MATLAB 函数的迭代、混沌与分形
matlab 混沌 分叉 程序

一、概述Matlab是一种用于数学计算、数据分析和图形可视化的高级编程语言和工具,混沌理论是一种描述动态系统非线性行为的数学理论,而混沌分叉是混沌系统中特有的一种现象。
编写Matlab程序对混沌分叉进行研究即是将这两种领域结合起来,本文将介绍如何使用Matlab 编写混沌分叉程序。
二、混沌分叉理论简介混沌分叉理论是描述混沌系统行为的一个重要方面,其基本原理可简要描述如下:1. 系统的参数变化:在混沌系统中,当改变系统的某些参数时,系统的行为会发生变化,这种变化可能是渐变的,也可能是突然的。
2. 分岔现象:当系统的参数发生变化时,系统的稳定点可能会出现分叉现象,即稳定点从一个点分裂成多个点,这种分叉现象是混沌系统中一个显著的特征。
3. 分形结构:在混沌分叉中,分岔现象可能形成分形结构,这种结构在混沌系统中具有重要的理论和实际意义。
三、Matlab基础知识使用Matlab编写混沌分叉程序需要具备一定的Matlab基础知识,包括但不限于以下内容:1. Matlab基本语法:了解Matlab的基本语法规则,包括变量定义、数组操作、逻辑运算等。
2. Matlab图形绘制:掌握Matlab绘制图形的基本方法,包括绘制曲线、散点图等。
3. Matlab函数编写:了解如何在Matlab中编写自定义函数,并且能够熟练运用函数调用和参数传递。
四、混沌分叉程序的编写编写混沌分叉程序的基本步骤如下:1. 设定系统参数:首先需要定义混沌系统的参数,包括系统的微分方程、初始条件以及需要变化的参数。
2. 编写微分方程:根据所研究的具体混沌系统,编写系统的微分方程,通常为非线性微分方程。
3. 参数变化循环:对系统的某些参数进行变化,并且循环计算系统的轨迹,观察混沌分叉现象。
4. 图形绘制:绘制分叉图、分岔图等用于展示混沌分叉现象的图形。
五、程序示例下面为一个简单的混沌分叉程序示例,以具体的混沌系统为 Logistic映射为例,程序演示了 Logistic 映射参数 r 变化时轨迹的分叉现象。
Matlab实验报告:分形迭代

数学实验报告:分形迭代练习11.实验目的:绘制分形图案并分析其特点。
2.实验内容:绘制Koch曲线、Sierpinski三角形和树木花草图形,观察这些图形的局部和原来分形图形的关系。
3.实验思路:利用函数反复调用自己来模拟分形构造时的迭代过程,当迭代指标n为0时运行作图操作,否则继续迭代。
4.实验步骤:(1)Koch曲线function koch(p,q,n) % p、q分别为koch曲线的始末复坐标,n为迭代次数if (n==0)plot([real(p);real(q)],[imag(p);imag(q)]);hold on;axis equalelsea=(2*p+q)/3; % 求出从p 到q 的1/3 处端点ab=(p+2*q)/3; % 求出从p 到q 的2/3 处端点bc=a+(b-a)*exp(pi*i/3);%koch(p, a, n-1); % 对pa 线段做下一回合koch(a, c, n-1); % 对ac 线段做下一回合koch(c, b, n-1); % 对cb 线段做下一回合koch(b, q, n-1); % 对bq 线段做下一回合end(2)Sierpinski三角形function sierpinski(a,b,c,n) % a、b、c为三角形顶点,n为迭代次数if (n==0)fill([real(a) real(b) real(c)],[imag(a) imag(b) imag(c)],'b');% 填充三角形abchold on;axis equalelsea1=(b+c)/2;b1=(a+c)/2;c1=(a+b)/2;sierpinski(a,b1,c1,n-1);sierpinski(a1,b,c1,n-1);sierpinski(a1,b1,c,n-1);end(3)树木花草function grasstree(p,q,n) % p、q分别为树木花草始末复坐标,n为迭代次数plot([real(p);real(q)],[imag(p);imag(q)]);hold on;axis equalif(n>0)a=(2*p+q)/3;b=(p+2*q)/3;c=a+(b-a)*exp(pi*i/6);%d=b+(q-b)*exp(-pi*i/6);%grasstree(a,c,n-1);grasstree(b,d,n-1);endend5.主要输出:指令:koch(0,1,5); soerpinski(0,1,exp(pi*i/3),5); grasstree(0,i,5);Koch曲线Sierpinski三角形树木花草6.实验结论:以上图案的局部形状与原本图形用某种自相似性,这正是分形的特点。
