是温血动物。
D. 以上都不是假命题。
9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。
A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。
A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。
2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。
离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号:姓名:班级:。
密。
封。
线。
计算机科学与技术专业2 年级计算071~075 班2008~2009学年第1 学期《离散数学》课试卷试卷类型:A 卷
( A) ( B)
(C) ( D)
青岛理工大学试卷纸共 5 页第1 页
试题要求: 1.试题后标注本题得分;2.试卷应附有评卷用标准答案,并有每题每步得分标准;3.试卷必须提前一周送考试中心;4.考试前到指定地点领取试卷;5.考生不得拆散试卷,否则试卷无效。
学号;姓名:班级:。
密。
封。
线。
如图所示哈斯图中构成分配格的有
=<p({1,2,3},),⊕>其中⊕为集合的对称差运算,对于
)()
τ
=
256
25
134,()(1643
1 2
3 4
V1V4 V2V3学号;姓名:班级:。
密。
封。
线。
四、证明题(共18分,答案写于后面答题纸中。
1.(6分)对任意集合A,B,证明:若A
学号;姓名:班级:。
密。
封。
线。
青岛理工大学试卷纸共 5 页第4 页。