尺规作图基本作图方法

合集下载

尺规作图方法大全(正式)

尺规作图方法大全(正式)

BPAaOQPNMO N MBPA N MB OA③②①A'A'N'O'B'M'O'A'N'M'M'O'尺规作图【知识回顾】1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。

已知:如图,线段a .求作:线段AB ,使AB = a . 作法:(1) 作射线AP ;(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的中点。

已知:如图,线段MN.求作:点O ,使MO=NO (即O 是MN 的中点). 作法:(1)分别以M 、N 为圆心,大于 的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .则点O 就是所求作的MN的中点。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:(1)以O 为圆心,任意长度为半径画弧,分别交OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。

(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOBca b P B BAPmn作法:(1)作射线O ’A ’;(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。

尺规作图基本作图方法

尺规作图基本作图方法
线段等于已知线段。'
已知:如图,线段a .A求作:线段AB,使AB=a .作法:
(1)作射线AP;
(2)在射线AP上截取AB=a .
则线பைடு நூலகம்AB就是所求作的图形
(2) 题目二:作已知 线段的垂直平分线。 已知:如图,线段MN.求作:点O,使MO=NO
(即0是MN的中点).作法:
(1)分别以M、N为圆心,大于丄MN
2的相同线段为半径画弧, 两弧相交于P,Q;
(2)连接PQ交MN于0.
则点PQ就是所求作的MN的垂直平分线
(3)题目三:作已知角的角平分线 已知:如图,/AOB,求作:射线0P,使/AOP=ZBOP(即OP平分/AOB)。作法:
(1)以0为圆心,任意长度为半径画弧, 分别交OA,0B于M,N;
(2)分别以M、N为圆心,大于」mn的线
1、尺规作图的定义:尺规作图是指用没 有刻度的直尺和圆规作图。最基本,最常用 的尺规作图,通常称基本作图。一些复杂的 尺规作图都是由基本作图组成的。
2、五种基本作图:
1、
作一条线段等于已知线
段;
2、
作一个角等于已知角;
3、
作已知线段的垂直平分
线;
4、
作已知角的角平分线;
5、
过一点作已知直线的垂
线;
(1)题目一:作一条a

五种基本的尺规作图

五种基本的尺规作图
建筑学
在建筑设计中,尺规作图被广泛 应用于绘制平面图、立面图和剖 面图等,以确保建筑的准确性和
美观性。
机械工程
在机械制图中,尺规作图是绘制精 确零件图和装配图的重要工具,有 助于提高机械制造的精度和效率。
艺术设计
在美术、设计等艺术领域,尺规作 图也被用于创作具有几何美感的作 品,展现出独特的艺术魅力。
技巧分享
分享一些在尺规作图中常用的技巧和注意事项,如如何准确确定切点、如何绘制 垂直直线等,以提高作图的准确性和效率。同时,也可以介绍一些在实际应用中 可能会遇到的特殊情况和处理方法。
06 综合应用与拓展
五种基本尺规作图的综合应用
作一条已知线段的垂直平分线
利用直尺和圆规,可以准确作出已 知线段的垂直平分线,这在几何作 图中非常有用。
技巧分享
在绘制大圆时,可以将圆规两脚间距离调整得稍大一些,以提高绘制效率;在绘制小圆时 ,则需要更加精细地调整圆规两脚间距离,以确保绘制出的圆足够准确。
注意事项
在实例演示和技巧分享中,要强调保持圆规两脚间距离不变的重要性,以及注意调整圆规 两脚间距离的方法。同时,还可以分享一些在绘制过程中可能遇到的问题和解决方法,例 如如何避免圆规针尖滑动导致绘制出的圆不准确等问题。
五种基本的尺规作图
目 录
• 五种基本尺规作图概述 • 直线与角平分线作图 • 垂直平分线与平行线作图 • 圆的作图 • 圆弧连接与切线作图 • 综合应用与拓展
01 五种基本尺规作图概述
定义与分类
定义
尺规作图是指使用无刻度的直尺和圆 规进行作图的方法,是几何学中的基 本作图技能之一。
分类
五种基本的尺规作图包括作一条线段 等于已知线段、作一个角等于已知角 、作已知角的平分线、作线段的垂直 平分线以及作已知线段的中点。