matlab混沌,分形

matlab混沌,分形对于函数f(x)=λsin(πx),λ∈(0,1],使⽤matlab计算随着λ逐渐增⼤,迭代x=f(x)的值,代码如下:function y=diedai(f,a,x1)N=32;y=zeros(N,1);for i=1:1e4x2=f(a,x1);x1=x2;y(mod(i,N)+1)=x2;endend%f=@(a,x)a*x*(1-x);f=@(a,x)a*sin(pi*x);%x0=0.1;hold on;for x0=-1:0.05:1for a=0:0.01:1y=diedai(f,a,x0);for count=1:32plot(a,y(count),'k.');hold on;endendend得到的图像如下:其中横轴为λ,纵轴为x可以看到随着λ的逐渐增⼤,出现了倍周期分叉的情况。
由图中可以看出第⼀个分叉值⼤约在0.3附近,第⼆个在0.73到0.75之间,第三个在0.8到0.85之间,混沌⼤约出现在0.86附近。
接下来编写代码计算分叉值,代码如下:format long;x0=0.1;for a=0.3182:0.0000001:0.3183y=diedai(f,a,x0);if max(y)>0.001disp(a);break;endend得到第⼀个分叉值⼤约为0.3182298format long;x0=0.1;for a=0.7199:0.000001:0.72y=diedai(f,a,x0);if max(y)-min(y)>0.001disp(a);break;endend得到第⼆个分叉值⼤约为0.719911format long;x0=0.1;for a=0.8332:0.000001:0.8333y=diedai(f,a,x0);if abs(y(32)-y(30))>0.001disp(a);break;endend得到第三个分叉值⼤约为0.833267利⽤Feigenbaum常数估计第三个分叉值,得到0.805939分形图周常青画mandelbrot分形图,主要使⽤了三个函数:iter=mandelbrot1(x0,y0,maxIter),⽤来计算迭代后是否收敛,⽅程z=z2+z0。
分形、混沌与迭代

试验十二 分形、混沌——迭代一、试验目的:1、Koch 曲线、Sierpinski 三角形、Cantor 集的计算机实现2、掌握用迭代、递归生成分形3、用Matlab 观察分岔与混沌现象二、分形相关程序:1、从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch 分形曲线。
算法分析:考虑由直线段(2个点)产生第一个图形(5个点)的过程。
图1中,设1P 和5P 分别为原始直线段的两个端点,现需要在直线段的中间依次插入三个点2P ,3P ,4P 。
显然2P 位于线段三分之一处,4P 位于线段三分之二处,3P 点的位置可看成是由4P 点以2P 点为轴心,逆时针旋转600而得。
旋转由正交矩阵 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=)3cos()3sin()3sin()3cos(ππππA 实现。
算法根据初始数据(1P 和5P 点的坐标),产生图1中5个结点的坐标。
结点的坐标数组形成一个25⨯矩阵,矩阵的第一行为1P 的坐标,第二行为2P 的坐标……,第五行为5P 的坐标。
矩阵的第一列元素分别为5个结点的x 坐标,第二列元素分别为5个结点的y 坐标。
进一步考虑Koch 曲线形成过程中结点数目的变化规律。
设第k 次迭代产生的结点数为k n ,第1+k 次迭代产生的结点数为1+k n ,则k n 和1+k n 中间的递推关系为341-=+k k n n 。
实验程序及注释:p=[0 0;10 0]; %P 为初始两个点的坐标,第一列为x 坐标,第二列为y 坐标 n=2; %n 为结点数A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵for k=1:4d=diff(p)/3; %diff 计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d 就计算出每个向量长度的三分之一,与题中将线段三等分对应m=4*n-3; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k 位置上的点的坐标 n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])实验数据记录:由上面的程序,可得到如下的Koch 分形曲线:2、由四边形的四个初始点出发,对于四边形的每条边,生成元如下:可得到火焰般的图形。
基于Matlab的混沌特性分析

基于Matlab的混沌特性分析混沌现象是指那些看似无序但又具有确定性的系统行为。
混沌特性分析是指对混沌系统进行一系列统计和数学分析的方法,以揭示其内在的规律和动力学特性。
Matlab是一种强大的数值计算软件,具有丰富的功能和工具箱,适于进行混沌特性分析。
下面将介绍基于Matlab的混沌特性分析的一些常用方法。
Matlab可以用来绘制混沌系统的相图和轨迹图。
通过绘制相图,可以观察到混沌系统的轨迹在相空间中的分布和演化规律,从而揭示出系统的吸引子和稳定周期等特性。
可以使用Matlab中的plot函数来绘制相图和轨迹图。
Matlab可以用来计算混沌系统的Lyapunov指数。
Lyapunov指数是衡量系统对初始条件的敏感程度的指标,它可以用来判断系统是否具有混沌特性。
通过计算系统在相空间中相邻轨道的分离率,可以得到Lyapunov指数的估计值。
在Matlab中,可以使用内置的函数lyapunov来计算Lyapunov指数。
Matlab还可以用来分析混沌系统的频谱特性。
混沌系统的频谱通常具有分形结构,即呈现出分形维度的特征。
通过计算系统的功率谱密度和分形维度,可以揭示混沌系统的频谱特性。
可以使用Matlab中的fft函数来计算功率谱密度,并使用fractal函数来计算分形维度。
Matlab还可以用来分析混沌系统的分岔图和吸引子。
分岔图是研究混沌系统的参数变化对系统行为的影响的重要工具,它可以帮助我们了解系统从周期运动向混沌运动转变的过程。
吸引子是描述混沌系统在相空间中的吸引轨道的几何形状,通过分析吸引子的分维和奇异性等特性,可以揭示混沌系统内在的规律。
可以使用Matlab中的bifurcation函数来绘制分岔图,并使用attractor函数来绘制吸引子。
基于Matlab的混沌特性分析可以帮助我们揭示混沌系统的规律和动力学特性。
通过绘制相图和轨迹图、计算Lyapunov指数、分析频谱特性、绘制分岔图和吸引子等,可以全面而深入地了解混沌系统的行为。
混沌信号的产生 matlab

混沌信号的产生及其在Matlab中的实现一、混沌信号的概念与特点混沌是一种在确定性系统中表现出的随机、不可预测的行为。
混沌系统具有以下几个显著特征:1. 灵敏依赖于初值:在混沌系统中,微小的初值变化会导致系统行为的巨大变化,这就是所谓的“蝴蝶效应”。
2. 随机性和周期性:混沌系统表现出随机性和周期性的叠加,使得系统的行为呈现出复杂的、看似无序的特征。
3. 分形结构:混沌系统的轨迹具有分形结构,表现出自相似性和自组织性。
二、混沌信号的产生原理混沌信号的产生通常基于非线性动力系统模型,其中最经典的混沌系统包括 Logistic 映射、Henon 映射等。
混沌信号的产生一般遵循以下步骤:1. 选择合适的混沌系统模型,比如 Logistic 映射:$x_{n+1} =rx_n(1-x_n)$。
2. 选择初值和模型参数,并设定迭代次数。
3. 进行迭代计算,得到混沌信号的时域序列。