五种基本作图详细步骤

五种基本作图详细步骤

尺规作图的基本步骤和作图语言一、作线段等于已知线段已知:线段a求作:线段AB ,使AB =a 作法:1、作射线AC 2、在射线AC 上截取AB =a ,则线段AB 就是所要求作的线段二、作角等于已知角已知:∠AOB求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB.作法:(1)作射线O ′A ′.(2)以点O 为圆心,以任意长为半径画弧,交OA 于点C,交OB 于点D. (3)以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于点C ′. (4)以点C ′为圆心,以CD 长为半径画弧,交前面的弧于点D ′. (5)过点D ′作射线O ′B ′. ∠A ′O ′B ′就是所求作的角.三、作角的平分线已知:∠AOB,求作:∠AOB 内部射线OC,使:∠AOC=∠BOC,作法:(1)在OA 和OB 上,分别截取OD 、OE ,使OD=OE . (2)分别以D 、E 为圆心,大于的DE 21长为半径作弧,在∠AOB 内,两弧交于点C . (3)作射线OC .OC 就是所求作的射线.四、作线段的垂直平分线(中垂线)或中点已知:线段AB求作:线段AB 的垂直平分线 作法:(1) 分别以A 、B 为圆心,以大于AB 的一半为半径在AB 两侧画弧,分别相交于E 、F 两点 (2)经过E 、F ,作直线EF (作直线EF 交AB 于 点O )直线EF 就是所求作的垂直平分线 (点O 就是所求作的中点)五、过直线外一点作直线的垂线. (1)已知点在直线外已知:直线a 、及直线a 外一点A.(画出直线a 、点A)求作:直线a 的垂线直线b ,使得直线b 经过点A. 作法:(1)以点A 为圆心,以适当长为半径画弧,交直线a 于点C 、D.(2)以点C 为圆心,以AD 长为半径在直线另一侧画弧.(3)以点D 为圆心,以AD 长为半径在直线另一侧画弧,交前一条弧于点B. (4)经过点A 、B 作直线AB.AB 就是所画的垂线b.(如图)(2)已知点在直线上已知:直线a 、及直线a 上一点A.求作:直线a 的垂线直线b ,使得直线b 经过点作法:(1) 以A 为圆心,任一线段的长为半径画弧, 交a 于C 、B 两点(2) 点C 为圆心,以大于CB (3) 以点B 为圆心,以同样的长为半径画弧, 两弧的交点分别记为M(4) 经过A 、M ,作直线AM 直线AMAO常用的作图语言:(1)过点×、×作线段或射线、直线;(2)连结两点××;(3)在线段××或射线××上截取××=××;(4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×;(5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×;(6)延长××到点×,使××=××。

(完整版)初中最基本的尺规作图总结

(完整版)初中最基本的尺规作图总结

尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

尺规作图课件

尺规作图课件

作圆的直径与半径
总结词
利用直尺和圆规,可以轻松作出圆的直径和半径。
详细描述
首先确定圆心和任意一点在圆上,然后使用直尺和圆规,通过测量和画线,可以作出圆的直径或半径。直径是穿 过圆心且两端都在圆上的线段,而半径是从圆心到圆上任意一点的线段。
04
尺规作图的进阶技能
作已知直线的中垂线
总结词
通过给定直线上的一个点,使用尺规作已知直线的中垂线。
02
尺规作图的基本知识
尺规作图的工具与材料
工具
直尺、圆规、斜边尺
材料
白纸、铅笔、橡皮
尺规作图的规则与限制
规则
只能使用直尺和圆规,不能使用其他工具。
限制
不能折叠、剪切或黏贴图形。
尺规作图的步骤与方法
步骤一
确定作图目标,理解题 目要求。
步骤二
根据题目要求,使用直 尺和圆规绘制草图。
步骤三
仔细检查草图,确保符 合尺规作图的规则和限
制。
步骤四
修改和完善草图,直至 达到预期的作图目标。
03
尺规作图的基本技能
作平行线与垂直线
总结词
利用直尺和圆规,可以轻松作出 平行线和垂直线。
详细描述
首先确定一个点作为起点,然后 使用直尺和圆规,通过测量和画 线,可以作出与已知直线平行的 直线或与已知直线垂直的直线。
作角的平分线
总结词
利用直尺和圆规,可以将一个角平分 成两个相等的角。
何图形。
尺规作图的限制在于只能使用直 尺和圆规,不能使用其他工具来
辅助作图。
尺规作图的历史与发展
尺规作图的历史可以追溯到古希腊时期,当时数学家们开始研究如何使用直尺和圆 规来完成各种几何图形。

初二尺规作图五个方法

初二尺规作图五个方法

初二尺规作图五个方法
尺规作图,是一种利用尺规来绘制图形的一种方法。

它包括五种方法:
一、直线图法:用尺规将两个点之间的直线绘制出来,即可构成图形。

可以用来绘制简单的几何图形,如矩形、梯形、三角形等。

二、折线图法:用尺规将多个点之间的折线绘制出来,即可构成图形。

可以用来绘制复杂的曲线图形,如抛物线、椭圆等。

三、圆弧图法:用尺规将一个圆或一些圆弧绘制出来,即可构成图形。

可以用来绘制圆形的几何图形,如圆、圆环等。

四、线环图法:用尺规将一个线环绘制出来,即可构成图形。

可以用来绘制复杂的几何图形,如圆环、环形等。

五、投影法:用尺规将投影绘制出来,即可构成图形。

可以用来绘制立体图形,如体积图、投影图等。

以上就是尺规作图的五种方法。

尺规作图是一种简单实用的绘图方法,可以用来绘制各种几何图形和立体图形。

它的最大优势在于可以准确控制作图的尺寸和准确性,从而获得精确的图形。

由于尺规作图的优点,在日常工作中,它被广泛应用于设计图纸、绘制图形等方面。

尺规作图的五种方法都是绘图中必不可少的工具,因此,在绘制图形时,应该根据自身的需求充分考虑这五种方法,以求最佳的作图效果。

尺规作图.精选

尺规作图.精选

第9讲尺规作图1.尺规作图定义:只用没有刻度的直尺和圆规作图称为尺规作图2.五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线;过一点作一条直线与已知直线垂直。