三、Matlab 中的混沌信号生成Matlab 是一种强大的科学计算软件,提供了丰富的工具箱和函数,使得混沌信号的产生和分析变得非常简单。
在Matlab 中,可以通过以下几种方法产生混沌信号:1. 直接求解微分方程:利用ode45函数求解混沌系统的微分方程,得到混沌时域序列。
2. 迭代计算:利用for循环结构进行模型的迭代计算,得到混沌信号的时域序列。
3. 利用现成的工具箱:Matlab 提供了一些专门用于产生混沌信号的工具箱,比如 ChaosBox。
四、示例代码以下是一个利用 Logistic 映射产生混沌信号的示例代码:```matlabLogistic 映射参数r = 3.9;时域序列长度N = 1000;初值x0 = 0.1;初始化时域序列x = zeros(1, N);x(1) = x0;迭代计算for i = 1:N-1x(i+1) = r * x(i) * (1 - x(i));end绘制混沌信号时域图plot(x);xlabel('时域');ylabel('信号幅值');title('Logistic 映射产生的混沌信号');```五、混沌信号的应用混沌信号作为一种具有随机性和周期性的信号,具有广泛的应用价值,包括但不限于:1. 加密通信:混沌信号可用于加密通信系统中的信息传输,利用混沌的随机特性可以提高数据的安全性。
MATLAB 函数的迭代、混沌与分形

取其它的初值做试验
初值 -40000 -500 -20 0 4 4.9 5 5.1 6 20 100 1000 收敛性 收敛于17 收敛于17 收敛于17 收敛于17 收敛于17 收敛于17 收敛于5 得到收敛点的迭代次数 16 16 16 17 17 19 0 19 17 12 14 14
2
实验四
函数的迭代、 函数的迭代、混沌与分形
1、 定义 、 给定某个初值, 给定某个初值,反复作用以同一个函数的 过程称为迭代 ,一般形式为
x0 , x1 = f (x0 ), x2 = f (x1 ),⋯, xn = f (xn−1 ),⋯
它生成了一个序列{ 它生成了一个序列 xn },称为迭代序列. ,称为迭代序列.
f (x) = αx(1− x) (0 ≤ x ≤1)
12
6.人口增长的 人口增长的Logistic模型 人口增长的 模型
xn+1 =αxn (1− xn )
f (x) = αx(1− x) (0 ≤ x ≤1)
称为Logistic映射 映射 称为
13
7. Feigenbaum图 图 对于Logistic 映射,取a=2.5,我们通过离 映射, 对于 , 散图形观察迭代的收敛情况。 散图形观察迭代的收敛情况。
4
3.分式线性函数的迭代 分式线性函数的迭代
25x −85 例: f (x) = x +3
先取初值x 先取初值 0=5.5
f=inline('(25*x-85)/(x+3)');%先定义函数 先定义函数 x0=5.5; for i=1:1:20 x0=f(x0); fprintf('%g,%g\n',i,x0); end
基于Matlab的混沌特性分析

基于Matlab的混沌特性分析混沌是一种非线性动力学系统的行为,具有高度敏感性和指数级的指数增长,包括其随机性和不可预测性。
Matlab是一种强大的数学软件,提供了广泛的混沌特性分析工具,可以用于研究和分析各种混沌系统的行为。
混沌系统的特点是其高度敏感性,意味着系统的初始条件对于系统的进一步发展具有非常大的影响。
这种敏感性表现为所谓的“蝴蝶效应”,即小的扰动可能会导致系统的行为变化。
因此,混沌系统不存在稳态或周期性行为,而在演化过程中表现出复杂的非周期性、非周期性和随机性行为。
Matlab提供了许多用于生成和可视化混沌系统的工具。
其中一种常见的混沌系统是Lorenz方程,它由Edward Lorenz在1963年引入,是描述大气科学中气流流动的重要模型之一。
它的方程形式如下:dx/dt = σ(y-x)dy/dt = x(ρ-z)-ydz/dt = xy-βz其中x、y和z是系统的状态变量,t是时间,而σ、ρ和β是系统的参数。
使用Matlab中的ode45函数可以有效地求解此系统的状态变量,其中tspan是时间间隔,而y0是初值。
通过即时绘图工具,可以可视化结果,以获得混沌系统在相空间中的行为。
此外,Matlab还提供了其他混沌分析工具。
例如,Lyapunov指数可以用来衡量系统的敏感性和指数增长,而Fractal维度可以用来描述系统的分形特征。
这些工具可以帮助研究人员更好地理解混沌系统的行为以及其在各种实际应用中的应用。
总之,在Matlab的帮助下,分析和可视化混沌系统的特性和动力学行为变得更加容易和直观。
利用这些工具可以更好地理解混沌系统的复杂性以及其对实际问题的影响,并有可能推动各种领域的深入研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
logistic=inline('u*x*(1-x)'); x0=0.5; for u=3.0:0.01:4 for i=1:300 x0=logistic(u,x0); if i>100 plot(u,x0,'k','linewidth',1); hold on; end; end; end; hold off
4
3.分式线性函数的迭代 分式线性函数的迭代
25x −85 例: f (x) = x +3
先取初值x 先取初值 0=5.5
f=inline('(25*x-85)/(x+3)');%先定义函数 先定义函数 x0=5.5; for i=1:1:20 x0=f(x0); fprintf('%g,%g\n',i,x0); end
8
4.迭代的可视化(蜘蛛网图) 迭代的可视化(蜘蛛网图) 迭代的可视化
9
(25 x-85)/(x+3) 20 18 16 14 12 10 8 6 4 2 0
0
2
4
6
8
10 x
12
14
16
18
20
f=inline('(25*x-85)/(x+3)'); x=linspace(1,202,202);y=linspace(1,202,202); x(1)=5.5; y(1)=0;x(2)=x(1);y(2)=x(1); for i=1:100 x(1+2*i)=x(2*i); y(1+2*i)=f(x(1+2*i)); x(2+2*i)=y(1+2*i); y(2+2*i)=y(1+2*i); end plot(x,y,'r'); hold on; syms x y; y=x; ezplot(x,[0,20]); ezplot(f(x),[0,20]); axis([0,20,0,20]); hold off
3
2、迭代序列的收敛性 、 满足: 设函数 f (x)满足: (1)对任意 x ∈(a, b), f (x) ∈(a, b) ; 对任意 (2) f (x)在( a , b)内可导,且存在常数 L使得 内可导, 内可导
f ′(x) ≤ L <1
则当初值 x0 ∈(a, b)时,由 f (x) 生成的迭代序 列收敛. 列收敛. 问题1:如果迭代序列收敛, 问题 :如果迭代序列收敛,收敛点会满足怎样 的条件? 的条件?
6
取其它的初值做试验
初值 -40000 -500 -20 0 4 4.9 5 5.1 6 20 100 1000 收敛性 收敛于17 收敛于17 收敛于17 收敛于17 收敛于17 收敛于17 收敛于5 收敛于17 收敛于17 收敛于17 收敛于17 收敛于17 得到收敛点的迭代次数 16 16 16 17 17 19 0 19 17 12 14 14
7
结论:只要初值不取为 , 结论:只要初值不取为5,迭代序列总收敛 于17。 。 易知, 的不动点恰好是17与 。 称为排斥 易知,f(x)的不动点恰好是 与5。5称为排斥 的不动点恰好是 点,17称为吸引点。 称为吸引点。 称为吸引点 问题2 为何17是吸引点 是排斥点 是吸引点, 是排斥点? 问题 为何 是吸引点,5是排斥点? 例1 用分式函数的迭代法近似计算 2
2
实验四
函数的迭代、 函数的迭代、混沌与分形
1、 定义 、 给定某个初值, 给定某个初值,反复作用以同一个函数的 过程称为迭代 ,一般形式为
x0 , x1 = f (x0 ), x2 = f (x1 ),⋯, xn = f (xn−1 ),⋯
它生成了一个序列{ 它生成了一个序列 xn },称为迭代序列. ,称为迭代序列.