3.五种基本作图步骤:(1)作一条线段等于已知线段求作:线段AB等于线段a作法:如图,①先画射线AC.②然后用圆规在射线AC上截取AB=a.线段AB就是所要作的线段.(2)作一个角等于已知角求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:如图,①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.③以点O′为圆心,以OC长为半径作弧,交O′A′于C′.④以点C′为圆心,以CD为半径作弧,交前弧于D′.⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作已知角的平分线求作:射线OC,使∠AOC=∠BOC.作法:①在OA和OB上,分别截取OD、OE.②分别以D、E为圆心,大于12DE的长为半径作弧,在∠AOB内,两弧交于点C.③作射线OC。

OC就是所求的射线.(4)作线段的垂直平分线求作:线段AB的垂直平分线.作法:①分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.(5)经过已知点作这条直线的垂线情况a:经过已知直线上的一点作这条直线的垂线,如图已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线情况b:经过已知直线外一点作这条直线的垂线.如图已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:①任意取一点K,使K和C在AB的两旁.②以C为圆心,CK长为半径作弧,交AB于点D和E.③分别以D和E为圆心,大于12DE的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线.★注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.4.三角形的外接圆、三角形的内切圆的作法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a 初中尺规作图基本方法
1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:
1、作一条线段等于已知线段;
2、作一个角等于已知角;
3、作已知线段的垂直平分线;
4、作已知角的角平分线;
5、过一点作已知直线的垂线;
(1)题目一:作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a . 作法: (1) 作射线AP ; (2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

M
(2)题目二:作已知线段的垂直平分线。

已知:如图,线段MN. 求作:点O ,使MO=NO (即O 是MN 的中点). 作法:
(1)分别以M 、N 为圆心,大于MN 21 的相同线段为半径画弧,
两弧相交于P ,Q ;
(2)连接PQ 交MN 于O .
则点PQ 就是所求作的MN的垂直平分线。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,
求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠
AOB )。

作法:
(1)以O 为圆心,任意长度为半径画弧,
分别交OA ,OB 于M ,N ; (2)分别以M 、N为圆心,大于MN 2
1的线



段长
为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。

(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB
作法:
(1)作射线O ’A ’;
(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ;
(3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’;
(4)以M ’为圆心,以MN 的长为半径画
P
B
B A
P
弧,交前弧于N ’;
(5)连接O ’N ’并延长到B ’。

则∠A ’O ’B ’就是所求作的角。

(5)题目五:经过
直线上一点做已知直线的垂线。

已知:如图,P 是直线AB 上一点。

求作:直线CD ,是CD 经过点P ,且CD ⊥AB 。

作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
(2)分别以M 、N 为圆心,大于MN 21的长为半径画弧,两弧交于点Q ; (3)过D 、Q 作直线
CD 。

则直线CD 是求作的直线。

(6)题目六:经过直线外一点作已知直
c
a b
线的垂线
已知:如图,直线AB 及外一点P 。

求作:直线CD ,使CD 经过点P ,
且CD ⊥AB 。

作法:
(1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ;
(2)分别以M 、N 圆心,大于MN 21长度的一半为半径画弧,两弧交于点Q ; (3)过P 、Q 作直线CD 。

则直线CD 就是所求作的直线。

(7)题目七:已知三边作三角形。

已知:如图,线段a ,b ,c.
求作:△ABC ,使AB = c ,AC = b ,BC = a. 作法: (1) 作线段AB = c ; (2) 以A 为圆心,以b 为半径
作弧,
以B 为圆心,以a 为半径作弧与
m
n
m
前弧相交于C;
(3)连接AC,BC。

则△ABC就是所求作的三角形。

(8)题目八:已知两边及夹角作三角形。

已知:如图,线段m,
n, ∠α.
求作:△ABC,使∠A=
∠α,AB=m,AC=n.
作法:
(1)作∠A=∠α;
(2)在AB上截取AB=m ,AC=n;
(3)连接BC。

则△ABC就是所求作的三角形。

(9)题目九:已知两角及夹边作三角形。

已知:如图,∠α,∠
β,线段m .
求作:△ABC,使∠A=
∠α,∠B=∠β,AB=m.
作法:
(1)作线段AB=m;
(2)在AB的同旁
作∠A=∠α,作∠B=∠β,
∠A与∠B的另一边相交于C。

则△ABC就是所求作的图形(三角形)。

相关文档
最新文档