19
6 5 4 3 2 1 0 -1 -2 -4 -3 -2 -1 0 1 2 3 4 5 6
11
5. 认识混沌 迭代序列如果不收敛,会出现什么情况? 迭代序列如果不收敛,会出现什么情况? 1. 迭代次数充分大时,迭代序列出现周期性 迭代次数充分大时, 重复
x0 , x1,⋯, xN , xN+1,⋯, xN+k−1 xN , xN+1,⋯, xN+k−1 ⋯ ⋯,
Байду номын сангаас
k称为该序列的周期 称为该序列的周期 2. 序列没有规律、杂乱无章,称之为混沌. 序列没有规律、杂乱无章,称之为混沌. 例
16
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4
8.二维迭代与分形 二维迭代与分形 由两个二元函数 f (x, y)与 g(x, y) 取初值 ( x0, y0)构成的迭代 构成的迭代 xn+1 = f (xn , yn ) yn+1 = g(xn , yn ) 称为一个二维迭代. 称为一个二维迭代.
f (x) = αx(1− x) (0 ≤ x ≤1)
12
6.人口增长的 人口增长的Logistic模型 人口增长的 模型
xn+1 =αxn (1− xn )
f (x) = αx(1− x) (0 ≤ x ≤1)
称为Logistic映射 映射 称为
13
7. Feigenbaum图 图 对于Logistic 映射,取a=2.5,我们通过离 映射, 对于 , 散图形观察迭代的收敛情况。 散图形观察迭代的收敛情况。
14
一个试验:首先取a的值为 ,在(0,1)中随 一个试验:首先取 的值为3, , 中随 的值为 机取一数x 作为初值进行迭代,共迭代300次 机取一数 0作为初值进行迭代,共迭代 次 左右,丢弃起始的100次迭代的数据 次迭代的数据, 左右,丢弃起始的 次迭代的数据,在图 上绘出所有的点( 上绘出所有的点 a , xn )) (>100).然后慢慢 . 地增加a值 每增加一次, 地增加 值,每增加一次,都重复前面的步 骤,一直增加到a = 4为止,这样得到的图形, 一直增加到 为止,这样得到的图形, 为止 称为Feigenbaum图. 称为 图
syms x; f=inline('2.5*x*(1-x)'); x0=0.12; for i=1:1:10 换成2.5会怎样 %i换成 会怎样?进一步的, 换成 会怎样?进一步的, 此句前加上“ 此句前加上“if i>50”,后加 后加 plot(i,f(x0),'.'); 上“end;” x0=f(x0); hold on; end; hold off
18
例1 函数 f (x, y) = y − sin x 与 g(x, a) = a − x , 取a =3.1、初值为 、初值为(1.2,0) a=3.1;xn=1.2;yn=0; for n=1:100 xN=xn; yN=yn; xn=yN-sin(xN);yn=a-xN; plot(xn,yn,'k*'); axis([-5,7,-5,7]); hold on; pause(0.1); end; hold off
函数的迭代、 实验四 函数的迭代、 混沌与分形
1
实验目的
理解迭代的基本含义 掌握迭代数列的系列图形表示方法 以一类特殊二次函数(Logistic函数)为例, 以一类特殊二次函数(Logistic函数)为例, 掌握二次函数迭代数列的收敛性分析方法 熟悉编写函数迭代的Matlab程序 熟悉编写函数迭代的Matlab程序 了解二元函数迭代的方法及其图形特征
5
迭代次数 n 迭代序列 xn 1 6.17647 2 7.5641 3 9.85437 4 12.5529 5 14.7125 6 15.9668 7 16.5642 8 16.8218 9 16.9281 10 16.9711
迭代次数 n 迭代序列 xn 11 16.9884 12 16.9954 13 16.9981 14 16.9993 15 16.9997 16 16.9999 17 17. 18 17. 19 17. 20 17.